大学物理学-机械波教案
机械波的传播和特性的物理课教案

机械波的传播和特性的物理课教案标题:机械波的传播和特性的物理课教案引言:机械波是一种能量传递的波动现象,其传播和特性对于学生理解波动现象和物理学知识的建立起着重要的作用。
本教案旨在通过生动的实例、清晰的解释和互动性的学习活动,帮助学生掌握机械波传播和特性方面的基本概念。
一、回顾与导入(5分钟)1. 复习前几堂课的内容,引出机械波的概念。
2. 引导学生提出机械波的传播方式和特性,激发学生的兴趣。
二、机械波的分类(10分钟)1. 解释机械波的概念和定义。
2. 分类介绍机械波的两大类别:横波和纵波,侧重说明它们的传播方式和粒子振动方向的差异。
3. 通过实例演示和调查问卷,让学生感受到横波和纵波在不同媒介中的传播特性。
三、机械波的传播(20分钟)1. 介绍机械波在同质介质和异质介质中的传播特点,引导学生分析和总结规律。
2. 利用实验装置演示机械波在不同介质中的传播情况,让学生观察和记录实验现象。
3. 引导学生归纳机械波传播过程中的关键概念:波长、频率、速度、振幅等,明确它们之间的关系。
四、机械波的特性(25分钟)1. 解释机械波的特性,如衍射、折射、反射和干涉等,并通过图示和动画等形式进行直观展示。
2. 利用光栅、双缝实验等设备进行实验演示和数据采集,帮助学生探索机械波特性背后的原理。
3. 引导学生分析实验结果,发现规律,结合理论知识进行解释。
五、机械波的应用(15分钟)1. 探讨机械波在现实生活中的应用领域,如音乐、通讯、医学等,激发学生对物理学的兴趣。
2. 组织学生小组活动,让他们以团队合作的方式,设计一个与机械波有关的创新应用项目。
六、小结与延伸(5分钟)1. 简要概括机械波的传播和特性的重点内容。
2. 提醒学生复习和总结今天的课程,同时给予一些拓展阅读资源。
结语:通过本次课程的学习,学生将对机械波的传播和特性有更深入的认识和理解。
通过生动的实例、互动的学习活动等方式,学生的学习兴趣将被激发,同时也培养了他们的观察能力、动手能力以及团队合作精神。
《机械波》教案

《机械波》教案知识与技能:1、明确机械波的产生条件2、掌握机械波的形成过程及波动传播过程的特征3、了解机械波的种类及其传播特征过程与方法:1、通过仔细观察演示实验,对波的产生条件及形成过程有全面的理解,同时通过仔细分析课本的插图进一步加深对机械波形成过程的理解。
2、教学过程中通过对机械波形成过程的分析,引导和培养学生的空间想象水平和思维水平。
情感、态度和价值观1、培养学生细心,认真,一丝不苟做试验的品质,进而培养学生实事求是的科学态度和良好的工作作风。
2、培养学生互相团结,分工协作的团队精神。
二重点、难点分析重点是机械波的形成过程难点是机械波的形成过程三、教学方法:复习提问,讲练结合,课件演示四、教具:1、演示绳波的形成的长绳;并用课件展示。
2、横波、纵波演示仪;并用课件展示。
3、用幻灯展示机械波。
五教学过程引入新课我们已学习过机械振动,它是描述单个质点的运动形式,这个节课我们来学习由大量质点构成的弹性媒质整体的一种运动形式——机械波。
1、机械波的产生条件演示——水波:教师用幻灯机做实验:使平静的水面振动,会看到水面上一圈圈起伏不平的波纹逐渐向四周传播出去,形成水波。
演示——绳波:用手握住绳子的一端上下抖动,就会看到凸凹相间的波向绳的另一端传播出去,形成绳波。
以上两种波都能够叫做机械波。
教师提问:水波离开水能看到上面的现象吗?绳波离开绳行吗?学生回答:不行。
教师提问:当振动停止后我们又看到了什么现象?学生回答:传出去的仍然在传播,以后水(绳)都静止不动了。
请学生总结:(教师可引导)(1)机械波的概念:机械振动在介质中的传播就形成机械波(2)机械波的产生条件:振源和介质。
振源——产生机械振动的物质,如在绳波中的手的不停抖动就是振源。
介质——传播振动的媒质,如绳子、水。
