相遇问题追及问题

合集下载

第三讲 追及相遇问题

第三讲  追及相遇问题

解析: (1)警车在追赶货车的过程中,当两车速度相等时,它们 间的距离最大,设警车发动后经过t1时间两车的速度相等.则t1 = s=4 s,x货=(5.5+4)×10 m=95 m,x警=at12=×2.5×42 m =20 m,所以两车间的最大距离Δx=x货-x警=75 m. (2)v0=90 km/h=25 m/s,当警车刚达到最大速度时,运动时间t2 = s=10 s x货′=(5.5+10)×10 m=155 m,x警′=at22=×2.5×102 m=125 m 因为x货′>x警′,故此时警车尚未赶上货车,且此时两车距离Δx′ =x货′-x警′=30 m 警车达到最大速度后做匀速运动,设再经过Δt时间追赶上货车, 则Δt==2 s 所以警车发动后要经过t=t2+Δt=12 s才能追上货车. 答案: (1)75 m (2)12 s
t1、t2都有意义,t1=4 s时,甲车追上乙车;t2=8 s时,乙车追上甲车再 次相遇 1 第一次相遇地点距 A的距离:x1= a1(t1+t0)2=125 m 2 1 第二次相遇地点距 A的距离:x2= a1(t2+t0)2=245 m. 2 ④(3分) ⑤(3分)
答案:
第一次相遇处距A距离为125 m
追及和相遇问题
1.追及与相遇问题的概述 当两个物体在 同一直线上 距离 运动时,由于两物体的运动情况不同,
所以两物体之间的
会不断发生变化,两物体间距离越来越大或越
来越小,这时就会涉及追及、相遇或避免碰撞等问题. 2.追及问题的两类情况 (1)若后者能追上前者,则追上时,两者处于同一 度一定不 小于 前者的速度. (2)若后者追不上前者,则当后者的速度与前者 相等 时,两者相距 最近 . 位置 ,后者的速
2 - 1 :小张和小王分别驾车沿平直公路同向行驶,在某 段时间内两车的 v-t图象如右图所示,初始时,小张在小王 前方x0处( )

追及与相遇问题

追及与相遇问题
相撞?
见全品练习册,20页的13题
方法一:设:经过时间t,人与车速度相等,

人追不上车。人车间的最小距离为
方法二:设:经过时间t,人与车相距S,
则S= S0+S车 - S人=25 + 0.5 t2 - 6 t 令S=0,既假设人能追上车,0.5 t2 - 6 t+25=0 因b2-4ac = (-6)2 -4×0.5×25=-14<0,方程无 解,故人追不上车 当t=人车间的最小距离为 s =25 + 0.5×62 - 6× 6=7m 时,s有最小值
追及与相遇问题
一、追及问题:二者速度相等时相距最远 (或者最近) 1、后面加速,前面匀速,二者相距x 。一定 能追上,二者速度相等时相距最远 。
2、后面匀速,前面从静止加速,二者相距x 。 不一定能追上,二者速度相等时相距最远近。
2 例6、车从静止开始以1m/s 的加
速度前进,车后相距s0为25m处, 某人同时开始以6m/s的速度匀速 追车,能否追上?若追不上,求 人、车间的最小距离。

相遇与追及问题

相遇与追及问题
⑴ 两个运动物体一般同地不同时(或同时不同地)出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些.
⑵ 在一定时间内,后面的追上前面的.
共同点:⑴ 是否同时出发
⑵ 是否同地出发
⑶ 方向:同向、背向、相向
⑷ 方法:画图
3.简单的相遇与追及问题各自解题时的入手点及需要注意的地方
1.相遇问题:与速度和、路程和有关
【巩固】甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
【巩固】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.
4.行程间的倍比关系
【例 8】甲、乙两车分别同时从 、 两地相对开出,第一次在离 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地25千米处相遇.求 、 两地间的距离.
5.王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
6.甲、乙两车分别同时从 、 两地相对开出,第一次在离 地 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地 千米处相遇.求 、 两地间的距离?
⑴ 是否同时出发
⑵ 是否有返回条件
⑶ 是否和中点有关:判断相遇点位置
⑷ 是否是多次返回:按倍数关系走。
⑸ 一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果
2.追及问题:与速度差、路程差有关
⑴ 速度差与路程差的本质含义
⑵ 是否同时出发,是否同地出发。

