2013年高考文科数学全国1卷

合集下载

2013年高考文科数学(江西卷)

2013年高考文科数学(江西卷)

2013年普通高等学校招生全国统一考试(江西卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

第Ⅰ卷一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=i (-2-i )(i 为虚数单位)在复平面内所对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若集合A={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a= A.4 B.2 C.0 D.0或43.sin cos 2αα==若 A. 23-B. 13-C. 13D.234.集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是 A. B.C. D.5.总体编号为01,02,…19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为A.08B.07C.02D.01 6. 下列选项中,使不等式x <1x<2x 成立的x 的取值范围是 A.(,-1) B. (-1,0) C.0,1) D.(1,+)7.阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是A.S <8B. S <9C. S <10D. S <11 8.一几何体的三视图如右所示,则该几何体的体积为 A.200+9π B. 200+18πC. 140+9πD. 140+18π 9. 已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|:|MN|= A.2:B.1:2C. 1:D. 1:310.如图。

已知l 1⊥l 2,圆心在l 1上、半径为1m 的圆O 在t=0时与l 2相切于点A ,圆O 沿l 1以1m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y=cosx ,则y 与时间t (0≤x ≤1,单位:s ) 的函数y=f (t )的图像大致为第Ⅱ卷二.填空题:本大题共5小题,每小题5分,共25分。

2013全国卷1文科数学高考真题及答案

2013全国卷1文科数学高考真题及答案

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x (5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2006--2013年,高考文科数学全国1卷(广西)

2006--2013年,高考文科数学全国1卷(广西)

2006年普通高等学校招生全国统一考试(全国Ⅰ)(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m =(A )41-(B )-4 (C )4 (D )41 (5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 (A )16π (B )20π (C )24π (D )32π (10)在10)21(xx -的展开式中,4x 的系数为(A )-120(B )120(C )-15(D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为(A )58cm 2(B )106cm 2 (C )553cm 2(D )20cm 2(13)已知函数.121)(+-=xa x f 若)(x f 为奇函数,则a = . (14)已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成的二面角等于 .(15)设x y z -=2,式中变量x 、y 满足下列条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≥-,1,2323,12y y x y x 则z 的最大值为 .(16)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日. 不同的安排方法共有 种.(用数字作答)(17)已知}{n a 为等比数列,320,2423=+=a a a . 求}{n a 的通项公式. (18)△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos CB A ++取得最大值,并求出这个最大值.(19)A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效. 若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组. 设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.(20)如图,1l 、2l 是相互垂直的异面直线,MN 是它们的公垂线段. 点A 、B 在1l 上,C 在2l 上,AM = MB = MN .(Ⅰ)证明NB AC ⊥;(Ⅱ)若60=∠ACB ,求NB 与平面ABC 所成角的余弦值.(21)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ |的最大值.(22)设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求 a 的取值范围.2007年普通高等学校招生全国统一考试(全国Ⅰ)1.设{|210}S x x =+>,{|350}T x x =-<,则ST = A .∅ B .1{|}2x x <- C .5{|}3x x > D .15{|}23x x -<< 2.α是第四象限角,12cos 13α=,则sin α= A .513 B .513- C . 512 D .512-3.已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 4.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= 5.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有A .36种B .48种C .96种D .192种 6.下面给出的四个点中,位于1010x y x y +-<⎧⎨-+>⎩表示的平面区域内的点是A .(0,2)B .(2,0)-C .(0,2)-D .(2,0) 7.如图,正棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为A .15B .25 C .35 D .451A8.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =A B .2 C . D .49.()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件 10.函数22cos y x =的一个单调增区间是A .(,)44ππ-B .(0,)2πC .3(,)44ππD .(,)2ππ 11.曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形面积为A .19B .29C .13D .2312.抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则△AKF 的面积是A .4B .C .D .813.从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________。

2013年高考湖南文科数学试题及答案(word解析版)

