贝叶斯统计的期末考试试题
贝叶斯统计复习

贝叶斯统计习题1. 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如先验分布为 (1)U 0,1θ:()(2)21-0<<1=0,θθπθ⎧⎨⎩(),()其它 求θ的后验分布。
解:()()()()()111335368362(|)(1)*2(1)112(1)15(|)840(1),01m x p x d C d d p x x m x θπθθθθθθθθθθπθπθθθθ==--=-===-<<⎰⎰⎰2. 设12,,,n x x x L 是来自均匀分布U 0,θ()的一个样本,又设θ的先验分布为Pareto 分布,其密度函数为+1000/>=0,αααθθθθπθθθ⎧⎨≤⎩,()其中参数0>0,>0θα,证明:θ的后验分布仍为Pareto 分布。
解:样本联合分布为:1(),0np x x θθθ=<<1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩{}110101()()()/1/,max ,,,n n n x p x x x αααπθθπθαθθθθθθ++++∝=∝>=L因此θ的后验分布的核为11/n αθ++,仍表现为Pareto 分布密度函数的核即1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩即得证。
3. 设12,,,n x x x L 是来自指数分布的一个样本,指数分布的密度函数为-(|)=,>0xp x e x λλλ,(1) 证明:伽玛分布(,)Ga αβ是参数λ的共轭先验分布。
(2) 若从先验信息得知,先验均值为0.0002,先验标准差为0.0001,确定其超参数,αβ。
解:()()()111()1()()()()(),.nii x nn n x n n x p x ee ex p x e Ga n nx λλααβλαβλλλλβπλλαλπλλπλλαβ=----+--+∑===Γ∝∝++样本的似然函数:参数的后验分布服从伽马分布220.0002(2)4,20000.0.0001αβαβαβ⎧=⎪⎪⇒==⎨⎪=⎪⎩4. 设一批产品的不合格品率为θ,检查是一个接一个的进行,直到发现第一个不合格品停止检查,若设X 为发现第一个不合格品是已经检查的产品数,则X 服从几何分布,其分布列为 ()-1(=|)=1-,=1,2,x P X x x θθθL假如θ只能以相同的概率取三个值1/4, 2/4, 3/4,现只获得一个观察值=3x ,求θ的最大后验估计ˆMDθ。
贝叶斯统计-习题答案)

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<-(实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计大部分课后习题答案

贝叶斯统计大部分课后习题答案习题讲解一、1,3,5,6,10,11,12,151.1记样本为x.226pxC(0.1)*0.1*0.90.1488,,,,8226pxC(0.2)*0.2*0.80.2936,,,,8后验分布:0.1488*0.7,,,0.10.5418x,,,,0.1488*0.70.2936*0.3,0.2936*0.3,,,0.20.4582x,,,,0.1488*0.70.2936*0.3,111233536mxpxdCdd,,,,,,,(|)(1)*2(1)112(1),,,,,,,,,,,,,,,8,,,00015 px(|),,,,,36,,,,,x840(1),01,,,,,,,mx,,1.61.11 由题意设x表示等候汽车的时间,则其服从均匀分布 U(0,), 1,,,0,,x,,px(), ,,0,其它,Xxxx,(,,)因为抽取3个样本,即,所以样本联合分布为 123 1,,,0,,,,xxx,1233 ,,pX(),,其它0,,4,192/,4,,, 又因为 (),,,,0,4,,,所以,利用样本信息得1192192,,,,,,,,,,,,,hXpXxxx(,)()() (8,0,,) 123347,,, ,,,,192,,,,,mXhXdd()(,)于是 7,,88,,的后验分布为76hX(,)192/68,,, ()X,,,,,7,,192mX(),d,,78,6,68,,8,,,7 ()X,,,,,,0,8,,,1.12样本联合分布为:1pxx,,,,,(),0n,,,,1,,,,,,/,,00(),,,,0,,,,,0,,,,,,,nn11 ,,,,,,,,,,,,()()()/1/,max,,,xpxxx,,,,,,,0101n ,,,n1,因此的后验分布的核为,仍表现为Pareto分布密度函数的核 1/, ,,,,,nn1,()/,,,,,,,,n11即 ()x,,,,0,,,,,1即得证。
【贝叶斯统计答案】第二章+第三章

二、1,2,3,5,6,7,8,10,11,122.2 解: 由题意,变量t 服从指数分布:()t p t e λλλ-=样本联合分布()itn p Te λλλ-∑=且1~(,),0()Ga e ααβλβλαβλλα--=>Γ ,()0.2E λ= ()1Var λ= 由伽玛分布性质知:20.20.04,0.21αβαβαβ⎧=⎪⎪⇒==⎨⎪=⎪⎩ 又已知 n=20, 3.8t =120 3.876nii t==⨯=∑,所以120.04,76.2ni i n t αβ=+=+=∑由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布()11()()()t t n n i i t p T e e eλλββλααπλλπλλλλ--+∑∑--+-∝∝= 即后验分布为(,)(20.04,76.2)iGa n t Ga αβ++=∑|20.04()0.26376.2T i n E t λαλβ+===+∑1θλ-=服从倒伽玛分布(,)(20.04,76.2)i IGa n t IGa αβ++=∑||1()() 4.0021iT T t E E n λλβθλα-+===+-∑2.3可以算出θ的后验分布为(11,4)Ga ,θ的后验期望估计的后验方差为1116. 2.5只有个别人算错了,答案是36n ≥. 2.6大家差不多都做对了.2.7θ的先验分布为:1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩令{}101max ,,,n x x θθ=可得后验分布为:1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩则θ的后验期望估计为:1()()1n E x n αθθα+=+-,后验方差为:212()()(1)(2)n Var x n n αθθαα+=+-+-.2.8由1~(,),~(,)22n x Ga IGa θαβθ可以得出211221()2(),0()2nn xp x x e x n θθθ--=>Γ(1)(),0()e βααθβπθθθα--+=>Γ (1)θ的后验分布为:2(1)22()()()x nx p x eβαθπθθπθθ+--++∝∝即为倒伽玛分布(,)22nxIGa αβ++的核。
贝叶斯统计习题答案

