常见的追和和相遇问题类型和解法
小学数学10种经典路程问题剖析及相关解法

小学一年级数学路程问题剖析路程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面路程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
路程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为路程=速度×时间。
要想解答路程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是10种经典路程问题剖析及相关解法。
一、简单相遇及追及问题1、相遇问题:总路程=(甲速+乙述)×相遏时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间一乙速或甲速2、追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速一慢速3、相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间示例:例1:南京到上海的水路长392千米;同时从两港各开出一艘轮船相对而行;从南京开出的船每小时行28千米;从上海开出的船每小时行21千米;经过几小时两船相遇?解:392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2:甲乙二人同时从两地骑自行车相向而行;甲每小时行15千米;乙每小时行13千米;两人在距中点3千米处相遇;求两地的距离。
解:“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快;乙骑得慢;甲过了中点3千米;乙距中点3千米;就是说甲比乙多走的路程是(3x2)千米;因此:相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
例3:好马每天走120千米;劣马每天走75千米;劣马先走12天;好马几天能追上劣马?解:(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900+45=20(天)答:好马20天能追上劣马。
四种数学方法分析追及和相遇问题

四种数学方法分析追及和相遇问题例1 在水平道路上有两辆汽车A 和B 相距x ,A 车在后面做初速度为v 0、加速度大小为2a 的匀减速直线运动,而B 车同时做初速度为零、加速度为a 的匀加速直线运动,两车运动方向相同,如图1所示.要使两车不相撞,求A 车的初速度v 0满足什么条件.图1解析 解法一:解方程法A 、B 两车的运动过程如图所示.对A 车,有x A =v 0t -12×2at 2,v A =v 0-2at 对B 车,有x B =12at 2,v B =at . 两车恰好不相撞的条件是:当x =x A -x B 时,v A =v B ,联立以上各式解得v 0=6ax ,故要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax . 解法二:判别式法设A 车经过时间t 恰好追上B 车,两车的位移关系为x A =x +x B ,即v 0t -12×2at 2=x +12at 2,整理得3at 2-2v 0t +2x =0,这是一个关于时间t 的一元二次方程,当判别式Δ=(-2v 0)2-4·3a ·2x ≤0时,t 无实数解或只有一个解,即两车不相撞,所以要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax .解法三:图象法先作出A 、B 两车的v -t 图象,如图所示.设经过时间t 两车刚好不相撞,则:对A 车,有v A =v =v 0-2at ;对B 车,有v B =v =at ,解得t =v 03a. 两车相遇时的位移差等于x ,它可用图中的阴影面积表示,由图象可知x =12v 0t =v 026a,所以要使两车不相撞,A车的初速度v0≤6ax.解法四:相对运动法以B车为参考系,A车的初速度为v0,加速度为a′=-2a-a=-3a,A车追上B车且刚好不相撞的条件是v t=0,这一过程A车相对于B车的位移为x,由运动学公式得-v02=2×(-3a)x,所以v0=6ax,即要使两车不相撞,A车的初速度v0应满足的条件是v0≤6ax.答案v0≤6ax。
追及与相遇问题

解法二: (极值法)利用判别式求解,由解法一可知 1 1 2 2 xA x xB,即v0 t (-2a) t =x+ at 2 2 2 整理得3at -2v0 t+2 x=0 这是一个关于时间t的一元二次方程,当根的判别式 =(2v0 ) 2 -4 3a 2 x<0时,t 无实数解,即两车不相 撞,所以要使两车不相撞,A车的初速度v0 应满足的 条件是v0 6ax .
两车速度相等时有v01-a1t=v02-a2 t,得t=30s 故在30s内,甲、乙两车运动的位移分别为 1 2 1 2 x甲=v01t - a1t =750m,x乙 =v02 t- a2 t =450m 2 2 因为x乙+x=700m x甲,故甲车会撞上乙车.
解析:如图汽车A以v0=20m / s的初速做匀减速直线运 动经40 s停下来.据加速度公式可求出a=-0.5m / s 2 .当 A车减为与B车同速时是A车逼近B车距离最多的时刻, 这时若能超过B车则相撞,反之则不能相撞.
2 据vt2 v0 2ax可求出A车减为与B车同速时的位移 2 vt2 v0 400 36 x1 m 364m 2a 2 0.5
图象
特点
能追及且只能相遇一 次;交点意义:速度 相等,追上前两物体 的距离最远.