2013年高考湖南文科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(湖南卷)数学(文科)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年湖南,文1,5分】复数()i 1i z =⋅+(i 为虚数单位)在复平面上对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B【解析】()i 1i i 11i z =⋅+=-=-+,故选B .(2)【2013年湖南,文2,5分】“12x <<”是“2x <”成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】∵“12x <<”能推出“2x <”成立,但“2x <”不能推出“12x <<”成立,故选A . (3)【2013年湖南,文3,5分】某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( )(A )9 (B )10 (C )12 (D )13 【答案】D【解析】抽样比为316020=,所以甲抽取6件,乙抽取4件,丙抽取3件,∴13n =,故选D . (4)【2013年湖南,文4,5分】已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( )(A )4 (B )3 (C )2 (D )1 【答案】B【解析】∵()f x 是奇函数,()g x 是偶函数,∴()2(11)f g -+=,即()()112f g -+= ①()14)1(f g +-=,即()()114f g += ② 由①+②得()13g =,故选B .(5)【2013年湖南,文5】在锐角ABC ∆中,角A ,B 所对的边长分别为,a b .若2sin a B =,则角A 等于( )(A )3π (B )4π (C )6π (D )12π【答案】A【解析】∵2sin a B =,∴2sin in As B B =.∵sin 0B ≠,∴sin A .∵π0,2A ⎛∈⎫⎪⎝⎭,∴π3A =,故选A .(6)【2013年湖南,文6,5分】函数()ln f x x =的图像与函数2()44g x x x =-+的图像的交点个数为( )(A )0 (B )1 (C )2 (D )3【答案】C【解析】利用图象知,有两个交点,故选C . (7)【2013年湖南,文7,5分】已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧)(A (B )1 (C(D【答案】D【解析】如图所示,正方体1111ABCD A B C D -的俯视图为ABCD ,侧视图为11BB D D ,故该正方体的正视图应为11AA C C .又因AC =D . (8)【2013年湖南,文8,5分】已知a,b 是单位向量,0a b =.若向量c 满足1-=-c a b ,则|c |的最大值为( )(A 1- (B (C 1+ (D 2+ 【答案】C【解析】可利用特殊值法求解.可令10()a =,,01()b =,,()c x y =,.由||1c a b --=,得1=,∴22()(11)1x y -+-=.c即为可看成M 上的点到原点的距离,∴11max c OM +=,故选C .(9)【2013年湖南,文9,5分】已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB ∆的最大边是AB ”发生的概率为12,则AD AB =( )(A )12 (B )14(C(D【答案】D【解析】如图,设2AB x =,2AD y =.由于AB 为最大边的概率是1,则P 在EF 上运动满足条件,且12DE CF x ==,即A B E B=或AB FA =.∴2x =即2224494x y x =+,即22744x y =,∴22716y x =.∴y x =22AD y y AB x x ===,故选D . 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置. (10)【2013年湖南,文10,5分】已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则U ()A B =ð .【答案】{6}8,【解析】{}68U A =,ð,∴6826868(){}{}{}U A B ==,,,,ð.(11)【2013年湖南,文11,5分】在平面直角坐标系xOy 中,若直线121:x s l y s =+⎧⎨=⎩(s 为参数)和直线2:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为 . 【答案】4【解析】1l 的普通方程为:21x y =+,2l 的普通方程为:12x a y =⋅+,即22a ax y =+,∴4a =.(12)【2013年湖南,文12,5分】执行如图所示的程序框图,如果输入1a =,2b =,则输出的a 的值为 . 【答案】9 【解析】输入12a b ==,,不满足a >8,故3a =;3a =不满足8a >,故5a =;5a =不满足8a >,故7a =;7a =不满足8a >,故9a =,满足8a >,终止循环.输出9a =.(13)【2013年湖南,文13,5分】若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则x y +的最大值为 . 【答案】6【解析】画出可行域,令z x y =+,易知z 在2(4)A ,处取得最大值6.(14)【2013年湖南,文14,5分】设12F F ,是双曲线C ,22221x y a b-= (0a >,0b >)的两个焦点.若在C 上存在一点P ,使12PF PF ⊥,且1230PF F ∠=︒,则C 的离心率为 . 1【解析】如图所示,∵12PF PF ⊥,1230PF F ∠=︒,可得2PF c =.由双曲线定义知,12PF a c =+,由2221212F F PF PF =+得222)4(2c a c c =++,即222440c ac a --=,即2220e e --=,∴e =,∴1e = (15)【2013年湖南,文15,5分】对于{}12100,,,E a a a =的子集{}12,,,k i i i X a a a =,定义X 的“特征数列”为12100,,,x x x ,其中 121k i i i x x a ====,其余项均为0,例如子集{}23,a a 的“特征数列”为0,1,1,0,0,…,0 .(1)子集{}135,,a a a 的“特征数列”的前三项和等于 ;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p =,11i i p p ++=,199i ≤≤;E 的子集Q 的“特征数列”12100,,,q q q 满足11q =,121j j j q q q ++++=,198j ≤≤,则PQ 的元素个数为 .【答案】(1)2;(2)17 【解析】(1){}135,,a a a 的特征数列为1,0,1,0,1,0,…,0,∴前3项和为2.(2)根据题意知,P 的特征数列为1,0,1,0,1,0,…,则13599{}P a a a a =⋯,,,,有50个元素,Q 的特征数列为1,0,0,1,0,0,1,…,则14710100{}Q a a a a a =⋯,,,,,有34个元素, ∴171397{}P Q a a a a =⋯,,,,,共有9711176-+=个.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(16)【2013年湖南,文16,12分】已知函数()cos cos()3f x x x π=-.