第四讲 半角模型
半角模型结论及证明过程

半角模型结论及证明过程嘿,朋友!咱们今天来聊聊半角模型,这可有意思啦!你知道吗?半角模型就像是一个藏着宝藏的神秘盒子,一旦你打开它,就能发现里面奇妙的规律。
咱们先来说说半角模型的结论。
比如说一个正方形,有一个角度是正方形内角一半的角,那围绕这个半角产生的一些线段和图形之间,就有着特别的关系。
就像有个例子,正方形 ABCD 边长是 a,∠EAF = 45°,E 在 BC 边上,F 在 CD 边上。
这时候你会发现,EF = BE + DF 。
是不是很神奇?那怎么证明这个结论呢?咱们一步步来。
先把△ABE 绕着点 A 顺时针旋转 90°,让 AB 和 AD 重合,新的点记作 E' 。
这样一转,BE 就变成了 DE' 。
这时候你看,∠EAF = 45°,∠DAE' = 45°,那∠FAE' 不也是 45°吗?再看看△AEF 和△AE'F ,AE = AE' ,AF 是公共边,∠EAF =∠E'AF ,这不就全等了嘛!全等之后,EF 不就等于 E'F 了?而 E'F 正好就是 DE' + DF ,也就是 BE + DF 。
你说这像不像走迷宫,找到一条正确的路,一下子就通了?其实啊,半角模型在很多数学问题里都能派上大用场。
比如说解决一些几何图形的面积问题,或者是判断线段之间的关系。
它就像是一把神奇的钥匙,能打开很多难题的锁。
想想看,如果在考试里遇到这样的题目,你一下子就用半角模型把答案找出来了,那得多厉害,多有成就感啊!所以说,半角模型可是数学里的一个宝贝,咱们可得把它好好掌握,让它成为咱们解题的利器!朋友,你觉得半角模型有趣不?是不是也想多练练,把它用得炉火纯青?。
中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。
通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。
常见的半角模型是90°含45°,120°含60°。
例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。
要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。
证明过程如下:1.延长ND到E,使DE=BM。
由四边形ABCD是正方形,得AD=AB。
在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。
得AE=AM,∠XXX∠BAM。
由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。
在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。
得MN=EN。
因此BM+DN=DE+DN=EN=MN。
2.由(1)得△AMN≌△XXX。
因此S△AMN=S△AEN,即AH×MN=AD×EN。
又因为MN=EN,得AH=AD。
因此AH=AB。
在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。
要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。
1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。
2) 猜想:当DM≠DN时,仍有BM+NC=MN。
证明如下:延长AC至E,使CE=BM,连接DE。
因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。
因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。
因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。
初中几何|半角模型

初中几何|半角模型
半角模型是初中学习几何最常见的一个模型,这个模型常用的辅助线思维是旋转,而旋转又是学生几何思维中最不习惯的,那么我们如何进行利用呢?今天具体的进行讲解。
一、半角模型特征
1、共端点的等线段;
2、共顶点的倍半角;
二、半角模型辅助线的作法
1、旋转的方法:以公共端点为旋转中心,相等的两条线段的夹角为旋转角;
2、旋转的条件:具有公共端点的等线段;
3、旋转的目的:将分散的条件集中,隐蔽的关系显现。
三、等腰直角三角形的半角模型(大角夹小角)
如图,在△ABC中,AB=AC,∠BAC=90°,点D、E在边BC上,且∠EAD=45°.
(1)求证:△BAE∽△ADE∽△CDA
(2)求证:BD2+CE2=DE2
四、等腰直角三角形的半角模型(拓展)
1、如图,在△ABC中,AB=AC,∠BAC=90°,点D在边BC上,点E在BC的延长线上,且∠EAD=45°.求证:BD2+CE2=DE2
五、一般三角形的半角模型
六、正方形中半角模型相关结论(大角夹小角)
七、正方形中半角模型(拓展)。
几何模型-半角模型

单击此处加副标题
什么叫半角模型?
定义:我们习惯把过等腰三角形顶角的顶点引两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并形成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得出线段之间的数量关系,从而解决问题。
解:EF=DF﹣BE,证明如下:如图,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE.
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪,弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时,你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
【教学研究】半角模型的定义、八个结论、逆命题及应用

【教学研究】半角模型的定义、八个结论、逆命题及应用
定义
半角模型是指:从正方形的一个顶点引出夹角为45°的两条射线,并连结它们与该顶点的两对边的交点构成的基本平面几何模型。
由于两射线的夹角是正方形一个内角的一半,故名半角模型,又称“角含半角模型”。
其中,将45°角的两边及其对边围成的三角形称为“半角三角形”(即图中的△AEF)
半角模型的结论:
半角模型中射线与端点对边交点的连线长等于端点两相邻点到各自最近交点的距离和。
即:如图中,EF=BE+DF。
结论
其他结论
逆命题
应用
半角模型是初中几何方面问题的常见模型,常用于基本几何命题的证明和一些边长、角度等的计算。
其逆定理则使其可用性更强,避免冗长的证明过程。
九年级中考几何模型之半角模型详解