2、机械波的形成过程(用课件把绳波的运动展示)(1)介质模型:把介质看成由无数个质点弹性连接而成,能够想象为(图1所示)(2)机械波的形成过程:由于相邻质点间力的作用,当介质中某一质点发生振动时,就会带动周围的质点振动起来,从而使振动向远处传播。
机械波教案

教学目标:1.掌握机械波的产生条件和机械波的传播特点(规律);2.掌握描述波的物理量——波速、周期、波长;3.正确区分振动图象和波动图象,并能运用两个图象解决有关问题4.知道波的特性:波的叠加、干涉、衍射;了解多普勒效应教学重点:机械波的传播特点,机械波的三大关系(波长、波速、周期的关系;空间距离和时间的关系;波形图、质点振动方向和波的传播方向间的关系)教学难点:波的图象及相关应用教学方法:讲练结合,计算机辅助教学教学过程:一、机械波2.机械波的分类机械波可分为横波和纵波两种。
(1)质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。
(2)质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。
分类质点的振动方向和波的传播方向关系形状举例横波垂直凹凸相间;有波峰、波谷绳波等纵波在同一条直线上疏密相间;有密部、疏部弹簧波、声波等说明:地震波既有横波,也有纵波。
3.机械波的传播(1)在同一种均匀介质中机械波的传播是匀速的。
波速、波长和频率之间满足公式:v=λf。
(2)介质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。
(3)机械波转播的是振动形式、能量和信息。
4.机械波的传播特点(规律):5.机械波的反射、折射、干涉、衍射一切波都能发生反射、折射、干涉、衍射。
特别是干涉、衍射,是波特有的性质。
干涉区域内某点是振动最强点还是振动最弱点的充要条件:根据以上分析,在稳定的干涉区域内,振动加强点始终加强;振动减弱点始终减弱。
至于“波峰和波峰叠加得到振动加强点”,“波谷和波谷叠加也得到振动加强点”,“波峰和波谷叠加得到振动减弱点”这些都只是充分条件,不是必要条件。
点评:描述振动强弱的物理量是振幅,而振幅不是位移。
每个质点在振动过程中的位移是在不断改变的,但振幅是保持不变的,所以振动最强的点无论处于波峰还是波谷,振动始终是最强的。
点评:关于波的干涉,要正确理解稳定的干涉图样是表示加强区和减弱区的相对稳定,但加强区和减弱区还是在做振动,加强区里两列波分别引起质点分振动的方向是相同的,减弱区里两列波分别引起质点分振动的方向是相反的,发生变化的是振幅增大和减少的区别,而且波形图沿着波的传播方向在前进。
机械波实用教案范文

机械波实用教案范文【一、教学目标】1.知识目标:学习机械波的基本概念和特性,了解机械波的传播方式。
2.技能目标:能够描述机械波的传播方式和波的性质。
3.情感目标:培养学生对物理知识的兴趣,培养学生观察和实验的能力。
【二、教学重难点】1.教学重点:机械波的定义、传播方式和波的性质。
2.教学难点:波的传播方式和波的性质的掌握和运用。
【三、教学准备】教师:教案、黑板、粉笔、投影仪、实验器材等。
学生:课本、笔记本。
【四、教学过程】【导入】1.教师播放一段波的传播动画,让学生观察并思考:这个图形是什么?它是如何传播的?2.请几位学生回答问题,并对他们的回答做一些引导,引出机械波的概念。
【呈现】1.教师通过投影仪展示机械波的基本概念和特性,并给出机械波的定义:机械波是通过物质的振动而传播的波动现象。
2.教师利用黑板和粉笔讲解机械波的传播方式和波的性质,包括纵波和横波的区别、波的振幅、波长、周期、频率等概念。
【实验】1.教师介绍一个简单的实验装置,演示横波在绳子上的传播。
2.学生们分组进行实验操作,通过悬挂绳子和手的上下运动,观察横波在绳子上的传播过程,记录波的振幅、波长等特性。