(1)求2()3f π的值;(2)求使 1()4f x <成立的x 的取值集合.解:(1)2π2ππcos cos 333f ⎛⎫=⋅ ⎪⎝⎭=ππcos cos 33-⋅=21124⎛⎫-=- ⎪⎝⎭.(2)()()211cos cos π1cos co cos s n cos 1cos 222243x x f x x x x x x x x x ⎛⎫⎛⎫- =⋅=⋅⎪ ⎪ ⎪⎝⎭+⎝=⎭=++ 1π1cos 2234x ⎛⎫=-+ ⎪⎝⎭.()14f x <等价于1π11cos 22344x ⎛⎫-+< ⎪⎝⎭,即πcos 2<03x ⎛⎫- ⎪⎝⎭. 于是3π222223k x k k ππππ+<-<+∈,Z .解得11π12512k x k k πππ+<<+∈,Z .故使()14f x <成立的x 的取值集合为5π11π|ππ,1212x k x k k ⎧⎫+<<+∈⎨⎬⎩⎭Z .(17)【2013年湖南,文17,12分】如图,在直棱柱111ABC A B C -中,90BAC ∠=︒,AB AC =13AA =,D 是BC 的中点,点E 在菱1BB 上运动.(1)证明:1AD C E ⊥;(2)当异面直线1AC C E ,所成的角为60︒时,求三棱柱121C A B E -的体积. 解:(1)证明:因为AB AC =,D 是BC 的中点,所以AD BC ⊥.①又在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面ABC ,所以1AD BB ⊥.②由①,②得AD ⊥平面11BB C C .由点E 在棱1BB 上运动,得1C E ⊂平面11BB C C ,所以1AD C E ⊥. (2)因为11//AC AC ,所以11A C E ∠是异面直线AC ,1C E 所成的角,由题设,1160AC E ∠=︒,因为11190B AC BAC ∠=∠=︒,所以1111AC A B ⊥,又111A A A C ⊥,从而11AC ⊥平面11AABB ,于是111AC A E ⊥.故111cos60C AC E =︒=112B C ==,所以12B E =,从而1111111111223323A B E C A B E V C S A ∆-=⨯⨯=⨯=三棱锥.(18)【2013年湖南,文18,12分】某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示: 这里,两株作物“相近”是指它们之间的直线距离不超过1米. (1)完成下表,并求所种作物的平均年收获量;514845424Y 频数;(2)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率.解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”4的作物有3株.列表如下:所种作物的平均年收获量为:15=19227012615++6904615==.(2)由(1)知,512()15P Y ==,484()15P Y ==.故在所种作物中随机选取一株,它的年收获量至少为48kg 的概率为()()()48512421581455P Y P Y P Y ≥==+=+==.(19)【2013年湖南,文19,13分】设n S 为数列{}n a 的前项和,已知10a ≠,112n n a a S S -=⋅,*n N ∈.(1)求1a ,2a ,并求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和.解:(1)令1n =,得21112a a a -=,即211a a =.因为10a ≠,所以11a =.令2n =,得222211a S a -==+.解得22a =.当2n ≥时,由112121n n n n a S a S ---=-=,两式相减得122n n n a a a --=.即12n n a a -=. 于是数列{}n a 是首项为1,公比为2的等比数列.因此,12n n a -=.所以数列{}n a 的通项公式为12n n a -=. (2)由(1)知,1·2n n na n -=.记数列1{·2}n n -的前n 项和为n B ,于是21122322n n B n -=+⨯+⨯+⋯+⨯① 2321222322n n B n =⨯+⨯+⨯+⋯+⨯.② ①-②得:2112222212n n n n n B n n --=+++⋯+-⋅=--⋅.从而()112n n B n =+-⋅.(20)【2013年湖南,文20,13分】已知1F ,2F 分别是椭圆22:15x E y +=的左、右焦点1F ,2F 关于直线20x y +-=的对称点是圆C 的一条直径的两个端点. (1)求圆C 的方程;(2)设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程. 解:(1)由题设知,1F ,2F 的坐标分别为(20)-,,(2)0,,圆C 的半径为2,圆心为原点O 关于直线20x y +-= 的对称点.设圆心坐标为00()x y ,,由000012022y x x y⎧=⎪⎪⎨⎪+-=⎪⎩得0022x y =⎧⎨=⎩,圆C 的方程为()()22224x y -+-=.(2)由题意,可设直线l 的方程为2x my =+,则圆心到直线l 的距离d =.所以b =.由22215x my x y =+⎧⎪⎨+=⎪⎩得22540)1(m y my ++-=. 设l 与E 的两个交点坐标分别为11()x y ,,22()x y ,,则12245y m y m -=++,21215y y m -+=.于是a==.从而ab ===≤==m =故当m =时,ab 最大,此时,直线l 的方程为2x =+或2x =+, 即20x -=,或20x +-=.(21)【2013年湖南,文21,13分】已知函数21()1xx f x e x -=+. (1)求()f x 的单调区间;(2)证明:当12()()f x f x = 12()x x ≠时,120x x +<.解:(1)函数()f x 的定义域为()-∞+∞,.()221111x x x x x x e x f e --⎛⎫' ⎪++⎝⎭'=+=2222211e 11x x x x x x ⎡⎤---+⎢⎥(+)+⎣⎦=222[12]e 1xx x x -(-)+(+). 当0x <时,()0f x '>;当0x >时,()0f x '<.()f x 的单调递增区间为()0-∞,,单调递减区间为(0)+∞,.(2)当1x <时,由于2101xx->+,0x e >,故()0f x >;同理,当1x >时,()0f x <.当()()()1212f x f x x x =≠ 时,不妨设12x x <,由(1)知10()x ∈-∞,,2)1(0x ∈,.下面证明:)01(x ∀∈,,()()f x f x <-,即证2211e e 11x x x x x x --+<++,等价于(11)0e x x x e x --+<.令()1()e 1xxg x x e x -+=-,则()2()1x x g x xe e -'=--. 当)1(0x ∈,时,()0g x '<,()g x 单调递减,从而g (x )<g (0)=0.即(11)0ex x x e x--+<.所以)01(x ∀∈,,()()f x f x <-.而2)1(0x ∈,,所以()22()f x f x <-,从而()12()f x f x <-. 由于1x ,20()x -∈-∞,,()f x 在()0-∞,上单调递增,所以12x x <-,即120x x +<.。

