单管放大电路实验报告

合集下载

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告前言单管放大电路是电子学中常用的一个基本元件,广泛应用于各种电子设备,如放音机、放大器、电视机等。

本文旨在探讨单管放大电路实验的基本原理、实验操作步骤和实验结果与分析。

实验目的1.了解单管放大电路的基本结构和工作原理;2.学习单管放大电路的电路分析方法;3.实际操作单管放大电路电路进行实验,掌握实验方法以及实验过程中的一些实用问题的解决方案;4.根据实验结果完成数据分析和讨论,加深理解单管放大电路的原理和特性。

实验原理单管放大电路是由一个晶体管和若干个电阻、电容等组成的。

晶体管的基本结构是由广泛的p型半导体和狭窄的n型半导体构成的。

晶体管有三个引脚,分别为基极、发射极和集电极。

在单管放大电路中,基极通过一个电阻Rb与信号源相连,集电极通过一个负载电阻RL与电源相连,而发射极则接地。

当输入信号通过Rb注入基极时,由于晶体管发生的放大归功于其特性,即当晶体管输在正向区时,它是三极管,将输入信号转换为电流信号并经过电容耦合AC通过变压器通过负载电阻RL输出。

放大系数可以通过电路参数来调节,如增大Rb或降低RL可以提高放大系数。

实验器材本次实验使用的器材包括:晶体管、电容、电阻、示波器、调节电源、万用表等。

实验步骤1.按照图1所示的单管放大电路电路原理图进行连线,并将开关S1关闭;2.接通调节电源,在标准电压下,观察电路是否正常工作;3.将示波器连接到负载电阻RL两端,并调节示波器参数,使信号幅度和频率适合检测;4.调节Rb通过测量输入电压和输入电流确定其值;5.改变RL的电阻值并观察其对电路输出的影响;6.连续进行多次测量,以获取更多数据,以便进行分析和比较。

实验结果本实验的结果如下:1.掌握了单管放大电路的基本原理和使用方法;2.了解了基极电阻对放大倍数的影响;3.测定了电路输入输出电压,并且通过万用表测定了电路中的电流,分析了实验结果的数据;4.测试Rb和RL对音频信号的放大和失真的影响,获得了电压放大倍数和工作参数与输出信号之间的关系曲线。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告【摘要】本实验通过搭建单管放大电路,研究了该电路的放大特性。

实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。

【关键词】单管放大电路;放大倍数;输入信号;输出信号一、实验目的1. 了解单管放大电路的工作原理;2. 掌握搭建和调试单管放大电路的方法;3. 研究单管放大电路的放大特性。

二、实验器材和仪器示波器、信号发生器、直流电源、电阻、电容、三极管等。

三、实验原理单管放大电路是由一个三极管、少量无源器件和若干衔接接线构成的。

它可以将小信号放大成为大信号,通过不同组合的电容、电阻和三极管可以实现不同的放大倍数。

四、实验步骤和结果1. 按照电路图搭建单管放大电路;2. 将信号发生器接入输入端,示波器接入输出端;3. 通过调节信号发生器的频率和幅值,观察输出信号的变化;4. 记录输入信号的幅值和输出信号的幅值,计算放大倍数;5. 重复步骤3和步骤4,绘制输入信号幅值和输出信号幅值之间的关系曲线。

五、实验结果与分析实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。

这是由于三极管的非线性特性造成的,当输入信号幅值较小时,三极管工作在其饱和状态,此时输出信号的放大倍数较高;当输入信号幅值较大时,三极管工作在其线性状态,此时输出信号的放大倍数较低。

六、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理,并掌握了搭建和调试该电路的方法。

我们还研究了单管放大电路的放大特性,发现输出信号的放大倍数与输入信号的大小有关,这为我们进一步设计和优化放大电路提供了参考。

单管电压放大器实验报告

单管电压放大器实验报告

一、实验目的1. 学习调试和测量单管电压放大器的静态工作点。

2. 掌握单管放大器的电压放大倍数Au、输出电阻Ro和输入电阻Ri的测试方法。

3. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理单管电压放大器是模拟电子技术中的一种基本放大电路,主要由晶体管、电阻、电容等元件组成。

本实验采用共射极单管放大器电路,通过调节基极电阻,可以调整晶体管的静态工作点,使晶体管工作在放大区,从而实现电压放大。

三、实验设备1. 单管电压放大器实验电路板2. 信号发生器3. 示波器4. 电压表5. 电流表6. 万用表7. 电阻箱8. 电容箱四、实验步骤1. 搭建单管电压放大器实验电路,按照电路图连接好各个元件。