3.学生们在实验完成后,进行实验结果的汇报和讨论,教师进行指导。
【拓展】1.教师通过讲解声波和水波,引出了波的传播速度的概念,让学生理解波速与频率和波长的关系。
2.教师利用黑板和投影仪进行计算公式的推导,提醒学生注意计算单位的转换。
3.教师和学生一起进行一些简单的计算练习。
【归纳总结】1.教师通过黑板和投影仪总结机械波的传播方式和波的性质,并强调波的传播速度与频率和波长的关系。
2.教师布置一些练习题,要求学生在家里完成,并下节课检查订正。
【五、教学反思】通过本节课的教学,学生对机械波的概念和特性有了初步的了解。
通过实验操作,学生对机械波的传播方式和波的性质有了直观的认识。
但是,本节课的时间安排还不够充分,没有给学生提供足够的时间进行实验操作和讨论。
有关机械波教案范文

一、教案基本信息教案名称:有关机械波教案课时安排:2课时教学目标:1. 让学生了解机械波的概念、特点和分类。
2. 使学生掌握机械波的传播原理和反射、折射、干涉等现象。
3. 培养学生运用物理知识解决实际问题的能力。
教学重点:1. 机械波的概念和特点。
2. 机械波的传播原理。
3. 反射、折射、干涉等现象的原理和应用。
教学难点:1. 机械波的传播原理。
2. 反射、折射、干涉等现象的计算和分析。
教学准备:1. 教学课件。
2. 实验器材:绳波发生器、反射镜、干涉仪等。
二、教学过程1. 导入:通过展示海浪、声波等图片,引导学生思考机械波的概念和特点。
2. 新课:讲解机械波的概念、特点和分类,介绍机械波的传播原理。
3. 互动环节:学生分组进行实验,观察绳波的传播过程,探讨机械波的传播原理。
4. 讲解:介绍反射、折射、干涉等现象的原理和应用。
5. 练习:学生运用所学知识解决实际问题,如计算反射波、折射波的波长等。
三、课后作业1. 复习机械波的概念、特点和分类。
2. 掌握机械波的传播原理。
3. 学习反射、折射、干涉等现象的计算和分析方法。
四、教学反思本节课通过图片导入、实验演示、互动探讨等形式,使学生了解了机械波的概念、特点和分类,掌握了机械波的传播原理以及反射、折射、干涉等现象。
在教学过程中,注意引导学生运用所学知识解决实际问题,提高了学生的动手能力和创新能力。
但部分学生在理解机械波的传播原理时仍有一定难度,需要在今后的教学中加强巩固。
五、教学评价1. 学生对机械波的概念、特点和分类的掌握程度。
2. 学生对机械波的传播原理的理解和应用能力。
3. 学生对反射、折射、干涉等现象的计算和分析能力。
4. 学生在课堂互动和实验操作中的表现。
六、教学内容6. 衍射现象讲解衍射现象的定义和条件,通过动画或实验演示衍射现象,让学生了解衍射现象的本质。
引导学生通过观察衍射现象,分析衍射条件对波传播的影响。
7. 波的合成与分解介绍波的合成与分解的概念,讲解合成波与分解波的原理。
大学物理机械波教案

教学目标:1. 了解机械波的产生和传播条件;2. 掌握机械波的类型、波动方程和波动参数;3. 理解波的能量、能量密度和能量传播;4. 能运用机械波知识解决实际问题。
教学重点:1. 机械波的产生和传播条件;2. 波动方程和波动参数;3. 波的能量和能量密度。
教学难点:1. 波动方程的推导和应用;2. 波的能量和能量密度的计算。
教学过程:一、导入1. 通过展示生活中的实例,如水波、声波等,引导学生了解波的概念;2. 引出机械波的定义,即机械振动在弹性介质中由近及远地传播形成的波。
二、机械波的产生和传播1. 介绍机械波的产生条件:介质振源、弹性介质;2. 讲解机械波的传播特点:各质点围绕平衡位置做简谐振动,质点不随波前进;3. 介绍机械波的分类:横波(固态介质中传播)和纵波(固液气中传播)。