2013年湖南高考数学文科试卷带详解

2013年湖南高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i(1i)z =+(i 为虚数单位)在复平面上对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【测量目标】复数代数形式的四则运算及复平面.【考查方式】给出复数的乘法形式,间接地考查了复数的代数与几何之间的关系. 【参考答案】B【试题解析】 i(1i)1i z =+=-+,∴复数z 对应复平面上的点是(1,1)-,该点在第二象限.2.“1<x <2”是“x <2”成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】命题的基本关系,充分、必要条件. 【考查方式】主要考查命题的基本关系以及充分必要条件. 【参考答案】A【试题解析】设{|12}A x x =<<,{|2}B x x =<,∴A B Ü,即当0x A ∈时,有0x B ∈,反之不一定成立.因此“12x <<”是“2x <”成立的充分不必要条件.3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n = ( ) A .9 B .10 C .12 D .13 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题用比例法求解样本容量的多少. 【参考答案】D 【试题解析】3=601208060n++,13n ∴= 4.已知()f x 是奇函数,()g x 是偶函数,且(1)(1)2f g -+=,()()114f g +-=,则g (1)等于( )A .4B .3C .2D .1【测量目标】函数的奇偶性、函数的求值.【考查方式】给出两个奇、偶函数的关系式,结合奇、偶函数的性质求解g (1). 【参考答案】B【试题解析】根据奇、偶函数的性质,将(1)f -和(1)g -转化(1),(1)f g -为列方程再求解. (f x )是奇函数,(1)(1).f f ∴-=-又()g x 是偶函数, (1)(1)g g ∴-=,(步骤1) (1)(1)2,(1)(1)2f g g f -+=∴-= . ①(步骤2)又(1)(1)4,(1)(1)4f g f g +-=∴+=. ②(步骤3) 由①②,得(1)3g =.(步骤4)5.在锐角三角形ABC 中,角,A B 所对的边长分别为a ,b .若2sin a B =,则角A 等于( ) A .π3 B .π4 C .π6 D .π12【测量目标】正弦定理.【考查方式】给出三角形的边角之间的关系,根据正弦定理,求出其中一个角的大小. 【参考答案】A【试题解析】在△ABC 中,2sin ,2sin a R A b R B ==(R 为△ABC 的圆半径),2sin ,2sin sin a B A B B =∴=sin A ∴=,又△ABC 为锐角三角形,π3A ∴=.6.函数()ln f x x =的图象与函数2()44g x x x =-+的图象的交点个数为 ( ) A .0 B .1 C .2 D .3【测量目标】函数的图像与性质,数形结合思想.【考查方式】给出对数函数和二次函数,考查了两个函数的图像与交点. 【参考答案】C【试题解析】22()44(2)g x x x x =-+=-在同一平面直角坐标系内画出函数()ln f x x =与2()(2)g x x =-的图象(如图).由图可得两个函数的图象有2个交点. 第6题图7.已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于 ( )A B .1 C D 【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法.【考查方式】给出正方体的三视图面积,间接地考查了对正方形三视图的认识,并求出正视图的面积. 【参考答案】D【试题解析】由于该正方形的俯视图是面积为11的矩形,所以8.已知,a b 是单位向量,0∙=a b ,若向量c 满足0--=c a b ,则c 的最大值为 ( )A 1-BC 1D 2 【测量目标】向量的运算律、向量的数量积及模.【考查方式】给出模为零的向量,间接地考查了向量的运算律、数量积及模的综合应用,并求出其中一个向量的模. 【参考答案】C【试题解析】 ,a b 是单位向量, ∴1==a b ,(步骤1)又0∙=a b ,∴⊥a b ,(步骤2)∴+=a b .(步骤3) ∴22222()+21--=-∙+∙++=c a b c c a b αb a b .22()10∴-∙++=c c a b ,22()1∴∙+=+c a b c .(步骤4) ∴21+c 2cos θ=+c a b (θ是c 与+a b 的夹角).(步骤5)∴21+c cos θ=…,∴210-+c ….(步骤6)∴11c 剟,∴c 1.(步骤7) 9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB= ( )A .12 B .14C D【测量目标】几何概型.【考查方式】给出事件发生的概率并与代数相结合,求出几何概型的概率. 【参考答案】D【试题解析】由于满足条件的点P 发生的概率为12,点P 在边CD 上运动,根据图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB AB =(当P 点超过点E 向点D 运动时,PB AB >).设AB x =,过点E 作EF AB ⊥交AB 于点F ,则34BF x =.在Rt FBE △中,222222716EF BE FB AB FB x =-=-=,即EF x =,AD AB ∴=第9题图 二、填空题:本大题共6小题,每小题5分,共30分.10.已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B ð= . 【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算. 【参考答案】{6,8}【试题解析】因为{2,3,6,8},{2,3}U A ==,所以{6,8}U A =ð,所以(){6,8}{2,6,8}{6,8}U A B == ð. 11.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为 .【测量目标】参数方程、两直线的位置关系,转化思想的应用.【考查方式】参数方程与直角坐标方程的互化,间接考查了直线方程与直线位置的关系. 【参考答案】4 【试题解析】由21,x s y s=+⎧⎨=⎩消去参数s ,得21x y =+.由,21x at y t =⎧⎨=-⎩消去参数t ,得2x ay a =+.12l l ∥,21, 4.2a a ∴=∴=12.执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为 . 【测量目标】循环结构的程序框图.