MATLAB实验傅里叶分析
实验用MATLAB计算傅里叶变换

实验二 用MATLAB 计算傅立叶变换(2课时)一、实验目的1、掌握用MA TLAB 计算DTFT 及系统频率响应的方法。
2、掌握用MA TLAB 计算DFT 和IDFT 的方法。
3、掌握用DFT 计算圆周卷积和线性卷积的方法。
二、实验设备计算机一台,装有MATLAB 软件。
三、实验原理和基本操作1.用MA TLAB 计算DTFT对于序列x (n ),其离散时间傅立叶变换(DTFT )定义为:∑∞-∞=-=n n j e n x j X ωω)()( (1)序列的傅立叶变换(DTFT )在频域是连续的,并且以ω=2π为周期。
因此只需要知道jw X(e )的一个周期,即ω=[0,2π],或[-π,π]。
就可以分析序列的频谱。
用MA TLAB 计算DTFT ,必须在-π≤ω≤π范围内,把ω用很密的、长度很长的向量来近似,该向量中各个值可用下式表示: w=k*dw=k*K π2 (2) 其中:d ω=Kπ2 称为频率分辨率。
它表示把数字频率的范围2π均分成K 份后,每一份的大小,k 是表示频率序数的整数向量,简称为频序向量,它的取值可以有几种方法:通常在DTFT 中,频率取-π≤ω<л的范围,当K 为偶数时,取 k 12,,1,0,1,,12,2--+--=K K K 如果K 为奇数,则取 k 5.02,,1,0,1,,5.02--+-=K K 可以为奇偶两种情况综合出一个共同的确定频序向量k 的公式; k=12K -⎢⎥-⎢⎥⎣⎦ :12K -⎢⎥⎢⎥⎣⎦(3) 上式中⎢⎥⎣⎦表示向下取整。
在MA TLAB 中的向下取整函数为floor ,floor (x )的作用是把x 向下(向-∞方向)取整,所以与(3)式等价的MATLAB 语句为 k ))5.02(:)5.02((-+-=K K floor (4) 给定了输入序列(包括序列x 及其位置向量n ),又设定了频率分辨率d ω及频序向量k ,则DTFT 的计算式(1)可以用一个向量与矩阵相乘的运算来实现。
傅里叶分析matlab程序

x t cos 2* pi *50* t cos 2* pi *200* t
看其时域图为
2 1.5 1 0.5 0 -0.5 -1 -1.5 -2
(1.2)
0
0.05
0.1
0.15
0.2
0.25
ቤተ መጻሕፍቲ ባይዱ
0.3
0.35
0.4
0.45
0.5
图表 1 信号时域图
再看去频域的图
5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0 0 50 100 150 200 250 300 350 400 450 500
j
d
为了快速技术离散傅里叶变换, 通常使用快速傅里叶变换来代替信号的傅里 叶变换。现给出 matlab 公式如下
n=length(sig);%信号sig的长度 fs=1000; %采用频率 nfft=2^nextpow2(n); X=fft(sig,nfft); %做傅里叶变换 Axx=(abs(X)); t=nfft/2-1))/nfft*fs; plot(t,Axx)作图
傅里叶分析(Fourier analysis)主要研究函数的傅里叶变换及其性质。连续函 数的傅里叶公式如下
F ( )
f (t )e jt dt
(1.1)
而信号处理领域,通常需要将时域的信号 f (t ) ,转变到频域 F( ) 来得到信 号的频域特征。这就需要傅里叶变换。 下面举例说明,为了容易理解,在这里信号举例说明的是简单的周期信号。 如有一个信号,时域表达为
如有一个信号时域表达为xtcos2pi50t??cos2pi200t12??????看其时域图为215105005115200050101502025030350404505图表1信号时域图再看去频域的图5000450040003500300025002000150010005000050100150200250300350400450500图表2信号的频域图从时域到频域需要的就是傅里叶变换在一些信号处理等利于这种变换很很常见
数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。
2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。
3、了解MA TLAB 有关双线性变换法的子函数。
二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。
调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。
当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。
),(n x fft y =;采用n 点FFT 。
当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。
当x 为矩阵时,fft 函数按类似的方式处理列长度。
(2)ifft功能:一维快速傅里叶逆变换(IFFT)。
调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。
当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。
),(n x ifft y =;采用n 点IFFT 。
当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。
(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。