三、波动方程和波动参数1. 介绍波动方程:y = Asin(ωt ± kx),其中A为振幅,ω为角频率,k为波数,t为时间,x为位移;2. 讲解波动参数:波长λ、波速v、周期T,它们之间的关系为v = λ/T = ω/k;3. 通过实例讲解波动方程的推导和应用。
四、波的能量和能量密度1. 介绍波的能量:波在传播过程中携带的能量;2. 讲解波的能量密度:单位体积内的波能量;3. 通过实例讲解波的能量和能量密度的计算。
五、课堂练习1. 根据波动方程,计算波的振幅、角频率、波数、波长、波速和周期;2. 根据波的传播条件,判断波的传播方向;3. 计算波的能量和能量密度。
六、总结1. 回顾本节课所学内容,强调机械波的产生、传播、波动方程和波的能量;2. 鼓励学生在生活中观察波的现象,提高对机械波的认识。
教学反思:1. 本节课通过实例和练习,帮助学生理解机械波的产生、传播和波动方程,提高学生的实际应用能力;2. 在讲解波动方程和波的能量时,要注意推导过程的严谨性和逻辑性;3. 在课堂练习中,要关注学生的解题思路,及时纠正错误,巩固所学知识。
《机械波》实用教案

《机械波》实用教案1.教学目标:a.知识与技能目标:-了解机械波的基本定义和特征;-掌握波动的基本概念和公式;-理解波的传播规律和特性。
b.过程与方法目标:-通过观察实验和探究让学生主动发现和构建知识;-通过小组合作和讨论促进学生思维的拓展和深化;-结合示意图和实例,引导学生建立正确的思维方式。
c.情感、态度和价值目标:-培养学生对科学的兴趣和探索精神;-培养学生观察问题、解决问题和合作的意识;-培养学生用科学的眼光看待事物和生活的态度。
2.教学重点和难点:a.教学重点:-波动的基本概念和公式;-波的传播规律和特性。
b.教学难点:-波的传播规律的数学表示。
3.教学准备:实验装置:弹簧、绳子、墙壁、振子等多种实验设备和材料;实验仪器:示波器、计时器等;教具:示意图、实物模型等;多媒体设备和教学软件。
4.教学过程:步骤一:导入新课(15分钟)-创设情境,引起学生兴趣。
例如通过视频展示海浪、声波、弹簧的振动等波动现象,让学生观察并思考。
步骤二:概念引入(15分钟)-利用示意图和实物模型引入基本概念,如波的定义、波峰、波谷、振动、周期、频率等;-引导学生观察不同种类的波动,并给出物理规律的解释。
步骤三:实验探究(30分钟)-围绕波的传播规律进行实验研究,如弹簧振动、绳子上的波动、声波传播等;-引导学生设计实验、观察记录和分析结果,通过实验数据和图表验证理论结果。
步骤四:拓展讨论(20分钟)-邀请学生分享实验过程和结果,展示不同的观点和结论;步骤五:概念巩固(15分钟)-利用教学软件或白板进行概念巩固和知识检测;-结合实例和练习题,引导学生应用所学知识解决实际问题。
步骤六:课堂总结(5分钟)-对本节课的主要内容进行概括和总结;-鼓励学生提出问题、表达思考和建议,为下一步的学习提供反馈。
5.教学延伸:-鼓励学生自行寻找更多机械波的实例和应用,并进行调研和报告;-组织学生参观科学实验室或科技馆,进一步了解机械波的相关研究和应用。
物理课程教案机械波的传播

物理课程教案机械波的传播物理课程教案:机械波的传播引言:机械波是指由介质传递的能量,而不是由物质本身传递的能量。
我们日常生活中有许多与机械波有关的现象,比如声音的传播和水波的形成。
本教案将介绍机械波的基本概念、传播特性以及相关的数学模型。
一、机械波的定义与分类1.1 机械波的定义机械波是一种能量的传递形式,它需要介质来进行传递。
机械波通过介质中的分子或振动粒子的相互作用传递能量。
1.2 机械波的分类根据波动介质的状态和波传播方向的不同,机械波可以分为横波和纵波两种类型。
二、机械波的传播特性2.1 波长、频率和波速波长是波动中相邻两个相位点之间的距离,通常用λ表示。
频率是单位时间内波动中波动源的周期性变化次数,通常用f表示。
波速是波传播的速度,记作v。
2.2 干涉和衍射干涉是指两个或更多波源或波动中某点的波进行叠加而产生的现象。