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计习题答案

贝叶斯统计习题答案第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=?+??=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==?+??=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语⾔求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1714631636315338533810<<-==-=--=--=----==--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<==<<=+<<-==+<<-=??θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=??θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝?∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ix e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2)由题意可知./(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{221221121212121 2122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x n ni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XNθ∴2由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()1122525eσθθθσσσ+----+?--+∝∝因此 222251(,)112525u x xN σθσσ+++⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(7687787321321321433213213321>?====≥=>=====<<=∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ从⽽有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111n n n ααααθθθθθ++++∝?∝因此θ的后验分布仍是Pareto 分布。
统计原理期末考试题及答案

统计原理期末考试题及答案一、选择题(每题2分,共20分)1. 统计学中的总体是指:A. 所有可能的样本B. 研究对象的全体C. 研究对象的一个样本D. 研究对象的一部分答案:B2. 下列哪项不是描述统计的内容?A. 集中趋势B. 离散程度C. 相关性D. 概率分布答案:C3. 标准差是衡量数据:A. 集中趋势的指标B. 离散程度的指标C. 相关性的指标D. 正态分布的指标答案:B4. 以下哪个不是参数估计的方法?A. 点估计B. 区间估计C. 回归分析D. 假设检验答案:C5. 抽样分布是指:A. 总体的分布B. 样本的分布C. 样本统计量的分布D. 样本数据的分布答案:C二、简答题(每题10分,共30分)1. 什么是统计学中的样本?请简述其重要性。
答:样本是总体中的一部分,用于代表总体进行研究。
样本的重要性在于,通过对样本的研究,我们可以对总体进行推断,从而在不研究整个总体的情况下,了解总体的特征。
2. 描述统计与推断统计的区别是什么?答:描述统计关注的是对数据集的描述,包括集中趋势、离散程度等,而推断统计则是基于样本数据对总体进行推断,包括参数估计和假设检验。
3. 请解释什么是正态分布,并简述其在统计学中的重要性。
答:正态分布是一种连续概率分布,其形状呈现为对称的钟形曲线,也称为高斯分布。
正态分布在统计学中的重要性在于,许多统计方法和理论都建立在数据符合或近似符合正态分布的假设上。
三、计算题(每题15分,共30分)1. 某班级有50名学生,他们的平均成绩是80分,标准差是10分。
如果随机抽取一名学生,求这名学生成绩高于90分的概率。
答:首先,我们需要计算这名学生成绩的标准分数(Z分数),计算公式为:Z = (X - μ) / σ,其中X是学生的成绩,μ是平均成绩,σ是标准差。
将90代入X,80代入μ,10代入σ,得到Z = (90 - 80) / 10 = 1。
然后,我们查找标准正态分布表,找到Z分数为1对应的累积概率,这个概率大约是0.8413。
统计学期末试卷及答案

2009---2010学年第2学期 统计学原理 课程考核试卷(B )考核方式: (闭卷) 考试时量:120 分钟一、填空题(每空1分,共15分)1、按照统计数据的收集方法,可以将其分为 和 。
2、收集数据的基本方法是、 和 。
3、在某城市中随机抽取9个家庭,调查得到每个家庭的人均月收入数据:1080,750,780,1080,850,960,2000,1250,1630(单位:元),则人均月收入的平均数是 ,中位数是 。
4、设连续型随机变量X 在有限区间(a,b)内取值,且X 服从均匀分布,其概率密度函数为0()1f x b a⎧⎪=⎨⎪-⎩则X 的期望值为 ,方差为 。
5、设随机变量X 、Y 的数学期望分别为E(X)=2,E(Y)=3,求E(2X-3Y)= 。
6、概率是___ 到_____ 之间的一个数,用来描述一个事件发生的经常性。
7、对回归方程线性关系的检验,通常采用的是 检验。
8、在参数估计时,评价估计量的主要有三个指标是无偏性、 和 。
二、判断题,正确打“√”;错误打“×”。
(每题1分,共10分)1、理论统计学与应用统计学是两类性质不同的统计学( )2、箱线图主要展示分组的数值型数据的分布。
( )3、抽样极限误差可以大于、小于或等于抽样平均误差。
( )4、在全国人口普查中,全国人口数是总体,每个人是总体单位。
( )其他(a<b)5、直接对总体的未知分布进行估计的问题称为非参数估计;当总体分布类型已知,仅需对分布的未知参数进行估计的问题称为参数估计。
()6.当置信水平一定时,置信区间的宽度随着样本量的增大而减少()7、在单因素方差分析中,SST =SSE+SSA()8、右侧检验中,如果P值<α,则拒绝H0。
()9、抽样调查中,样本容量的大小取决于很多因素,在其他条件不变时,样本容量与边际误差成正比。
()10、当原假设为假时接受原假设,称为假设检验的第一类错误。
()1、某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。