(二 ) 匀减 速追 匀速
当v减=v匀时,如果Δx =x0,则恰能追及,这 也是避免相撞的临界条 件,只相遇一次;若 Δx<x0,则不能追及 (其中x0为两物体开始 追及时的距离) 交点意义:速度相等时 若未追及,则距离最近 ; 若Δx>x0(也就是Δx= x0时,v减>v匀)能相遇 两次.
③图象法:图象法解追及相遇问题,一般画 出两物体的速度图象,利用图象围成的面积 即为物体的运动位移大小的特点,解决物理 问题,该方法往往较为直观方便.应用图象, 可把较复杂的问题转变为简单的数学问题解 决.尤其是用图象定性分析,可避开繁杂的 计算,快速找出答案.
追及或相遇问题方法浅析

追及或相遇问题方法浅析一、直线运动中的追及相遇问题直线运动中的追及相遇问题分为两类:一是同向追及;二是反向追及。
其中同向追及是高考考查的重点。
1.同向追及 同向追及的解题思路可用四字方针:“分析寻找....”来概括。
⑴“分”指分类型:根据两个运动物体的初位置关系,可以将其分为“同位型”和“前后型”。
如果两个物体开始运动时的位置相同,也就是从同一起跑线上开始计时,这类追及问题称为“同位型”;如果两个物体开始运动时一前一后,两者之间存在一段距离差,这类追及问题称为“前后型”。
⑵“析”指析过程:在运动过程中,如果后面物体的速度一直小于前面物体的速度,则在相同时间内,后面物体的位移始终小于前面物体的位移,前后两物体之间的距离越来越大,这个过程称为“分离过程”;如果后面物体的速度一直大于前面物体的速度,则在相同时间内,后面物体的位移始终大于前面物体的位移,前后两物体之间的距离越来越小,这个过程称为“追及过程”。
⑶“寻”指寻状态:在追及相遇过程中,有两个特殊的运动状态对解题起到至关重要的作用,一是两物体速度相等的状态;二是空间位置相同的状态。
首先分析等速状态,如果等速之前的运动是追及过程,且速度相等时,后面物体没有追上前面的物体,则速度相等时,两物体之间存在距离的最小值;如果等速之前的运动是分离过程 ,则速度相等时,两物体之间存在距离的最大值。
简而言之,四个字来概括就是“等速极值”现象。
从另一个方面来看,等速时可以判断两物体是否相遇,若追及类型为同位型,速度相等时,后面物体的位移大于或等于前面物体的位移时,两物体已经相遇或恰好等速时相遇;若追及类型为前后型,速度相等时,后面物体与前面物体的位移差大于初始时两物体的距离差,则判断两物体已经相遇;位移差等于距离差,则判断两物体恰好相遇;位移差小于距离差,则判断两物体之间距离存在极值。
注意两物体在过程中都没有停止运动,如果是小加速度物体追大加速度的物体,可能会出现二次相遇问题。
追及与相遇问题(详解)

追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。
一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。
a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。
⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。
即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。
⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。
匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
追击和相遇问题

在“追及和相遇”问题中,要抓住临界状 态:速度相同时,两物体间距离最小或最大。 如果开始前面物体速度大,后面物体速度小, 则两个物体间距离越来越大,当速度相同时, 距离最大;如果开始前面物体速度小,后面物 体速度大,则两个物体间距离越来越小,当速 度相同时,距离最小。
过B车则相撞,反之则不能相撞。A车减为与B车同速用时t= v v0 =
a
2 0 6s=28 s,此时间内B车的位移为x2=v2t=6×28 m=168 m,A车的位移x1
0.5
= v2 v02=364 m, 两车位移之差Δx=x1-x2=(364-168) m=196
2a
m>180 m,所以两车会相撞。
答案: D
【例2】 经检测汽车A的制动性能为:以标准速度20 m/s在平直公路 上行驶时,制动后40 s停下来。现A在平直公路上以20 m/s的速度行 驶,发现前方180 m处有一货车B以6 m/s的速度同向匀速行驶,司机立 即制动,会不会发生撞车事故?