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

初一数学相遇与追及问题公式

初一数学相遇与追及问题公式

初一数学相遇与追及问题公式(一)相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
(二)追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
扩展资料:
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。

相遇问题是研究速度,时间和路程三者数量之间的关系。

两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。

相遇问题是研究速度,时间和路
程三者数量之间关系的问题。

它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。

相遇问题的关系式是:速度和×相遇时间=路程;路程÷速度和=
相遇时间;路程÷相遇时间=速度和。

【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

追及和相遇问题

追及和相遇问题

例3:一辆轿车违章超车,以108km/h的速度驶入 左侧逆行道时,猛然发现正前方80m处一辆卡车 正以72km/h的速度迎面驶来,两车司机同时刹 车,刹车加速度大小都是10m/s2,两司机的的反 应时间(即司机发现险情到实施刹车所经历的时 间)都是△t,试问△t是何数值 ,才能保证两车不相 撞?
例 4:一辆轿车的最大速度为30m/s,要想从静止开 始用4分钟追上前面1000m处以25m/s匀速同向 行驶的货车,轿车至少要以多大的加速度起速运动的物体甲追 赶同方向匀加速运动的物体乙。(v甲﹥ v0乙)
v甲 S0 v0乙 a
A、当v乙= v甲时:S甲=S0+S乙,甲恰好追上乙 B、当v乙= v甲时: S甲<S0+S乙,甲永远追不上乙, 此时两者有最小间距⊿Smin C、当v乙< v甲时: S甲>S0+S乙,甲追上了乙,由 乙作匀加速运动,以后v乙> v甲,则乙还有一次 追 上甲的机会,其间两者速度相等时两者距离 v 有一个较大值。 v
追及和相遇问题
追及问题:追和被追的两物体同向运动,往 往当两者速度相等是能否追上或者两者距离有最 大值、最小值的临界条件。追及问题常见情形有 三种: ①同时同地出发:初速为零的匀加速直线运动物体 甲追匀速运动的物体乙:一定能追上,当v甲= v乙 时,两者之间有△xmax v(m/s) v0甲=0 v0乙 a o 甲
(2)相遇问题:相遇问题分为追及相遇和相向相 遇问题,上面三种常见问题属于追及相遇问题, 至于相向相遇问题,我们通过例题来进行说明, 本节课重点解决追及相遇问题。 对于追及相遇问题我们解题过程中要弄清 物体的运动过程,挖掘题中隐含的临界条件,在 解题方法上常常用到解析法、数学法、图象法、 相对运动法等等。
例1:火车以速度v1匀速行驶,司机发现前方同轨 道上相距S处有另一火车沿同方向以速度v2(对 地,且v1> v2)做匀速运动,司机立即以加速度 大小为a紧急刹车,要使两车不相撞, a应满足 什么条件?

追及相遇问题

追及相遇问题
追及和相遇问题
1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.
(2)匀速运动的物体甲追赶同方向做匀
3.相遇问题 (1)相遇的特点:在同一时刻两物 体处于同一位置. (2)相遇的条件:同向运动的物体 追及即相遇;相向运动的物体,各自 发生的位移的绝对值之和等于开始时 两物体之间的距离时即相遇.
类型一 追及相遇问题的求解方法
例1 一小汽车从静止开始以3 m/s2的 加速度行驶,恰有一自行车以6 m/s的 速度从车边匀速驶过.
加速运动的物体乙时,恰好追上或恰好
追不上的临界条件是两物体速度相等,
即v甲=v乙. 判断此种追赶情形能否追上的方法是:
假定在追赶过程中两者在同一位置,比
较此时的速度大小,若v甲>v乙,则能追上; v甲<v乙,则追不上,如果始终追不上,当 两物体速度相等即v甲=v乙时,两物体的 间距最小.
(3)速度大者减速(如匀减速直线运动)追速 度小者(如匀速运动)
(1)汽车从开动后在追上自行车之 前,要经多长时间两者相距最远?最 远距离是多少?
(2)什么时候追上自行车,此时汽 车的速度是多少?
(2)由图知,t=2 s以后,若两车位移相等, 即v-t图象与时间轴所夹的“面积”相等.
由几何关系知,相遇时间为t′=4 s,此 时v汽=2v自=12 m/s.
解析:汽车和自行车运动草图如下:
六、追及和相遇问题 1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用练习1.A、B两城相距60千米,甲、乙两人都骑自行车从A城同时出发往B城,甲的速度比乙每小时慢4千米,乙到达B城立即返回,在距B城12千米处与甲相遇,甲每小时行多少千米2.某工厂每天派小汽车于上午8时准时到总工程师家接他到工厂上班,有一天早晨总工程师临时决定提前回工厂办事,匆匆从家步行出发,途中遇到接他的小汽车,立即上车到工厂,结果比平时早40分钟到达。