【考查方式】程序框图的逻辑关系,并根据程序框图求出a 的值. 第12题图【参考答案】9【试题解析】当1,2a b ==时,8a >不成立,执行a a b =+后a 的值为3.当3,2a b ==时,8a >不成立,执行a a b =+后a 的值为5.当5,a =2b =时,8a >不成立,执行a ab =+后a 的值为7.当7,a =2b =时,8a >不成立,执行a a b =+后a 的值为9.由于98>成立,故输出的a 值为9.13.若变量,x y 满足约束条件28,04,03x y x y +⎧⎪⎨⎪⎩…剟剟则x y +的最大值为______.【测量目标】线性规划知识求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值. 【参考答案】6【试题解析】根据不等式组出其平面区域,令z x y =+,结合直线z x y =+的特征求解.如图,画出不等式组表示的平面区域,平行移动z x y =+经过点(4,2)A 时,z 取最大值6. 第13题图14.设12,F F 是双曲线C 22221x y a b-= ()0,0a b >>的两个焦点.若在C 上存在一点P .使12PF PF ⊥,且1230PF F ∠=,则C 的离心率为___________. 【测量目标】双曲线的定义及其相关性质.【考查方式】给出双曲线上的点到两焦点之间直线的关系,根据双曲线的定义及性质求解其离心率.1【试题解析】如图,利用12PF PF ⊥及1230PF F ∠=,求出a ,c 的关系式. 设点P 在双曲线右支上. 12PF PF ⊥,122F F c =,且1230PFF ∠= ,∴2PF c =,1PF =.又点P 在双曲线右支上,∴12PF PF-1)c =2a =.∴c e a==1=. 第14题图 15.对于12100{,,,}E a a a = 的子集12{,,,}k i i i X a a a = ,定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== .其余项均为0,例如子集23{,}a a 的“特征数列”为0,1,0,0, 0⑴子集135{,,}a a a 的“特征数列”的前三项和等于___________;⑵若E 的子集P 的“特征数列”12100,,,p p p ⋅⋅⋅ 满足11p =,11i i p p ++=,199i剟;E 的子集Q 的“特征数列” 12100,,,q q q ⋅⋅⋅满足11q =,121j j j q q q ++++=,198j剟,则P Q 的元素个数为_________.【测量目标】集合的子集、交集定义的理解以及数列中项、项数概念的理解及应用. 【考查方式】根据给定“特征数列”的新定义,明确其性质,结合集合及数列性质求解. 【参考答案】⑴2 ⑵17【试题解析】子集中元素的个数为“特征数列”中项1的个数,并且1所在的项记为“特征数列”中的第i 项. ⑴子集{}135,,a a a 的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,,0. 故该数列前3项的和为2.⑵E 的子集P 的“特征数列”12100,,,p p p 中,由于11p =,11(199)i i p p i++=剟,因此集合P 中必含有元素1a .又当1i =时,121p p +=,且11p =,故20p =同理可求得31p =,40p =,51p =,60p =,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,,1,0 ,即{}1,35799,,,,.P a a a a a =⋅⋅⋅E 的子集Q 的“特征数列”12100,,,q q q ⋅⋅⋅中,由于11q =,121j j j q q q ++++=(198)j剟,因此集合Q 中必含有元素1a .当1j =时,1231q q q ++=,当2j =时,2341q q q ++=,当3j =时,3451q q q ++=,…故11q =230q q ==,41q =,560q q ==,71q =,….故,所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,,0,1⋅⋅⋅,即{}14710100,,,,,Q a a a a a =⋅⋅⋅.因为1001(1)3n =+-⨯,故34n =,所以集合Q 中有34个元素,其下标为奇数的有17个.因此,P Q {}17131997,,,,,a a a a a =⋅⋅⋅共有17个元素. 三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数π()cos cos()3f x x x =⋅-.⑴求2π()3f 的值; ⑵求使 1()4f x <成立的x 的取值集合.【测试目标】三角函数的定义及性质,三角函数的恒等变换.【考查方式】利用三角函数的恒等变换将函数转化成正弦函数,根据三角函数图像的性质求出x 的范围.【试题解析】(1)ππ()cos (cos cossin sin )33f x x x x =⋅⋅+⋅111(sin 2cos 2)2224x x =⋅+⋅+ 1π1sin(2)264x =++2π13π1()sin3224f ⇒=+14=-,所以2π1()34f =-. (2)由(1)知,1π11()sin(2)2644f x x =++<1π11cos(2)2344x ⇔-+<,即πcos(2)03x -<于是ππ3π2π22π232k x k +<-<+5π11π(π,π),1212x k k k ⇒∈++∈Z .故使1()4f x <成立的x 的取值集合为5π11π,1212x kx x kx k ⎧⎫+<<+∈⎨⎬⎩⎭Z . 17.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,AB AC ==13AA = ,D 是BC 的中点,点E 在棱1BB 上运动.⑴证明:1AD C E ⊥;⑵当异面直线AC ,1C E 所成的角为60时,求三棱柱111C A B E -的体积.【测量目标】空间点、线、面的之间的位置关系,线线、线面、面面垂直与平行 第17题图 的性质与判定,异面直线所成角,三棱柱的体积.【考查方式】根据线面垂直推导到线线垂直,求出三棱柱111E A B C -的高1EB 再求体积. 【试题解析】⑴AB AC = ,D 是BC 的中点,AD BC ∴⊥.(步骤1) ① 又在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面11BB C C ,∴1AD BB ⊥.(步骤2) ② 由①②,得AD ⊥平面11BB C C ,由E 点在棱1BB 上运动,得1C E ⊂平面11BB C C 1C E AD ∴⊥.(步骤3)⑵11CA C A ∥,1160AC E ∴∠=⇒在11Rt AC E △中,1A E =,(步骤4) ⇒在11Rt A B E △中,12EB =.