解析:汽车A以v0=20 m/s的初速做匀减速直线运动经40 s停下来。据 加速度公式可求出a=-0.5 m/s2,当A车减为与B车同速时若能赶上或超
拓展链接4(2012·山东潍坊高三质检)下列图象能正确反映物体在直线上
运动,经2 s又回到初始位置的是 A( C )。
利用图象解题
【例5】 一水平的浅色长传送带上放置一煤块(可视为质点),煤块与 传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。 现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速 度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕 迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。
常见的追及与相遇问题类型及其解法

常见的追及与相遇问题类型及其解法引言在生活中,我们经常会遇到追及与相遇问题。
比如,赛跑、交通堵塞时车辆的行驶等,这些场景都可以用数学知识来描述和求解。
本文将介绍常见的追及与相遇问题类型以及相应的解法。
前提知识在介绍追及与相遇问题之前,我们需要了解一些前提知识。
速度速度是指物体在单位时间内通过的距离。
通常用小写字母v表示,单位是米每秒(m/s)。
路程路程是指物体在行进过程中所通过的路程长度。
通常用小写字母s表示,单位是米(m)。
时间时间是指物体在运动中所用的时间。
通常用小写字母t表示,单位是秒(s)。
加速度加速度是指物体在单位时间内速度的变化量。
通常用小写字母a表示,单位是米每秒平方(m/s²)。
追及问题追及问题是指两个物体进行追逐或相遇的问题。
两个物体在同一方向上运动两个物体在同一方向上运动,速度大小分别为v1和v2,初始距离为s,求它们相遇时的时间t和相遇点的位置s’。
读懂题目之后,我们可以列出方程:s’ = s + (v2 - v1) × t相遇时的时间t为:t = s / (v1 - v2)将t代入上式可得相遇点的位置:s’ = s + v1 × (s / (v1 - v2))两个物体在相交的路段上运动两个物体在相交的路段上运动,速度大小分别为v1和v2,初始距离为d,求它们相遇时的时间t和相遇点的位置。
这时候我们可以把问题转化为两个物体相对运动的情况。
设它们相对速度为v1 - v2,在相遇时它们的距离为0,则有:d + v1 × t + v2 × t = 0解得:t = -d / (v1 + v2)将t代入方程:s’ = v1 × (-d / (v1 + v2))可以求出相遇点的位置。
相遇问题相遇问题是指两个物体从相反方向出发,在某一时间和某一地点发生相遇。
两个物体在相交的路段上运动两个物体在相交的路段上运动,速度分别为v1和v2,相遇时它们的距离为d。
追击及相遇问题的处理方法

追击及相遇问题的处理方法一、追及和相遇问题的求解方法两个物体在同一直线上运动,往往涉及追及,相遇或避免碰撞等问题,解答此类问题的关键条件是:两物体能否同时达到空间某位置。
基本思路是:①分别对两物体进行研究;②画出运动过程示意图;③列出位移方程④找出时间关系,速度关系⑤解出结果,必要时进行讨论。
方法是:(1)临界条件法:当二者速度相等时,二者相距最远(最近)。
(2)图象法:画出x-t图象或v-t图象,然后利用图象进行分析求解。
(3)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇。
1、追及问题:追和被追的两物体的速度相等(同向运动)是能否追上及两者距离有极值的临界条件。
第一类:速度大者减速(如匀减速直线运动)追速度小者(如匀减速直线运动)①当两者速度相等时,追者位移追者位移仍小于被追者位移,则永远追不上,此时两者之间有最小距离。
②若两者位移相等,且两者速度相等时,则恰能追上,也是两者避免碰撞的临界条件。
③若两者位移相等时,追着速度仍大于被追者的速度,则被追者还有一次追上追者的机会,当速度相等时两者之间距离有一个最大值。
在具体求解时,可以利用速度相等这一条件求解,也可以利用二次函数的知识求解,还可以利用图象等求解。
第二类:速度小者加速(如初速度为零的匀加速直线运动)追速度大者(匀速直线运动)。
①当两者速度相等时有最大距离。
②当两者位移相等时,则追上。
具体的求解方法与第一类相似,即利用速度相等进行分析还可利用二次函数图象和图象图象。
2、相遇问题①同向运动的两物体追及即相遇。
②相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时相遇二、分析追及,相遇问题时要注意1、分析问题是,一个条件,两个关系。