衍射是指波遇到障碍物或通过孔洞时发生弯曲或扩散的现象。
2.3 折射和反射折射是指波由一种介质传播到另一种介质时改变传播方向的现象。
反射是指波遇到障碍物或介质表面时改变传播方向的现象。
三、机械波的数学模型3.1 一维波动方程一维波动方程描述了机械波沿介质传播的数学模型。
对于机械波的一维传播,波动方程可以表示为∂²u/∂x² = 1/v² ∂²u/∂t²,其中u是波函数,x是位置,t是时间,v是波速。
3.2 波速的计算根据不同介质的特性,可以使用不同的公式计算机械波的波速。
例如,在绳子上的横波传播中,波速可以通过公式v = √(T/μ)计算,其中T是绳子的张力,μ是绳子的质量线密度。
四、实例分析:声音的传播4.1 声音的产生和传播声音是一种机械波,由物体振动引起的压力波在介质中传播而产生。
声音的传播需要介质,常见的介质为空气。
4.2 声音的频率和波长声音的频率决定了声音的音调,而波长则决定了声音的音色。
人类可听到的声音频率范围为20 Hz到20 kHz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1])(2[0x -t u Acos y ϕλπ+=.二、波函数的物理意义1、 如果x = x 0为给定值,)()(00ϕωω+=ux -t Acos t y)(00ϕλπω+=x2-t Acos .这就是波线上x 0处质点在任意时刻t 离开自己平衡位置的位移。
即x 0处质点的振动方程。
它在t = 0时的位相为002ϕλπϕ+-='x ,表示x 0处质点的振动比原点的振动始终落后一个位相λπϕϕ002x -=-'。
2、如果t = t 0为给定值,])([)(00ϕω+=ux-t Acos x y 只是x 的函数,表示t = t 0时刻各质点离开各自平衡位置的位移分布情况,称为t 0时刻的波形方程。
3、如果t ,x 都在变化,则 t 时刻波动方程])([ω)(0ux-t Acos t x,y ϕ+=; t+t ∆时刻波动方程])([ω)(0ux-t t Acos t t x,y ϕ+∆+=∆+。
画出t 和t+t ∆时刻的波形,便可形象地看出波形向前传播的图象。
波形向前传播的速度等于波速u 。
由于波形向前传播,x 处质点在不同时刻t 和t+Δt 的位移是不同的。
但从上面的t 时刻波形和t+Δt 时刻波形可以看出:(2) 如图所示例4:如图,一平面简谐波沿ox 轴正方向传播,波长为λ,若p 1点处质点的振动方程为)t 2(Acos y 1φνπ+=,则P 2点处质点的振动方程为 ;与P 1点处质点振动状态相同的那些点的位置是 。
解:(1) 由图知P 2点的振动落后于P 1,⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+=φνπu L L -t 2Acos y 212⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+=φλνπ21L L -t 2Acos(2) λk L x 1±=+ (k=1,2,…) ∴ 1L -k x λ±=§6.3 波的能量一、 波的能量和能量密度以平面简谐弹性纵波在细长棒中传播为例。
如图所示,有一密度为ρ的细长棒沿ox 轴放置,一列平面简谐纵波以波速u 沿着棒长方向传播时,棒中每一小段都受到压缩和拉伸。
设波动方程为:])([ω0ux t Acos y ϕ+-=固体细长棒中纵波的传播在坐标为x 处取一小体积元dV = sdx ,其质量为dV ρdm =dx s ρ=,当波传到该体积元时,这部分介质的速率随时间变化0 1 2 3 4 xyt=T/4时的波形曲线P 1 o P 2 xL 1 L 2)(])([0x ,t v ux t ωsin A ωt y v =+--=∂∂=ϕ,其振动动能])([)()(0ϕ+-==ux t ωsin ωA dV ρ21v dm 21dW 2222K ; 同时,体积元因形变而具有弹性势能,可以证明体积元的弹性势能 ])(ω[ω)(ρ0ϕ+-=ux t sin A dV 21dW 222P ;体积元的总能量])(ω[ω)(ρ0ϕ+-=+=ux t sin A dV dW dW dW 222P K 。