(步骤5) 111ABC A B C - 是直棱柱,1EB ∴是三棱柱111E A B C -的高.(步骤6) 11111111111212333C A B E E A B C A B C V V S EB --==⨯⨯=⨯⨯=△.所以三棱柱111C A B E -的体积是23.(步骤7)18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. ⑴完成下表,并求所种作物的平均年收获量;⑵在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.【测量目标】频数分布表及平均数、简单随机事件的概率.【考查方式】考查识图能力及数据处理能力及分类讨论思想,结合图形解决概率与统计的相关知识,根据图形找出Y 对应的频数.【试题解析】(1) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1). 如下表所示:平均年收获量5124844564234615u ⨯+⨯+⨯+⨯==.(2)在15株中,年收获量至少为48kg 的作物共有246+=个. 所以,15株中任选一个,它的年收获量至少为48kg 的概率60.415p ==. 19.(本小题满分13分)设n S 为数列{}n a 的前项和,已知01≠a ,112n n a a S S -=∙,*n ∈N .⑴求1a ,2a ,并求数列{}n a 的通项公式; ⑵求数列{}n na 的前n 项和.【测量目标】等比数列的公式、性质及数列的前n 项和的公式、性质.【考查方式】利用递推公式1n n n a S S -=-(2)n …消去n S 得到关于n a 的通项公式,并用错位相减法求{}n na 的前n 项和.【试题解析】⑴ 11S a = ∴令1n =,得21112a a a -=.1,011=≠⇒a a (步骤1)令2n =,得2221a S -=21a =+22a ⇒=.(步骤2) 当2n …时,由21nn a S -=,1121n n a S ---=两式相减,得122n n n a a a --=,即12n n a a -=.(步骤3) 于是{}n a 是首项为1,公比为2的等比数列.(步骤4) 因此,12,n na n -*=∈N ,∴数列{}n a 的通项公式为12n n a -=.(步骤5) ⑵由⑴知,12n n na n -=⋅.记数列{}12n n -⋅的前n 项和为n T ,于是21122322n nT n -=+⨯+⨯++⨯ ①2321222322n n T n ⇒=⨯+⨯+⨯++⨯ ② (步骤6)①-②,得21122...22n n nT n --=++++-⋅212n n n =--⋅(1)21,n n T n n *⇒=-⋅+∈N .(步骤7) 20.(本小题满分13分)已知1F ,2F 分别是椭圆E :2215x y +=的左、右焦点1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.⑴求圆C 的方程;⑵设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【测量目标】点关于直线对称点的求法,圆的方程,直线与椭圆的位置关系,直线的方程以及利用函数求最值问题.【考查方式】考查了对称思想在求解实际问题中的应用,求出圆C 的方程.由勾股定理求出弦长b ,根据焦半径的公式求出弦长a ,构造函数判断单调性,求出ab 最大值,求出l 的方程.【试题解析】⑴先求圆C 关于直线20x y +-=对称的圆D ,由题意知,圆D 的直径为12F F ,所以圆D 的圆心是(0,0)D,半径2r c ==,(步骤1) 圆心0,0D ()与圆心C 关于直线02=-+y x 对称(2,2)C ⇒. ⇒圆的方程是22(2)(2)4x y -+-=(步骤2)⑵由⑴知2(2,0)F ,根据题可设直线l 方程为:2,x my m =+∈R . 这时直线l 可被圆和椭圆截得2条弦,符合题意.圆C :4)2()2(22=-+-y x 到直线l的距离d =.(步骤3)⇒在圆中,由勾股定理,得22222444(4)11m b m m =-=++.(步骤4) 直线与椭圆相较于点1122(,),(,)E x y F x y ,联立直线与椭圆方程,得22(5410m y my ++-=)12x x ⇒+12()4m y y =++2445m mm -=++2205m =+,由椭圆的焦半径公式得:12)a x x =+=2215m m +=+2215m ab m +∴=+25m =+(步骤5)令()0f x x =…()y f x ⇒=在[0,3]上单调增,在[3,)+∞单调减,(步骤6) 令()(3)f x f …⇒当23m =时,取ab最大值,这时直线方程为2x =+,所以当取ab最大值,直线方程为2x =+.(步骤7) 21.(本小题满分13分)已知函数21()e 1xx f x x-=+.⑴求()f x 的单调区间;⑵证明:当时1212()()()f x f x x x =≠时,120x x +<.【测量目标】导数的运算,导数研究函数的单调性,导数在不等式证明问题中的应用.【考查方式】考查导数的运算、利用导数求函数单调区间的方法、构造函数判断函数大小的方法.【试题解析】⑴ 函数的定义域,-∞+∞(), 2211()e e 11x x x x f x x x '--⎛⎫'=+ ⎪++⎝⎭222(11)e 1)(1)e 21)x x x x x x x -+-⋅+--⋅=+((22232e 1)x x x x x --+=⋅+((步骤1) 22420∆=-⨯< ,∴当(,0)x ∈-∞时,()0,()f x y f x '>=单调递增,当时(0,)x ∈+∞,()0,()f x y f x '=…单调递减.∴()y f x =在(,0)-∞上单调递增,在(0)x ∈+∞,上单调递减.(步骤2) ⑵当1x <时,由于2101x x ->+,e 0x >,故()0f x >;同理,当1x >时,()0f x <.(步骤3) 当1212()()()f x f x x x =≠时,不妨设12x x <,由⑴知,1(,0)x ∈-∞,2(0,1)x ∈.(步骤4) 下面证明:(0,1)x ∀∈,()()f x f x <-,即证2211e e 11x x x x x x --+<++⇔1(1)e 0e x x x x ---<.(步骤5) 令1()(1)e ex x x g x x +=--,则2()e (e 1)x x g x x -'=--.(步骤6) 当(0,1)x ∈时,()0g x '<,()g x 单调递减,从而()(0)0g x g <=,即1(1)e 0e x xx x +--<. (0,1)x ∴∀∈,()()f x f x <-.(步骤7)而2(0,1)x ∈,22()()f x f x ∴<-,从而12()()f x f x <-.(步骤8) 由于1x ,2(,0)x -∈-∞,()f x 在(,0)-∞上单调递增,所以12x x <-,即120x x +<.(步骤9)。