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。
如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。
【模型思想】通过旋转变化后构造全等三角形,实线边的转化。
【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。
结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。
结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。
结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。
半角模型定理公式

半角模型定理公式【原创实用版】目录1.半角模型定理的概述2.半角模型定理的公式表示3.半角模型定理的证明4.半角模型定理的应用正文一、半角模型定理的概述半角模型定理是数学领域中的一个重要定理,主要应用于解决三角函数、微积分等数学问题的计算与求解。
该定理以其独特的视角和简便的计算方法,为数学研究带来了很大的便利。
二、半角模型定理的公式表示半角模型定理的公式表示如下:设角 A 的半角为 B,则有:sin(B) = ±√((1 - cos(A))/2)cos(B) = ±√((1 + cos(A))/2)tan(B) = ±√((1 - cos(A))/(1 + cos(A)))三、半角模型定理的证明为了证明半角模型定理,我们可以利用三角函数的和角公式进行推导。
以 sin(B) 为例,根据和角公式,有:sin(B) = sin(A/2) * √(1 - cos(A/2))由于 A = 2B,所以 A/2 = B,代入上式得:sin(B) = sin(B) * √(1 - cos(B))进一步化简,得:√(1 - cos(A)) = √(1 - cos(B))由于√(1 - cos(A)) 和√(1 + cos(A)) 的正负号不确定,所以需要加上±号。
同理,可以证明 cos(B) 和 tan(B) 的公式。
四、半角模型定理的应用半角模型定理在实际应用中具有很高的价值,尤其在解决一些复杂数学问题时,可以大大简化计算过程。
例如,在求解三角函数的值、计算微积分等问题时,都可以利用半角模型定理进行简化。
总之,半角模型定理以其独特的公式表示和简便的计算方法,为数学研究带来了很大的便利。
半角模型模型结论及证明