调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。
MATLAB实验二 傅里叶分析及应用复习课程

M A T L A B实验二傅里叶分析及应用实验二傅里叶分析及应用一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件Win7系统,MATLAB R2015a三、实验内容1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。
Code:ft = sym('(t+2)*(heaviside(t+2)-heaviside(t+1))+(heaviside(t+1)-heaviside(t-1))+(2-t)*(heaviside(t-1)-heaviside(t-2))');fw = simplify(fourier(ft));subplot(2, 1, 1);ezplot(abs(fw)); grid on;title('amp spectrum');phi = atan(imag(fw) /real(fw));subplot(2, 1, 2);ezplot(phi); grid on;符号运算法Code:dt = 0.01;t = -2: dt: 2;ft = (t+2).*(uCT(t+2)-uCT(t+1))+(uCT(t+1)-uCT(t-1))+(2-t).*(uCT(t-1)-uCT(t-2));N = 2000;k = -N: N;w = pi * k / (N*dt);fw = dt*ft*exp(-i*t'*w);fw = abs(fw);plot(w, fw), grid on;axis([-2*pi 2*pi -1 3.5]);t(20 π ex p(-3 t) heaviside(t) - 8 π ex p(-5 t) heaviside(t))/(2 π)数值运算法2、试用Matlab 命令求ωωωj 54-j 310)F(j ++=的傅里叶反变换,并绘出其时域信号图。
matlab如何做傅里叶变换

matlab如何做傅里叶变换# MATLAB中的傅里叶变换## 引言傅里叶变换是一种在信号处理和频谱分析中广泛使用的数学工具,能够将一个信号从时域转换为频域。
MATLAB作为一个强大的数值计算工具,提供了丰富的函数和工具箱,使得进行傅里叶变换变得相对简单。
本文将介绍MATLAB中如何执行傅里叶变换,包括基本概念、使用的函数以及示例应用。
## 傅里叶变换的基本概念傅里叶变换通过将一个时域信号分解为不同频率的正弦和余弦函数的组合,从而提供了在频域中分析信号的能力。
在MATLAB中,傅里叶变换主要有两种类型:离散傅里叶变换(DFT)和连续傅里叶变换(FFT)。
DFT适用于离散信号,而FFT是一种更快的算法,通常用于实际计算。
## MATLAB中的傅里叶变换函数### 1. 离散傅里叶变换(DFT)在MATLAB中,`fft`函数用于计算离散傅里叶变换。
下面是一个简单的例子,演示如何使用该函数:```matlab% 定义信号t = 0:0.01:1; % 时间向量f = 5; % 信号频率signal = sin(2*pi*f*t);% 计算离散傅里叶变换fft_result = fft(signal);% 绘制原始信号和频谱subplot(2,1,1);plot(t, signal);title('原始信号');subplot(2,1,2);plot(abs(fft_result));title('频谱');```上述代码创建了一个简单的正弦信号,并使用`fft`函数计算了其频谱。
通过绘制原始信号和频谱,我们可以直观地理解信号在频域中的表示。
### 2. 连续傅里叶变换(FFT)MATLAB中的`fft`函数也可以用于执行连续傅里叶变换。
以下是一个示例,展示了如何应用FFT来分析一个包含多个频率成分的信号:```matlab% 定义包含多个频率成分的信号t = 0:0.01:2;f1 = 3;f2 = 8;signal = sin(2*pi*f1*t) + 0.5*cos(2*pi*f2*t);% 计算连续傅里叶变换fft_result = fft(signal);% 绘制原始信号和频谱subplot(2,1,1);plot(t, signal);title('原始信号');plot(abs(fft_result));title('频谱');```通过这个例子,我们可以看到如何利用FFT来分析包含多个频率成分的信号,从而更全面地了解信号的频谱特性。
MAtlab-傅里叶变换-实验报告

MAtlab-傅里叶变换-实验报告陕西科技大学实验报告班级信工082 学号16 姓名刘刚实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等)1.求信号的离散时间傅立叶变换并分析其周期性和对称性;给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。