2013年高考湖北文科数学试题及答案(word解析版)

2013年高考湖北文科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年湖北,文1,5分】已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ð( )(A ){2} (B ){3,4} (C ){1,4,5} (D ){2,3,4,5} 【答案】B 【解析】U B A =ð{2,3,4}{3,4,5}{3,4}=,故选B .(2)【2013年湖北,文2,5分】已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( ) (A )实轴长相等 (B )虚轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有222sin cos 1c θθ=+=,即焦距相等,故选D .(3)【2013年湖北,文3,5分】在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) (A )()p ⌝∨()q ⌝ (B )p ∨()q ⌝ (C )()p ⌝∧()q ⌝ (D )p ∨q【答案】A【解析】因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝,故选A .(4)【2013年湖北,文4,5分】四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-;② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+;④ y 与x 正相关且 4.326 4.578y x =--.其中一定不正确...的结论的序 号是( )(A )①② (B )②③ (C )③④ (D )①④ 【答案】D【解析】在①中,y 与x 不是负相关;①一定不正确;同理④也一定不正确,故选D . (5)【2013年湖北,文5,5分】小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图像是( )(A ) (B ) (C ) (D )【答案】C【解析】可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B ,故选C .(6)【2013年湖北,文6,5分】将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )(A )π12 (B )π6 (C )π3 (D )5π6【答案】B【解析】因为sin ()y x x x =+∈R 可化为2cos()6y x π=-(x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称,故选B .(7)【2013年湖北,文7,5分】已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为( )(A(B(C) (D) 【答案】A【解析】2,1AB =(),5,5CD =(),则向量AB 在向量CD方向上的射影为cos AB CDAB CDθ⋅====,故选A . (8)【2013年湖北,文8,5分】x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )(A )奇函数 (B )偶函数 (C )增函数 (D )周期函数 【答案】D【解析】函数()[]f x x x =-表示实数x 的小数部分,有(1)1[1][]()f x x x x x f x +=+-+=-=,所以函数()[]f x x x =-是以1为周期的周期函数,故选D .(9)【2013年湖北,文9,5分】某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )(A )31200元 (B )36000元 (C )36800元 (D )38400元 【答案】C【解析】根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有2170,03660900x y y x x y x y +≤⎧⎪-≤⎪⎨>>⎪⎪+=⎩, 画出可行域,求出三个顶点的坐标分别为4(7)1A ,,2(5)1B ,,6(15C ,),目标函数 (租金)为16002400k x y =+,如图所示.将点B 的坐标代入其中,即得租金的最小值为:1600524001236800k =⨯+⨯=(元),故选C . (10)【2013年湖北,文10,5分】已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )(A )(,0)-∞ (B )1(0,)2(C )(0,1) (D )(0,)+∞【答案】B【解析】'()ln 12f x x ax =+-,由()(ln )f x x x ax =-由两个极值点,得'()0f x =有两个不等的实数解,即ln 21x ax =-有两个实数解,从而直线21y ax =-与曲线ln y x =有两个交点. 过点01(,-)作ln y x =的切线,设切点为00x y (,),则切线的斜率01k x =,切线方程为011y x x =-. 切点在切线上,则00010x y x =-=,又切点在曲线ln y x =上,则00ln 01x x =⇒=,即切点为10(,).切线方程为1y x =-. 再由直线21y ax =-与曲线ln y x =有两个交点,知直线21y ax =-位于两直线0y =和1y x =-之间,如图所示,其斜率2a 满足:021a <<,解得102a <<,故选B .二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分.(11)【2013年湖北,文11,5分】i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 【答案】23i -+【解析】复数123i z =-在复平面内的对应点123Z -(,),它关于原点的对称点2Z 为2,3-(),所对应的复数为223i z =-+.(12)【2013年湖北,文12,5分】某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为;(2)命中环数的标准差为 .【答案】(1)7;(2)2【解析】(1)()178795491074710+++++++++=;(2)2s =. (13)【2013年湖北,文13,5分】阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i = . 【答案】4【解析】初始值2110m A B i ====,,,,第一次执行程序,得121i A B ===,,,因为A B <不成立,则第二次执行程序,得2224122i A B ==⨯==⨯=,,,还是A B <不成立,第三次执行程序,得3428236i A B ==⨯==⨯=,,,仍是A B <不成立,第四次执行程序,得48216i A ==⨯=,,424B =⨯=,有A B <成立,输出4i =.(14)【2013年湖北,文14,5分】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上 到直线l 的距离等于1的点的个数为k ,则k =_________. 【答案】4【解析】这圆的圆心在原点,半径为5,圆心到直线l 1=,所以圆O 上到直线l 的距离等于1的点有4个,如图A 、B 、C 、D 所示.(15)【2013年湖北,文15,5分】在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 【答案】3 【解析】因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m . 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间[2,4]-分为[]2m -,和[m ,4],且两区间的长度比为5:1,所以3m =.(16)【2013年湖北,文16,5分】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】3【解析】如图示天池盆的半轴截面,那么盆中积水的体积为()22961061031963V ππ=⨯++⨯=⨯(立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为323196()3196⨯=寸(寸)(寸). (17)【2013年湖北,文17,5分】在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(1)图中格点四边形DEFG 对应的,,S N L 分别是 ;(2)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答). 【答案】(1)3, 1, 6;(2)79 【解析】(1)S=S △DFG +S △DEF =1+2=3 ,N=1,L =6.(2)根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 41b c += ①由(1)有63a b c ++= ② 再由格点DEF ∆中,S=2,N=0,L=6,得62b c += ③联立①②③,解得1,1, 1.2b c a ==-=所以当71N =,18L =时,171181792S =+⨯-=.三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程.(18)【2013年湖北,文18,12分】在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sin B C 的值.解:(1)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A =或cos 2A =-(舍去).因为0πA <<,所以π3A =.(2)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.(19)【2013年湖北,文19,13分】已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(1)求数列{}n a 的通项公式;(2)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由. 解:(1)设数列{}n a 的公比为q ,则10a ≠,0q ≠.由题意得243223418S S S S a a a -=-⎧⎨++=-⎩,即23211121(1)18a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩, 解得132a q =⎧⎨=-⎩,故数列{}n a 的通项公式为13(2)n n a -=-.(2)由(1)有3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤-当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥. 综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .(20)【2013年湖北,文20,13分】如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算.已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.解:(1)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2.又121A A d =, 122B B d =,123C C d =,且123d d d <<.因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点,即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (2)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥.而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥.由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高,因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形,即123(2)8ahV S h d d d =⋅=++估中.又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(21)【2013年湖北,文21,13分】设0a >,0b >,已知函数()1ax bf x x +=+. (1)当a b ≠时,讨论函数()f x 的单调性;(2)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f, f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x的取值范围.解:(1)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(2)(i )(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+,即2(1)()[b f f f a =.①所以(1),()bf f f a 成等比数列.因2a b +≥,即(1)f f ≥.由①得()b f f a ≤. (ii )由(i )知()bf H a=,f G =.故由()H f x G ≤≤,得()()(b f f xf a ≤≤.② 当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤即x的取值范围为,b a ⎡⎢⎣;当a b <时,1ba>,从而b a >由()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x的取值范围为b a ⎤⎥⎦. (22)【2013年湖北,文22,14分】如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(1)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.解:依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(1)解法一:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ.解法二:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(2)解法一:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==,所以12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=.由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-,||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x = 根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x = ②1(1)λλλ+=-.③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解 得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>+所以当11λ<≤+l ,使得12S S λ=;当1λ> 轴不重合的直线l 使得12S S λ=.解法二:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d =12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A B x x BD AB x x λ+==-,所以11A B x x λλ+=-.由点(,)A A A x kx ,(,)B B B x kx 分别在C 1, C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a mλ--+=, 依题意0A B x x >>,所以22A B x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<.从而111λλλ+<<-,解得1λ>+所以当11λ<≤+l ,使得12S S λ=;当1λ>+l 使得12S S λ=.。