一个条件是:两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小及是否恰好追上等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追及与相遇问题追及问题是运动学中较为综合且有实践意义的一类习题,它往往涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同.对此类问题的求解,除了要透彻理解基本物理概念,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助分析,确认两个物体运动的位移关系、时间关系和速度关系,在头脑中建立起一幅物体运动关系的图景.借助于v -t 图象来分析和求解往往可使解题过程简捷明了. 知识要点:一、相遇是指两物体分别从相距S 的两地相向运动到同一位置,它的特点是:两物体运动的距离之和等于S ,分析时要注意: (1)、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系; (2)、两物体各做什么形式的运动; (3)、由两者的时间关系,根据两者的运动形式建立S=S 1+S 2方程; 二、追及问题 (1)、追及问题中两者速度大小与两者距离变化的关系。
若甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若一段时间内两者速度相等,则两者之间的距离 。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴ 速度小者匀加速追速度大者,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
三、分析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。
例题分析:1.一车处于静止状态,车后距车S 0=25m 处有一个人,当车以1m/s 2的加速度开始起动时,人 以6m/s 的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰好此时一辆自行车以6m/s速度驶来,从后边超越汽车.试求:①汽车从路口开动后,追上自行车之前经过多长时间两车相距最远?最远距离是多少?②经过多长时间汽车追上自行车,此时汽车的速度是多少?3.公共汽车从车站开出以4m/s的速度沿平直公路行驶,2s后一辆摩托车从同一车站开出匀加速追赶,加速度为2m/s2。
试问(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发点多远?(3)摩托车追上汽车前,两者最大距离是多少?4、火车以速度v1匀速行驶,司机发现前方同轨道上相距s处有另一火车沿同方向以速度v2做匀速运动,已知v1>v2司机立即以加速度a紧急刹车,要使两车不相撞,加速度a的大小应满足什么条件?5、某人骑自行车以4m/s的速度匀速前进,某时刻在他前面7m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.6. 某人骑自行车以8m/s的速度匀速前进,某时刻在他前面8m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.课后练习:1、 一列快车正以20m/s 的速度在平直轨道上运动时,发现前方180m 处有一货车正以6m/s速度匀速同向行驶,快车立即制动,快车作匀减速运动,经40s 才停止,问是否发生碰车事故?(会发生碰车事故)2、 同一高度有AB 两球,A 球自由下落5米后,B 球以12米/秒竖直投下,问B 球开始运动后经过多少时间追上A 球。
从B 球投下时算起到追上A 球时,AB 下落的高度各为多少?(g=10m/s2)(2.5秒;61.25米)3、 如图所示,A 、B 两物体相距s=7m,物体A 在水平拉力和摩擦力作用下,正以v1=4m/s的速度向右运动,而物体B 此时的速度v2=10m/s,由于摩擦力作用向右匀减速运动,加速度a =-2m/s2,求,物体A 追上B 所用的时间。
(2.67s )v1v24、 羚羊从静止开始奔跑,经过50m 能加速到最大速度25m/s ,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60 m 的距离能加速到最大速度30m/s ,以后只能维持此速度4.0 s.设猎豹距离羚羊xm 时开时攻击,羚羊则在猎豹开始攻击后1.0 s 才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,求:猎豹要在从最大速度减速前追到羚羊,x 值应在什么范围?解析:先分析羚羊和猎豹各自从静止匀加速达到最大速度所用的时间,再分析猎豹追上羚羊前,两者所发生的位移之差的最大值,即可求x 的范围。