总工程师上车时是几时几分3.快、慢两列火车分别长150米和200米,相向行驶在两股平行的轨道上,如果坐在快车上的人见慢车驶过窗口的时间是8秒,那么,坐在慢车上的人见快车驶过窗口所用的时间是多少秒4.甲、乙两人分别从一个边长56米围墙的对角顶点(如图)同时出发绕围墙按同一方向跑,甲每秒钟跑7米,乙每秒跑5米,经过多少秒钟甲第一次看见乙5.甲、乙两人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒,甲跑4秒钟就追上乙。

甲、乙两人每秒钟各跑多少米6.小巴(即小公共汽车)和轿车先后开车从A地至B地,轿车速度是小巴速度的倍。

小巴要在两地的中点停10分钟,轿车中途不停车,轿车比小巴在A地晚出发11分钟,早7分钟到达B地,小巴上午9时开出。

轿车超过小巴是几时几分*7.两地相距1800米,甲、乙两人同时从这两地出发,相向而走,甲比乙走得快,12分钟两人在A点相遇;如果两人每分钟都多走25米,那么两人在离A点33米处相遇。

甲原来每分钟走多少米*8.小方和爸爸从家去公园,小方先步行出发,5分钟后,爸爸骑车出发,在距家600米处追上小方,这时想起没带相机,于是爸爸立即返回家拿相机,又立即回头追小方,再追上时距家1200米,小方每分钟走多少米爸爸骑车每分钟行多少米课后练习1.客车和货车同时从甲、乙两城开出,相向而行,3小时相遇,相遇后客车继续行驶2小时到达乙城,货车每小时行32千米,甲、乙两城相距多少千米2.敌舰以每分钟800米的速度逃窜,我军鱼雷快艇在距敌舰1200处向敌舰发射鱼雷,鱼雷的速度是敌舰的3倍,发射后多少秒钟鱼雷击中敌舰3.小马虎步行去上学,他离家15分钟后,爸爸发现他忘记带笔盒了,急忙带上笔盒骑车去追他,把笔盒交给小马虎后立即返回,到家一看表,正好用了10分钟,爸爸骑车的速度是小马虎步行速度的几倍4.小聪和小敏分别从甲、乙两地同时出发,相向而走,按预定的速度行走,6小时相遇;如果两人各自都每小时多走千米,可以提前1小时相遇。

甲、乙两地相距多少千米5.甲、乙二人从相距36千米的两地出发,相向步行。

如果甲先出发2小时,乙出发后小时二人相遇;如果乙先出发2小时,甲出发后3小时二人相遇。

甲、乙每小时各走多少千米26.甲、乙两人在400米环形跑道上跑步,两人朝相反的方向跑,两人第一次和第二次相遇间隔40秒,已知甲每秒跑6米,问:乙每秒跑多少米27.一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行52千米。

问:几小时后两车第一次相距69千米再过多少时间两车再次相距69千米28.一列客车和一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后两车相距342千米,求两车的速度。

29.一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知客车每小时行50千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时。

问:两地之间的铁路长多少千米30.已知甲、乙两车站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车于下午2时30分从乙站开出,下午6时两车相遇。

问:从乙站开出的火车的速度是多少31.一辆卡车和一辆大客车从相距320千米的两地相向而行,已知卡车每小时行45千米,大客车每小时行40千米,如果卡车上午8时开出,问:大客车何时开出两车才能在中午12时相遇32.甲、乙两辆车的速度分别为每小时52千米和40千米,它们同时从甲地出发到乙地去,出发后6小时,甲车遇到一辆迎面开来的卡车,1小时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

33.甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟。

问:甲、乙的速度各是多少34.甲、乙两车从相距330千米的两地同时相向而行,三小时后相遇,已知甲车速度是乙车速度的倍,求两车的速度。

35.甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的倍,求A、B两地的距离。

36.甲、乙两车同时从两地相向而行,小时后相遇。

已知甲车速度是乙车速度的四分之三,相遇时乙车比甲车多走40千米,求两车的速度。

37.兄妹二人在周长30米的圆形水池边玩,他们从同一地点同时出发,背向绕水池而行,兄每秒走米,妹每秒走米。

照这样计算,当他们第十次相遇时,妹妹还需走多少米才能回到出发点38.甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需48分钟,出发后30分钟两人相遇。