2. 使用电阻箱和电容箱,根据电路图设置合适的静态工作点。

首先,调节电阻箱,使基极电阻RB的阻值符合要求;然后,调节电容箱,使电容C1的容值符合要求。

3. 使用万用表测量晶体管的静态工作点,即测量晶体管的基极电压U_B、集电极电压U_C和集电极电流I_C。

4. 在放大器的输入端接入信号发生器,输出频率为1kHz的正弦波信号。

5. 使用示波器观察放大器的输出波形,记录输出电压U_O。

6. 使用电压表测量放大器的输入电压U_I和输出电压U_O,计算电压放大倍数Au。

7. 使用电流表测量放大器的输入电流I_I和输出电流I_O,计算输入电阻Ri和输出电阻Ro。

8. 根据实验数据,分析静态工作点对放大器性能的影响,以及电压放大倍数、输入电阻和输出电阻与电路参数的关系。

五、实验结果与分析1. 静态工作点对放大器性能的影响实验结果表明,当静态工作点Q过低时,晶体管进入截止区,输出电压U_O接近于0,放大倍数Au接近于0;当静态工作点Q过高时,晶体管进入饱和区,输出电压U_O接近于电源电压VCC,放大倍数Au也接近于0。

因此,合适的静态工作点对于保证放大器的正常工作至关重要。

2. 电压放大倍数、输入电阻和输出电阻与电路参数的关系实验结果表明,电压放大倍数Au与晶体管的β(放大倍数)和集电极电阻Rc有关,与基极电阻RB和发射极电阻RE关系不大。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。

本实验的目的是通过实验验证共射极单管放大电路的放大特性。

一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。

晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。

在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。

输出信号由电容C2耦合到负载电阻RL上。

二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。

2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。

3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。

4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。

5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。

6. 测量电容:用万用表测量输入输出电容。

四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。

五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。

六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。

七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告单管放大电路实验报告引言:单管放大电路是电子学中最基础的电路之一,它可以将输入信号放大到更大的幅度,使得信号能够被更远的距离传输或被更多的设备接收。

本实验旨在通过搭建和测试单管放大电路,探究其工作原理和特性。

一、实验目的本实验的主要目的是:1. 理解单管放大电路的基本原理;2. 学习如何设计和搭建单管放大电路;3. 测试并分析单管放大电路的特性。

二、实验器材和元件1. 电源:直流电源供应器;2. 信号发生器:用于提供输入信号;3. 电阻:用于构建电路;4. 电容:用于滤波;5. 二极管:用于保护电路。

三、实验步骤1. 搭建单管放大电路a. 将一个NPN型晶体管与几个电阻和电容相连接,按照电路图搭建电路;b. 连接电源,并确保电路连接正确;c. 连接信号发生器,将其输出信号接入电路中。

2. 测试电路特性a. 调节信号发生器的频率和幅度,观察输出信号的变化;b. 测量输入信号和输出信号的幅度,并计算电压增益;c. 测量输入信号和输出信号的相位差。

四、实验结果与分析通过实验,我们得到了如下结果:1. 随着输入信号幅度的增加,输出信号的幅度也相应增加,但在一定范围内,输出信号的幅度增加不再线性;2. 随着输入信号频率的增加,输出信号的幅度先增加后减小,且在某一频率下达到最大值;3. 输入信号和输出信号之间存在相位差,且随着频率的增加而增大。

根据实验结果,我们可以得出以下结论:1. 单管放大电路的电压增益是非线性的,且受到输入信号幅度的限制;2. 单管放大电路的频率响应是有限的,存在一个截止频率,超过该频率后放大效果下降;3. 单管放大电路引入了相位差,这可能对特定应用产生影响。

五、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理和特性。

我们学习到了如何设计和搭建单管放大电路,并通过测试分析了其电压增益、频率响应和相位差等特性。

这些知识对于我们理解和应用其他更复杂的放大电路非常重要。

单管放大电路实验报告

单管放大电路实验报告

3.当 与 并联时
时,可知
仍然成立,而此时:
四、仿真结果
搭建电路如下:
XSC1
A +_
B +_
Ext Trig +
_
C1 7
10µF
V2
5mVrms 1kHz 0°
Rw 38.9kΩ
R 36.0kΩ
VCC
Rc 3.3kΩ
2 Q1
12V
C2 8
10µF
Rb2 15.0kΩ
M3 RF9011L*
Re1 200Ω
9
7.07 884.276 -125.1
0
5.591 4.793
7.070 7.068
3.11 3.75 774.155 490.642
4
2.11 4.793 7.068
2.11
3.幅频特性
由于隔直电容比较小,此处近似认为输入电压的幅值变化不大,仿真输出曲线与数 据见附图,整理如下:
时的幅频特性曲线
Re2 1kΩ
Ce 47µF
Rl 5.1kΩ
1.静态工作点的调整
用参数扫描找到静态时使 同时测得:
的电阻
如下:
用参数扫描找到静态时使
的电阻
如下图:
同时测得:
如下:
总结数据如下:
38.9
8.6945
3.83
5.400
2.工作点对放大电路动态特性的影响
1.2077 2.412
7.4869 2.9877
R1 1.0kΩ
示波器显示如下:
故放大倍数
测量输入电阻时电路如下:
XSC1
A +_
B +_
Ext Trig +