以上结果表明:1) 波动传播过程中,任一时刻、任一体积元的动能和势能不仅大小相等,而且位相相同,即两者总是随时间同步变化。
2)波动能量和振动能量有根本区别。
振动过程系统的机械能守恒;对波动来说,任一体积元都与周围质点交换能量,能量不守恒,即能量随着波动的传播而传播。
3)对振动质点来说,位移最大时、速度为零,振动势能最大、动能为零;质点通过平衡位置时,位移为零、速度最大,振动势能为零、动能最大。
而对于波动中的任一体积元来说,位移最大时、相对形变为零、速度为零,所以动能和势能均为零;当体积元在位移为零(即平衡位置)时,相对形变和速度都是最大,所以势能和动能均最大。
介质中单位体积内的能量叫能量密度,用ω表示⎥⎦⎤⎢⎣⎡+-==0222)(sin ϕωωρωu x t A dv dw 。
它在一个周期内的平均值叫平均能量密度 220211ωρωϖA dt TT⎰==。
二、波的能流和能流密度1、能流、平均能流:能流 —— 单位时间内通过介质中某一面积的能量称为通过该面积的能流。
如图所示,s 为垂直于波速u 的平面,则单位时间内通过s 面的能量平均来说等于以s 为底、u 为长度的体积内的能量,即uS w P =P 称为通过s 面的平均能流。
式中w 为平均能量密度,对简谐波22ωA ρ21w =,所以uS ωA ρ21P 22=2、平均能流密度:单位时间内通过垂直于波的传播方向的单位面积上的平均能量,称为平均能流密度,一般用I 表示,即u ωA ρ21u w S P I 22===。
由此可见,平均能流密度I 与振幅的平方成正比,是波的强弱的一种量度,因而也称为波的强度。
三、波的吸收1、无吸收的均匀介质中,波的振幅保持不变;如下图,通过面积S 1和S 2的平均能流相等。
即21P P = 所以 1221uS A 21ωρ2222uS A 21ωρ=即A 1 = A 22、波的吸收波动在均匀介质中传播时,介质总要吸收一部分波的能量而转变为其它形式的能量,所以波的振幅将沿着波的传播方向逐渐减小。
实验指出:当平面波通过极薄的一层介质(厚度为dx )后,振幅减少-dA 与波进入介质薄层时的振幅A 及薄层厚度dx 成正比:Adx αdA =-,式中α为常数,称为介质的吸收系数,积分可得: αxA A -=e0。
A 0和A 分别为x = 0和x=x 处波的振幅。
由于波的强度与波的振幅的平方成正比,所以波的强度衰减的规律为: xeI I α20-=I 0和I 分别为x = 0和x=x 处波的强度。
§6.4 惠更斯原理 波的叠加和干涉一、 惠更斯原理1 惠更斯原理:介质中波动传播到的各点都可以看作是发射子波的波源,其后任一时刻,这些子波的包迹就是新的波阵面。
所以,S 2外侧各点合振幅A=2A 1,合振动强度I = 4I 1。
§6.5 驻波一、 驻波的形成1、概念:在同一介质中,两列振幅相同的相干平面简谐波,在同一直线上沿相反方向传播时叠加形成的波称为驻波。
2、驻波的演示实验如下图,音叉在绷紧的弦上产生驻波,固定点B 总是波节。
3、从两波波形图的叠加看驻波的形成:观察演示;4、驻波方程:两波波动方程分别 为 )x T t (2cos A y 1λπ-=)x T t (2cos A y 2λπ+= 即这两列波在t = 0时刻,x = 0处的初位相均为零。
则合成波的波动方程为2()()λλππλ12t x t xy y y Acos Acos2T T x t2Acos2cos2Tππ=+=-++=。