问:乙骑一圈需多长时间39.小王和小李同时从两地相向而行,小王走完全程要60分钟,小李走完全程要40分钟。

出发后5分钟,小李因忘带东西而返回出发点,因取东西耽误了5分钟,小李再出发后多长时间两人相遇40.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米。

有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

41.甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇。

他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇。

求两次相遇地点的距离。

42.湖中有A、B两岛,甲、乙二人都要在两岛间游一个来回。

两人分别从A、B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。

问:两岛相距多远43.甲、乙二人从相距36千米的两地相向而行。

若甲先出发2小时,则在乙动身小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇。

求甲、乙二人的速度。

44.客车和货车同时从甲、乙两地相向开出,客车行完全程需10小时,货车行完全程需15小时。

两车在中途相遇后,客车又行了90千米,这时客车行完了全程的80%,求甲、乙两地的距离。

45.两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地所需时间多1/3。

如果两车同时开出,相遇时快车比慢车多行48千米,求甲、乙两地的距离。

46.两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长多少米。

47.小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时迎面开来一列火车,从车头到车尾经过他身旁共用了18秒。

已知火车全长342米,求火车的速度。

48.铁路线旁有一沿铁路方向的公路,在公路上行驶的一辆拖拉机司机看见迎面驶来的一列火车从车头到车尾经过他身旁共用了15秒。

已知火车车速为每小时60千米,全长345米,求拖拉机的速度。

49.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。

坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒50.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

问:该列车与另一列长320米、时速千米的列车错车而过需要几秒51.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙。

问:两人每秒钟各跑多少米52.甲、乙两地相距600千米,一列客车和一列货车同时由甲地开往乙地,客车比货车早到小时,客车到达乙地时货车行驶了全程的4/5。

问:货车行驶全程需要多少时间53.两辆拖拉机为农场送化肥,第一辆以每小时9千米的速度由仓库开往农场,30分钟后,第二辆以每小时12千米的速度由仓库开往农场。

问:(1)第二辆追上第一辆的地点距仓库多远(2)如果第二辆比第一辆早到农场20分钟,仓库到农场的路程有多远54.甲、乙二人绕周长为1200米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的倍。

现在甲在乙的后面400米,问:乙追上甲还需多少时间55.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明。

求小强骑自行车的速度。

56.甲、乙两匹马相距50米的地方同时出发,出发时甲马在前乙马在后。

如果甲马每秒跑10米,乙马每秒跑12米,问:何时两马相距70米57.一种导弹以音速(每秒330米)前进,已知两架飞机相距1500米同向飞行,前面一架飞机的速度是每秒210米,后面一架飞机的速度是每秒180米。

当后面的飞机发出导弹时,多长时间可以击中前面一架飞机58.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发龇⑹奔自谝液竺妫龇⒑分钟甲第一次超过乙,22分钟时甲第二次超过乙。

假设两人的速度保持不变,问:出发时甲在乙后面多少米59.学校组织军训,甲、乙、丙三人步行从学校到军训驻地。

甲、乙两人早晨6点一起从学校出发,甲每小时走5千米,乙每小时走4千米,丙上午8点才从学校出发,下午6点甲、丙同时到达军训驻地。

问:丙在何时追上乙60.小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间61.一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员。

问:甲乙两地相距多远*62.自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通信员立即返回出发点,到后又返回去追自行车队,再追上时恰好离出发点18千米。

求自行车队和摩托车的速度。

*63.在上题中,如果将自行车队出发12分钟后通信员去追他们改为出发10分钟后,其它条件不变,那么,自行车队出发多长时间后,通信员第二次追上他们64.快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人。

已知快、慢车的时速分别为24和19千米,求中速车的速度。

69.一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进米,狗跳3次的时间兔子可以跳4次。

问:兔子跑出多远将被猎狗追上70.甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分钟,出发后45分钟追上丙;甲比乙晚出发15分钟,出发后1小时追上丙。

那么,甲出发后多长时间追上乙71.小马虎上学忘了带书包,爸爸发现后立即骑车去追他,把书包交给他后立即返回家。

相关文档
最新文档