单管共射放大电路实验报告

单管共射放大电路实验报告

一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。

二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。

其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。

单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。

静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。

电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。

电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。

三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。

四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。

(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。

(3)调整偏置电阻,使静态工作点符合设计要求。

(4)测量静态工作点下的晶体管电流和电压,记录数据。

2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。

(2)将输入信号接入放大电路的输入端。

(3)使用交流毫伏表测量输入信号和输出信号的幅值。

(4)计算电压放大倍数。

3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。

(2)计算输入电阻和输出电阻。

五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。

2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。

单管交流放大电路实验报告

单管交流放大电路实验报告

单管交流放大电路实验报告实验目的,通过实验,掌握单管交流放大电路的基本原理和特性,加深对电子技术的理解和应用。

实验仪器与器材,示波器、信号发生器、电压表、电流表、电阻、电容、二极管、电源等。

实验原理,单管交流放大电路是由一个晶体管和少量的无源元件(电阻、电容等)组成的放大电路。

其基本原理是利用晶体管的放大特性,将输入的微弱交流信号放大到一定的程度,以便实现信号的处理和传输。

实验步骤:1. 按照电路图连接好电路,注意接线的正确性和稳固性。

2. 打开电源,调节信号发生器产生所需的交流信号,并通过电容耦合输入到晶体管的基极。

3. 用示波器观察输入信号和输出信号的波形,调节信号发生器的频率和幅度,观察输出信号的变化。

4. 测量电路中各个元件的电压和电流,记录数据并进行分析。

实验结果与分析:通过实验观察和数据记录,我们得到了如下的实验结果:1. 输入信号经过晶体管放大后,输出信号的幅度得到了显著的增大,证明了单管交流放大电路的放大作用。