5、驻波特点:a 、波线上各点有不同的振幅,在上述的驻波方程Tt cos2x 2Acos2y y y 21πλπ=+= 中,位于x 处的质点其振幅为λx 2Acos2π; b 、波节和波腹 —— 波线上始终不动(振幅为零)的点,称为波节;波线上振幅最大的点,称为波幅;两个相邻的波节(或波腹)之间的距离为2/λ;c 、线上各点分段振动,同一分段各点位相相同;相邻两分段位相相反;二、波在两种界面上的反射1、半波损失 —— 当波从波疏介质(介质密度ρ与波速u 的乘积较小的介质)垂直入射到波密介质(介质密度ρ与波速u 的乘积较大的介质)时,在界面上反射波与入射波的位相相反,称为有半波损失;当波从波密介质入射到波疏介质时,在界面上反射波与入射波的位相相同,没有半波损失。
2、入射波和反射波在两种界面上的合成:当存在半波损失时,界面上是波节;当没有半波损失时,界面上是波腹。
例6:一简谐波沿ox 轴正向传播,图中所示为该波t 时刻的波形图,欲沿ox 轴形成驻波,且使原点处出现波节,画出另一简谐波t 时刻的波形图。
因为要使原点o 处出现波节即任一时刻(不仅仅是图示的t 时刻)o 处质点的位移总是零,例如,当经过1/4周期右行波使o 处质点的位移为 – A ,则左行波应使o 处质点的位移为A ,所以,另一简谐波应是左行波且t 时刻的波形图如上图中的红线所示。
例如图所示,沿x轴正向传播的平面简谐波方程为)]200(200cos[2.0xt y -=π)(SI ,两种介质的分界面P 与坐标原点o 相距m d 0.6=,入射波在界面上反射后振幅无变化,且反射处为固定端。
求:(1)反射波方程;(2)驻波方程;(3)在o 与P 之间各个波节和波腹点的坐标。
解:(1)由入射波方程可知频率Hz 1002==πων,波长m u2==νλ,反射波的振幅、频率、波速均与入射波相同。
入射波在界面处的振动方程u 右行波t 时刻波形oxoxu 左行波t 时刻波形右行波(t +T/4)时刻波左行波(t +T/4)时刻波形§6.6 多普勒效应一、多普勒效应的概念当波源或观察者、或者两者同时相对于介质有相对运动时,观察者接收到的波的频率与波源的振动频率不同的现象称为多普勒效应。
二、观察者接收到的波的频率1、波源不动、观察者以B v 相对于介质运动:设观察者向着波源运动,即0>B v ,则在单位时间内观察者接收到的完整波的数目即观察者实际接收到的波的频率νννλλν>+=+=+=+='=')1(uvu v u uT v u v u u B B B B。
当观察者向着波源运动时,接收到的频率为波源振动频率的)(uv B+1倍;当观察者远离波源运动时,0<B v ,接收到的频率比波源振动频率小。
2、观察者不动、波源以速度S v 相对于介质运动:如图所示,假设波源以速度S v 向着观察者运动。
因为波速与波源运动无关,所以在波源振动的一个周期里,波向前传播的距离等于一个波长λ,但波源S 在一个周期里在波的传播方向上移动了T v S 的距离到达S '点,结果使得一个完整波被挤压在O S '之间,相当于波长减少为T v S -='λλ。
因此,观察者单位时间里接收到的完整波的数目,即观察者接收到的频率为 ννλλν>-=-=-='='SS S v u u T v uT u T v u u 。
当波源向着观察者运动时,0>S v ,观察者接收到的频率为波源振动频率的su V s*§6.7 色散 波包 群速度一、波的叠加 波包1、单色波、波包:频率单一的波叫单色波。
由一群单色波组成的有限长的波列叫波包。
平面简谐波就是单色波,它的波列是无限长的。
根据付立叶分解的观点,有限长的波列相当于许多单色波的叠加。
由这样一群单色波组成的波列叫波包。
例如,前面讲到的“拍”是振幅受到低频调制的高频波列,因为它有一系列最大值、所以还不是典型的波包。
要得到真正的波包,需要更多的频率或波长相近的单色波叠加在一起。