(a)代码:f=10;T=1/f;w=-10:0.2:10;t1=0:0.0001:1;t2=0:0.01:1;n1=-2;n2=8;n0=0;n=n1:0.01:n2;x5=[n>=0.01];x1=2*cos(2*f*pi*t1);x2=2*cos(2*f*pi*t2);x3=(exp(-j).^(t2'*w));x4=x2*x3;subplot(2,2,1);plot(t1,x1);axis([0 1 1.1*min(x2) 1.1*max(x2)]);xlabel('x(n)');ylabel('x(n)');title('原信号x1');xlabel('t');ylabel('x1');subplot(2,2,3);stem(t2,x2);axis([0 1 1.1*min(x2) 1.1*max(x2)]);title('原信号采样结果x2');xlabel('t');ylabel('x2');第页subplot(2,2,2);stem(n,x5);axis([0 1 1.1*min(x5) 1.1*max(x5)]);xlabel('n');ylabel('x2');title('采样函数x2');subplot(2,2,4);stem(t2,x4);axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]);xlabel('t');ylabel('x4');title('DTFT结果x4');(b)结果:2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性;x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12];x2(n)=R10(n)(1)线性:(a)代码:w=linspace(-8,8,10000);nx1=[0:11]; nx2=[0:9];x1=[1 2 3 4 5 6 7 8 9 10 11 12];第页x2=[1 1 1 1 1 1 1 1 1 1];x3=[x2,zeros(1,(length(x1)-length(x2)))];x4=2*x1+3*x3;X1=x1*exp(-j*nx1'*w);%频率特性X3=x3*exp(-j*nx1'*w);%频率特性X4=x4*exp(-j*nx1'*w);%频率特性subplot(5,3,1),stem(nx1,x1),axis([-1,13,0,15]);title('x1'), ylabel('x(n)');subplot(5,3,2),stem(nx2,x2),axis([-1,13,0,5]);title('x2'); subplot(5,3,3),stem(nx1,x4),axis([-1,13,0,26]);title('x4=2*x1+3* x3');subplot(5,3,4),plot(w,abs(X1)); ylabel('幅度')subplot(5,3,7),plot(w,angle(X1));ylabel('相位')subplot(5,3,10),plot(w,real(X1));ylabel('实部')subplot(5,3,13),plot(w,imag(X1)); ylabel('虚部')subplot(5,3,5),plot(w,abs(X3));subplot(5,3,8),plot(w,angle(X3));subplot(5,3,11),plot(w,real(X3));subplot(5,3,14),plot(w,imag(X3));subplot(5,3,6),plot(w,abs(X4));subplot(5,3,9),plot(w,angle(X4));subplot(5,3,12),plot(w,real(X4));subplot(5,3,15),plot(w,imag(X4));(b)结果:第页(2)卷积:(a)代码:nx1=0:11; nx2=0:9; nx3=0:20;w=linspace(-8,8,40); %w=[-8,8]分10000份x1=[1 2 3 4 5 6 7 8 9 10 11 12];x2=[1 1 1 1 1 1 1 1 1 1];x3=conv(x1,x2);% x1卷积x2x4=x1*exp(-j*nx1'*w);% x1频率特性x5=x2*exp(-j*nx2'*w);% x2频率特性x6=x3*exp(-j*nx3'*w);% x1卷积x2频率特性x7=x4.*x5;subplot(2,2,1),stem(nx1,x1),axis([-1,15,0,15]),title('x1'); subplot(2,2,2),stem(nx2,x2),axis([-1,15,0,5]),title('x2'); subplot(2,1,2),stem(nx3,x3),axis([-1,25,0,80]);title('x1卷积x2第页结果x3');figure,subplot(2,2,1),stem(x4,'filled'),title('x1的DTFT结果x4');subplot(2,2,2),stem(x5,'filled'),title('x2的DTFT结果x5');subplot(2,2,3),stem(x6,'filled'),title('x3的DTFT结果x6');subplot(2,2,4),stem(x7,'filled'),title('x4的DTFT结果x7');figure,subplot(3,2,1),stem(w,abs(x6)), ylabel('幅度'),title('x1卷积x2的DTFT');subplot(4,2,3),stem(w,angle(x6)),ylabel('相位')subplot(4,2,5),stem(w,real(x6)),ylabel('实部')subplot(4,2,7),stem(w,imag(x6)),ylabel('虚部')subplot(4,2,2),stem(w,abs(x7)), title('x1与x2的DTFT的乘积');subplot(4,2,4),stem(w,angle(x7));subplot(4,2,6),stem(w,real(x7));subplot(4,2,8),stem(w,imag(x7));(b)结果:第页第页(3)共轭:(a)代码:x1n=[1 2 3 4 5 6 7 8 9 10 11 12];w=-10:10;N1=length(x1n);n1=0:N1-1;x1=real(x1n);x2=imag(x1n);x2n=x1-j*x2;X1=x2n*(exp(-j).