2. 随着输入信号频率的增大,输出信号的波形发生了变化,表现出了晶体管的频率特性。

3. 通过测量电路中各个元件的电压和电流,我们可以进一步分析电路的工作状态和特性,为后续的电子电路设计和调试提供了参考。

实验总结:本次实验通过实际操作,深入理解了单管交流放大电路的工作原理和特性,掌握了相关的实验技能和数据处理方法。

同时,也发现了一些问题和不足之处,为今后的学习和实践提出了一些思考和改进的方向。

通过本次实验,我们不仅学到了理论知识,还培养了动手能力和实验精神,为今后的学习和科研打下了坚实的基础。

希望通过不断的实践和探索,能够更深入地理解电子技术,为科学研究和工程应用做出更大的贡献。

结语:通过本次实验,我们对单管交流放大电路有了更深入的了解,实验结果也验证了理论知识的正确性。

希望今后能够继续深入学习和实践,不断提高自己的技能和能力,为电子技术的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可见,静态工作点与电路元件参数������������������ 、������������ 、������������1 、������������2 、������������1 、������������2 和晶体管的 β均有关。在 实际工作中, 一般是通过改变上偏置电阻������������1 来调节静态工作点的。 ������������ 调大, ������������������ 减小, ������������ 调 小,������������������ 增加(工作点升高) 。 为了方便,通常采用间接测量方法测量������������������ ,即先测出晶体管发射极的对地电压������������ ,再利 用������������������ ≈ ������������������ = ������������ / ������������1 + ������������2 算出������������������ 来。 2.放大电路的电压增益、输入电阻和输出电阻
Av =
式中晶体管的输入电阻������������������ = ������������������ ′ +
β +1 ������������ ������������������
≈ ������������������ ′ + β + 1 × 26/������������������ (室温) 。
计算值 3
仿真值 2.979
������������ 1 ������ ������������ 1 +������������ 2 ������������
������������ = ������������1 //������������2
������������������������ ≈ ������������������ − ������������ + ������������1 + ������������2 ������������������
C3 47µF
仿真得到的实验数据结果如下: ������������������ ������������������������ /������ ������������ /mV ������������ ������������ /kΩ ������������ /kΩ ������������ /HZ ������������ /������������ 1mA 7.54 361.1 -72.22 4.36 3.09 127.18 81.64M 2mA 2.979 674.14 -134.83 2.45 2.89 240.84 72.94M
Vo Vi
= − ������
′ β������������ ������������ +
β +1 ������������ 1
= −8.7,������������ = ������������1 //������������2 //������������������ + β + 1 ������������1 = 10.25������������
������0 = ������������ = 3.3������������。 Multisim 仿真:
Multisim 仿真时采用的电路如下图:
VCC VCC R1 100kΩ Key=A 1 R2 36kΩ C1 3 8 V1 10µF 5mVpk 1kHz 0° R7 15kΩ 4 R3 200Ω 5 R5 1.0kΩ 0 R6 3.3kΩ 39.3 % C2 2 Q1 MRF9011L* 10µF 6 R4 5.1kΩ 12V
二、实验电路与实验原理
实验电路图如图 2.1 所示:
1.静态工作点的估算与调整 将基极偏置电路������������������ 、������������1 和������������2 利用戴维南定理等效成电压源,便得到直流通路如图 2.2 所 示。 其开路电压������������B 和内阻������������ 分别为 所以有 ������������������ = ������������B − ������������������ ������������ + β + 1 ������������1 + ������������2 ������������������ = β������������������ ������������B =
26 ������������ ′ ������ = 7.13������������ ,������������ = − = −68.13,������0 = ������������ ������0 = 340.65������������ ������������������ ������������������
单管放大电路实验报告
一、实验目的
1. 掌握放大电路直流工作点的调整与测量方法。 2. 掌握放大电路主要性能指标的测量方法。 3.了解直流工作点对放大电路动态特性的影响。 4.掌握发射负反馈电阻对放大电路性能的影响。 5.了解信号源内阻������������ 对放大电路频带(上线截止频率������������ )的影响。
′ β������������ ������������������ + β + 1 ������������1 Vi ������������ = ������������1 //������������2 //������������������ + β + 1 ������������1 ������������ ≈ ������������
六、实验数据记录与处理
1.工作点的调整 ������������������ = 1.0������������ 计算值 仿真值 实验值 误差
������������������������ /V
7.5
7.492
7.54
0.53%
������������������ = 2.0������������ ������������������������ /V
需要注意, 测量放大电路的动态指标必须在输出波形不失真的条件下进行, 因此输入信号不 能太大,一般应使用示波器监视输出电压波形。
三、实验内容
1.工作点的调整 调节������������ ,分别使������������������ =1.0mA,2.0mA,测量相应的������������������������ 值 2.工作点对放大电路的动态特性的影响 分别在 ICQ=1.0mA,2.0mA 情况下,测量放大电路的动态特性(输入信号 vi 是幅度为 5mV), 频率为 1kHz 的正弦电压), 包括测量电压增益,输入电阻,输出电阻和幅频特性。 3.负反馈电阻对动态特性的影响 改接 CE 与 RE2 并联, 测量此时放大电路在 ICQ=1.0mA 下的动态特性(输入信号及测试 内容同上), 与上面测试结果相比较, 总结负反馈电阻对电路动态特性的影响。
四、注意事项
1. 直流电源、信号源、示波器和电路板等要共地,以免引起干扰。 2. 要保证在输出电压波形不失真的前提下进行电路指标的试测。
五、预习计算与仿真
预习计算;由上次实验测得的三极管 9011 的β = 242.5,������������������ ′ = 800������,所以: 1.
I CQ 1mA时,由原理分析的公式可得:������������������������ = ������������������ − ������������������ ������������ + ������������1 + ������������2 = 7.5������
������������������ = ������������������ + 1 + ������
由������������ = ������������1 //������������2 //������������������ + β + 1 ������������1 ,所以������������ = 4.55������������,������������ = ������������ = 3.3������������ 所以:������������ = −68.13,������������ = 4.55kΩ,������0 = 3.3������������ 2. 当������������������ = 2������������时,同理可以求出: ������������������������ = 3������,������������ = −122.52,������������ = 2.91������������,������������ = 3.3������ 3. 当������������ 与������������2 并联时,������������������ = 1������������, Av =
Av =
Vo
=−
可见,发射极负反馈电阻������������1 使电压增益下降,输入电阻增加,对输出电阻基本没有影响。
′ 当满足 β + 1 ������������1 ≫ ������������������ 时,Av ≈ −������������ /������������1 ,即电压增益决定于集电极负载电阻与发射极负
反馈电阻之比, 基本与晶体管参数无关。 所以引入������������1 使增益下降, 但提高了增益的稳定性。 3.放大电路增益的幅频特性和频带 放大电路一般含有电抗元件, 使得电路对不同频率的信号具有不同的放大能力, 即电压 增益是频率的函数。 电压增益的大小与频率的函数关系即是幅频特性。 一般用逐点法进行测 量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益, 以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率fH、fL和频带宽度 BW = ������������ − ������������ 。
相关文档
最新文档