设猎豹从静止开始匀加速奔跑60m达到最大速度用时间t2,则1112t v s =,s v s t 4306022111=⨯==羚羊从静止开始匀加速奔跑50m 达到最大速度用时间t1,则2222t v s =,s v s t 4255022222=⨯==猎豹要在从最大速度减速前追到羚羊,则猎豹减速前的匀速运动时间最多4s ,而羚羊最多匀速3s 而被追上,此x 值为最大值,即x=S 豹-S 羊=[(60+30×4)-(50+25×3)]=55m ,所以应取x<55m 。
5、 高为h 的电梯正以加速度a 匀加速上升,忽然天花板上一颗螺钉脱落.螺钉落到电梯底板上所用的时间是多少?解析:此题为追及类问题,依题意画出反映这一过程的示意图,如图2— 27所示.这样至少不会误认为螺钉作自由落体运动,实际上螺钉作竖直上抛运动.从示意图还可以看出,电梯与螺钉的位移关系:S 梯一S 钉= h 式中S 梯=vt 十½at2,S 钉=vt -½gt2 可得t=()a g h +/2 错误:学生把相遇过程示意图画成如下图,则会出现S 梯+S 钉= h式中S 梯=v0t 十½at2,S 钉=v0t -½gt2这样得到v0t 十½at2+v0t -½gt2=h ,即½(a -g )t2+2v0t -h=0由于未知v0,无法解得结果。
判别方法是对上述方程分析,应该是对任何时间t ,都能相遇,即上式中的Δ=4v02+2(a -g )h ≥00、a也就是v0≥()2/h g a -,这就对a 与g 关系有了限制,而事实上不应有这样的限制的。
参考答案: 1、S 人-S 车=S 0 ∴ v 人t-at 2/2=S0 即t 2-12t+50=0 Δ=b 2-4ac=122-4×50=-56<0 ∴ 方程无解.人追不上车 当v 人=v 车=at 时,人车距离最小 t=6/1=6sΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m 2、1.解一:速度关系,位移关系自汽v at v == t=2s)(62321262122m at t v s =⨯⨯-⨯=-=∆自解二:极值法 (1)2223621t t at t v s -=-=∆自 由二次函数的极值条件可知s t 2)2/3(26=-⨯-=时,s ∆最大)(6223262m s m =⨯-⨯=∆(2)汽车追上自行车时,二车位移相等2''21at v t =s t v t 43622'=⨯== s m at v /1243''=⨯==解三:用相对运动求解选匀速运动的自行车位参照物,则从运动开始到相距最远,这段时间内,起初相对此参照物的各个物理量为初速 s m v v v /6600-=-=-=自汽初 末速 066=-=-=自汽末v v v t加速度 2/303s m a a a =-=-=自汽∴相距最远 m a v v s t 632)6(022202-=⨯--=-=(负号表示汽车落后) 解四:图象求解(1) s av t 236===自m at v s t 62321262122=⨯⨯-⨯=-=∆ (2) s t t 42'==s m v v /122'==自3、解:开始一段时间内汽车的速度大,摩托车的速度小,汽车和摩托车的距离逐渐增大,当摩托车的速度大于汽车的速度后,汽车和摩托车的距离逐渐减小,直到追上,显然,在上述过程中,摩托车的速度等于汽车速度时,它们间的距离最大。
(1)摩托车追上汽车时,两者位移相等,即v(t+2)=21at 2解得摩托车追上汽车经历的时间为t=5.46s (2)摩托车追上汽车时通过的位移为s=21at 2=29.9m (3)摩托车追上汽车前,两车速度相等时相距最远,即v=at /t /=av=2s最大距离为△s=v(t /+2)-21at /2=12m 小结:求解追及问题要注意明确三个关系:时间关系、位移关系、速度关系,这是我们求解列方程的依据,涉及临界问题时要抓住临界条件。
4、解法一:由分析运动过程入手 后车刹车后虽做匀减速运动,但在速度减小到和v2相等之前,两车的距离将逐渐减小;当后车速度减小到小于前车速度,两车距离将逐渐增大。
可见,当两车速度相等时,两车距离最近。
若后车减速的加速度过小,则会出现后车速度减为和前车速度相等即追上前车,发生撞车事故;若后车加速度过大,则会出现后车速度减为和前车速度相等时仍为追上前车,若后车加速度大小为某一值时,恰能使两车速度相等时后车追上前车,这是两车不相撞的临界条件,其实对应的加速度即为两车不相撞的临界最小加速度。
综合以上分析可知,两车恰不相撞时应满足下列方程:v 1t-21a 0t 2= v 2t+s v t -a 0t=v 2联立上式可解得:a 0=s v v 2)(212- 所以不 a ≥sv v 2)(212-时时两车即不会相撞。
解法二:要使两车不相撞,其位移关系应为v 1t-21at 2≤s+ v 2t即21at 2+(v 2-v 1)t+s ≥0 对于位移s 和时间t,上面不等式都成立的条件为 △=(v 2-v 1)2-2as ≤0由此得a ≥sv v 2)(212-解法三:以前车为参考系,刹车后后车相对于前车做初速度v0=v1-v2、加速度为a 的匀减速直线运动,当后车相对前车的速度为零时,若相对位移s/≤s 时,则不会相撞。