^(n1'*w));X2=x1n*(exp(j).^(n1'*w));x3=real(X2);x4=imag(X2);X2=x3-j*x4;figure,subplot(211);stem(w,X1,'.');title('x1n共轭的DTFT');第页subplot(212);stem(w,X2,'.');title('x1n的DTFT取共轭且反折'); (b)结果:3. 求LTI系统的频率响应给定系统H(Z)=B(Z)/A(Z),A=[0.98777 -0.31183 0.0256]B=[0.98997 0.989 0.98997],求系统的幅频响应和相频响应。
matlab傅里叶谱方法求解微分方程

matlab傅里叶谱方法求解微分方程1. 前言微分方程作为数学中重要的研究对象之一,其在各个领域均有着重要的应用。
而求解微分方程的方法也有很多种,其中傅里叶谱方法是一种常用且有效的方法之一。
本文将介绍如何使用matlab中的傅里叶谱方法求解微分方程,并通过一个具体的例子来说明其求解过程和结果。
2. 傅里叶谱方法简介傅里叶谱方法(Fourier spectral method)是一种基于傅里叶级数展开的方法,通过将微分方程转化为频域上的代数方程来求解。
其基本思想是将微分方程中的未知函数表示为一组正交基(通常是正弦函数和余弦函数)的线性组合,然后通过傅里叶级数的性质将微分方程转化为方便求解的代数方程。
3. matlab中傅里叶谱方法的实现在matlab中,可以使用fft函数来进行傅里叶变换,将微分方程转化为频域上的代数方程。
接下来,我们通过一个具体的例子来演示如何使用matlab中的傅里叶谱方法求解微分方程。
4. 例子:求解一维热传导方程考虑一维热传导方程:∂u/∂t = α*∂^2u/∂x^2其中,u(x, t)为温度分布,α为热传导系数。
为了使用傅里叶谱方法求解该方程,首先需要进行空间上的离散化,将u(x, t)表示为傅里叶级数的形式:u(x, t) = Σ(A_k(t)*exp(i*k*2πx/L))其中,A_k(t)为待定系数,L为空间的长度,k为频率。
将上述形式代入热传导方程,得到:∂A_k/∂t = -α*(2πk/L)^2*A_k通过这一步变换,我们将原本的偏微分方程转化为了关于A_k(t)的一组常微分方程,可以通过常微分方程的数值计算方法求解。
5. 结果展示通过matlab编写代码,可以对上述常微分方程进行数值求解,得到A_k(t)的解。
进而通过傅里叶级数的线性叠加,可以得到u(x, t)的近似解,并画出其空间分布随时间的演化图。
这样就可以直观地观察到热传导方程的解随时间的变化规律。
傅里叶变换matlab实验总结

傅里叶变换matlab实验总结(完整)快速傅里叶变换fft的Matlab实现实验报告尊敬的读者朋友们:一、实验目的1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2熟悉并掌握按时间抽取FFT算法的程序;3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。
二、实验内容1仔细分析教材第六章‘时间抽取法FFT'的算法结构,编制出相应的用FFT进行信号分析的C语言(或MATLAB语言)程序;用MATLAB语言编写的FFT源程序如下:%%输入数据f、N、T及是否补零clc;clear;f=input('输入信号频率f:');N=input('输入采样点数N:');T=input(’输入采样间隔T:');C=input('信号是否补零(补零输入1,不补零输入0):’); %补零则输入1,不补则输入0if(C==0)t=0:T:(N—1)*T;=in(2*pift);b=0;eleb=input(’输入补零的个数:');while(log2(N+b),=fi(log2(N+b)))b=input(’输入错误,请重新输入补零的个数:’);endt=0:T:(N+b—1)*T;=in(2*pi*f*t)。
(t<=(N—1)*T);end%%fft算法的实现A=bitrevorder();% 将序列按二进制倒序N=N+b;M=log2(N);% M为蝶形算法的层数W=ep(—j2pi、N);for L=1:1:M% 第L层蝶形算法B=2^L、2;%B为每层蝶形算法进行加减运算的两个数的间隔K=N、(2^L);%K为每层蝶形算法中独立模块的个数for k=0:1:K-1for J=0:1:B-1p=J2^(M—L);%p是W的指数q=A(k2^L+J+1);%用q来代替运算前面那个数A(k2^L+J+1)=q+W^p*A(k2^L+J+B+1);A(k*2^L+J+B+1)=q—W^p*A(k*2^L+J+B+1);endendend%%画模特性的频谱图z=ab(A);% 取模z=z。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB实验傅里叶分析
实验七 傅里叶变换
一、实验目的
傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。
通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。
MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。
本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。
二、实验预备知识
1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介
设x (t )是给定的时域上的一个波形,则其傅里叶变换为
2()() (1)j ft X f x t e dt π∞--∞=⎰
显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。
而傅里叶逆变换定义为:
2()() (2)j ft
x t X f e df π∞-∞
=⎰
因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。
由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使
之符合电脑计算的特征。
另外,当
把傅里叶变换应用于实验数据的分
析和处理时,由于处理的对象具有
离散性,因此也需要对傅里叶变换
进行离散化处理。
而要想将傅里叶
变换离散化,首先要对时域上的波
形x (t )进行离散化处理。
采用一个
时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1;
可以实现上述目的,如图所示。
其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。
注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。
接下来对离散后的时域波形()()()(x t x t t n T x n T δ=
-=的傅里叶变换()X f 进行离散处理。
与上述做法类
似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t
δ ( f -n/T 0), n = 0, 1, 2, …, N -1;T 0= NT 为总采样时间
可以实现傅里叶变换()X f 的离散化,如下图示。
不难看出,离散后的傅里叶变换其频率间隔(频率轴上离散点的间隔,即频域分辨
率)
011 (3)s f f T NT N ∆===
因此要增加分辨率须增加采样
点数目N 。
频域上每个离散点对
应的频率为:
0; 0,1,2,...,-1 (4)s n f n n f n n N T NT N ====显然n = 0的点对应于直流成分。
经过以上离散化处理之后,连续积分的傅里叶变换(1)式转变为如下离散形式:
12/0()(), 0,1,2,..., 1 (5)
N j nk N n k k X f x t e n N π--===-∑其中t k = kT
(k =0,1,2,…,N-1)代表采样点时刻。
X ( f n )一般是复数,因此离散傅里叶变换(DFT)后变成一个N 点(采样点数)的复数序列。
X ( f n )绝对值代表振幅,其幅角代表相位,因此由(5)式可以给出DFT 的振幅频谱和相位频谱。
(5)式通常又简写f f f ()X f δ (f -X
(混
成如下形式:
10()(), 0,1,2,..., 1 (6)
N nk N k X n x k W n N -===-∑
其中 2/ j N N W e π-=,x 是采样点数据,它是一个N 个点的向量,DFT 的结果X 是N 个点的复数向量。
(5)式或(6)式就是对傅里叶变换进行数值计算的基础。
一般采样点数N 越大,DFT 的结果越接近真实的情况,但是当N 较大时,(6)式的计算量很大,因为使用计算机求解(6)式时,总共要执行N 2次复数乘法和N×(N-1)次复数加法。
所以直接用DFT 算法(即(5)式)进行谱分析和信号的实时处理是不切实际的。
为了减轻计算的压力,人们提出了一种所谓快速傅里叶变换(FFT )的思想:
取N =2m ,首先将N 个点的采样数据011[,,...,]N x x x x -=分成两个N /2点的序列:
1022[,,...,]N x x x x -= (偶数序列)
2131[,,...,]N x x x x -= (奇数序列)
这样处理的好处是可以把(6)式分解为两个N/2点的DFT ,使计算量降下来。
接下来再将N/2点的序列x 1仿照上述做法进一步分裂成2个N/4
点的序列x3和x4,另一序列x2亦做如此处理,分裂成2个N/4点的序列x5和x6。
这样两个N/2点的序列分成了更短的4个N/4点的序列,依次类推,最后的结果是将一个N点的序列x裂成了N个点的单点序列:x0, x1, x2, …, x N-1。
这样做可以将DFT的运算效率提高1-2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了条件,从而推动数字处理技术的发展。
由此可见FFT的思想实质是不断地把长序列的DFT计算分解成若干短序列的DFT,并利用旋转因子(即W N )的周期性和对称性来减少DFT 的运算次数。
所以FFT就是DFT的快速算法。
有关FFT算法的详细介绍和理论推导参见有关的书籍,这里不做进一步介绍。
2. FFT的MATLAB实现
为了实现快速傅里叶变换,MATLAB提供了fft、ifft、fft2、ifft2以及fftshift函数,分别用于一维和二维离散傅里叶变换(DFT)及其逆变换。
借助这些函数可以完成很多信号处理任务。
考虑到信号处理包含的领域很广泛,这里只介绍一维傅里叶变换及其逆变换函数。