半角模型模型结论及证明
半角模型是一种在选定的矩形网格上建立模型的方法。
在该模型中,网格中的每个格子被视为一个节点,相邻的格子之间通过边连接。
模型结论是指在该模型中所得到的结论,而证明是指为了得到这些结论所进行的推理过程。
具体来说,半角模型中常见的结论包括:
1. 距离结论:通过计算节点之间的距离,可以得到一些关于节点位置的结论。
例如,两个节点距离非常接近时,它们之间很可能存在较为密集的连接。
2. 聚类结论:通过考察节点之间的连接关系,可以得到一些关于节点聚类的结论。
例如,如果许多节点都与某个特定节点连接,那么这些节点可能属于同一个聚类。
3. 布局结论:通过分析节点位置以及连接关系,可以得到一些关于整体布局的结论。
例如,如果节点位置呈现较为均匀的分布,并且连接关系较为稠密,则可能表示整体布局较为均衡。
为了证明这些结论,一般需要进行一系列的推理和计算。
证明过程可以包括数学推导、统计分析、模拟模型等方法。
不同的结论可能需要使用不同的证明方法,取决于具体的问题和模型。
需要注意的是,半角模型虽然可以提供一些关于矩形网格模型的结论和证明,但其适用范围和局限性需要结合具体问题来进行分析和评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021.1
【小结】1.辅助线的实质:中间的“半角”等于旁边两小角之和,通过旋转变换,将两小角拼凑成与“半 角”相等的角,构造出“SAS”型全等三角形.
2.与“补短法”有异曲同工之妙,但辅助线的描述不同,证明过程也有细节的差异:若延长 CB 到 G,使 BG=DF,不必证 G,B,C 共线,需先证△AEG≌△AEF;若旋转△ADF(或△ABE),需强调旋转三要素, 且必须先证 G,B,C 共线.
初一寒假“魔法几何”讲义
第四讲 半角模型
内部资料,请勿外传
模型概述 过多边形的某个顶点引两条射线,使这两条射线的夹角为该顶角的一半. 思想方法 通过旋转变换构造全等三角形,实现线段的转化. 基本模型 一、正方形含半角 如图,在正方形 ABCD 中,E,F 分别是 BC,CD 边上的点,∠EAF=45°,证明 以下结论: (1)EF=BE+DF; (2)△CEF 的周长是正方形边长的 2 倍; (3)FA 平分∠DFE,EA 平分∠BEF; (4)S△AEF=S△AEB+S△AFD. 分析:90°角中含 45°角,符合半角模型,通过旋转构造全等三角形,实现线段和 角的转化。 解答:
(1)如图 1,当点 M,N 分别在边 AB,AC 上,且 DM=DN 时,则 BM,NC,MN 之间的数量关系是
;此时 Q = L
(直接写出结果).
(2)如图 2,当点 M,N 分别在边 AB,AC 上,且 DM=DN 时,猜想 BM,NC,MN 之间的数量关系
并以证明.
(3)如图 3,当 M,N 分别在边 AB,CA 的延长线上时,猜想 BM,NC,MN 之间的数量关系并加以
5
初一寒假“魔法几何”讲义
内部资料,请勿外传
中考真题 1.如图,已知△ABC,∠ACB=90°,AC=BC,点 E,F 在 AB 上,∠ECF=45°. (1)求证:△ACF≌△BEC. (2)设△ABC 的面积为 S,求证:AF·BE=2S. (3)试判断以线段 AE,EF,FB 为边的三角形的形状并给出证明.
◎变式训练 1-2 探究: (1)如图 1,在正方形 ABCD 中,E,F 分别是边 BC,CD 上的点,且∠EAF=45°,试判断 BE,DF
与 EF 三条线段之间的数量关系,直接写出判断结果: (2)如图 2,若把(1)问中的条件变为“在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是
边 BC,CD 上的点,且∠EAF= 1 ∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明;若 2
不成立,请说明理由. (3)在(2)问中,若将△AEF 绕点 A 逆时针旋转,当点 E,F 分别运动到 BC,CD 的延长线上时,
如图 3 所示,其他条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明.
3.不少同学过点 A 作 EF 的垂线,思路可取,但本题难以证明.
4.当∠BAD 变为锐角或钝角,∠BAD+∠C=180°,∠EAF= 1 ∠BAD 时,结论(1)(3)(4)仍成立. 2
1
初一寒假“魔法几何”讲义
内部资料,请勿外传
◎变式训练 1-1 如图,在正方形 ABCD 中,E,F 分别是边 BC,CD 上的点,且∠EAF=45°,AH⊥EF 于 H.求证 AH=AB.
3
初一寒假“魔法几何”讲义
内部资料,请勿外传
◎变式训练 2-2
在等边△ABC 的两边 AB,AC 所在直线上分别有两点 M,N,D 为△ABC 外一点,且∠MDN=60°,∠
BDC=120°,BD=DC.探究:当 M,N 分别在直线 AB,AC 上移动时,BM,NC,MN 之间的数量关系,△
AMN 的周长 Q 与等边△ABC 的周长 L 的关系.
2.如图,BM,DN 分别平分正方形 ABCD 的两个外角,且满足∠MAN=45°,连接 MN. (1)若正方形的边长为 a,求 BM·DN 的值. (2)若以 BM,DN,MN 为三边围成三角形,试猜想三角形的形状,并证明你的结 论.
6
初一寒假“魔法几何”讲义
内部资料,请勿外传
3.正方形 ABCD 中,∠MAN=45°,∠MAN 绕点 A 顺时针旋转,两边分别交 CB,DC(或延长线)于点,
明.
(4)在(3)问的条件下,若此时 AN=x,则 Q=
(用 x,L 表示,直接写出结果).
4
初一寒“魔法几何”讲义
内部资料,请勿外传
◎变式训练 2-3
(1)如图 1,点 E,F 分别是正方形 ABCD 的边 BC,CD 上的点,∠EAF=45°,连接 EF,则 EF,BE
肌之间的数量关系是 EF=BE+FD.连结 BD,交 AE,AF 于点 M,N,且 MN,BM,DN 满足 MM=BDN,请
2
初一寒假“魔法几何”讲义
内部资料,请勿外传
二、等腰直角三角形含半角 如图 1,等腰 Rt△ABC 中,∠ACB=90°,AC=BC,过点 C 作∠DCE=45°,交 AB 边于 D,E 两点.证明:(1)△ACE≌△BDC;(2)DE2=AD2+BE2. 分析:(1)△ACE 和△BDC 中已有∠A=∠B,通过三角形的外角定理可再证一组 内角相等;(2)符合半角模型的特征,通过旋转变换构造全等三角形,将 DE,AD 和 BE 转化到同一直角三角形中,运用勾股定理证明. 证明:
证明这个等量关系.
(2)在△ABC 中,AB=AC,点 D,E 分别为边 BC 上的两点.
①如图 2,当∠BAC=60°,∠DAE=30°时,BD,DE,EC 应满足的等量关系是 ②如图 3,当∠BAC=a(0°<a<90°),∠DAE= 1 a 时,BD,DE,EC 应满足的等量关系是
2
(参加:sin2a+cos2a=1)
【小结】1.三角形外角定理是证角关系的常用方法. 2.证明 3 条线段的平方关系,常考虑勾股定理. ⊙变式训练 2-1 如图,等腰 Rt△ABC 中,∠ACB=90°,AC=BC,过点 C 作∠DCE=45°,交 AB 边于 D,E 两点. (1)若 AD=6,AE=16,则 BE= (2)若 AB=12,DE=5,AD<BE,则 BE= (3)若 S△ABC=8,BD=5,则 AE=