2013年高考北京文科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =I ( ) (A ){0} (B ){}10-,(C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-I =,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C )5 (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-=的离心率大于2的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率1me +=,由已知1>2m +,故1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则PB =u u u r,PD a =u u u r ,1PD ==u u u u r,11PC PA a ==,PC PA ==,1PB u u u r ,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0(13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12log 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,. (14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+u u u r u u u r u u u r (12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+u u u r u u u r u u u r ,()2,1AB =u u u r ,()1,2AC =u u u r .设()P x y ,,则()1,1AP x y =-+u u u r.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C ,21214325A B (-)+==,两直线距离2521d ==+,∴11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且2()f α=,求α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+2sin(4)4x π=+所以,最小正周期242T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max 2()2f x =. (2)因为22()sin(4)4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,空气质量指数日期14日13日12日11日10日9日8日7日6日1日037798615812116021740160220143572586100150200250所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,.解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或 互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,L L ,n a .对1,2,3,,1i n =-L ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,L L ,n a 的最小值记为i B ,i i i d A B =-. (1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,L L ,1n d -是等比数列;(3)设1d ,2d ,L L ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,L L ,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-L 时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-L 时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,L L ,1n d -是等比数列. (3)解法一:若1d ,2d ,L L ,1n d -是公差大于0的等差数列,则1210n d d d -<<<<L , 1a ,2a ,L L ,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,L L ,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-L ),则 显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项.综上,()2,3,,1k k k k n d A B a a k n =-=-=-L ,k k n a d a ∴=+,也即1a ,2a ,L L ,1n a -是等差数列. 解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤Q ,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。

2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2013年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =A .{1,4}B .{2,3}C .{9,16}D .{1,2}2.212i 1i +(-)= A .1-1-i 2 B .1-1+i 2 C .11+i 2 D .11-i 23.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12B .13C .14D .164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为 A .y=14x ± B .y=13x ± C .y=12x ± D .y=±x 5.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是A .p ∧qB .﹁p ∧qC .p ∧﹁qD .﹁ p ∧﹁q6.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n7.执行下面的程序框图,如果输入的t ∈[-1,3],则输出的S 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF 的面积为A .2B .C .D .49.函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为10.已知锐角ΔABC 的内角A,B,C 的对边分别为a,b,c , 23cos 2A +cos2A =0, a =7,c =6,则b =A .10B .9C .8D .511.某几何体的三视图如图所示,则该几何体的体积为A .16+8πB .8+8πC .16+16πD .8+16π12.已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax , 则a 的取值范围是A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b . 若b ·c =0,则t =____.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.已知H 是球O 的直径AB 上一点,AH :HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211{}n n a a -+的前n 项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求ΔBCF外接圆的半径.23 .(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1[,)22a-时,f(x)≤g(x),求a的取值范围.2013年高考全国1卷文科数学参考答案12.解:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2- 3.解:依题所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,满足条件的事件数是2种,所以所求的概率为13. 4.解:依题2254c a =. ∵c 2=a 2+b 2,∴2214b a =,∴12b a =. ∴渐近线方程为12y x =± 5.解:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0, ∴h (x )=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.6.解:121(1)/133n n n a a q S a q -==--=3-2a n 7.解:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4]8.解:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=9.解:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π(0,)2时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,可得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.解:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π(0,)2,∴cos A =15. ∵cos A =236491265b b +-=⨯,解得b =5或135b =-(舍).故选D. 11.解:该几何体为一个半圆柱的上面后方放一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16. 所以体积为16+8π. 故选A 12.解:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B,C;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立;若x ≤0,则以y =ax 与y =x 2-2x 相切为界限,联立y =ax 与y =x 2-2消去y 得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.二、填空题:13.2 1 4.3 15.9π216.5- 13.解:依题a ·b =111122⨯⨯=,b ·c = t a ·b +(1-t )b 2 =0,∴12t +1-t =0. ∴t =2. 14.解:作出可行域如图所示.画出初始直线l 0:2x -y =0,l 0平移到l ,当直线l 经过点A (3,3)时z 取最大值,z =2×3-3=3.15.解:如图,π·EH 2=π,∴EH =1,设球O 的半径为R ,则AH =23R , OH =3R . 在RtΔOEH 中,R 2=22()+13R , ∴R 2=98. ∴S 球=4πR 2=9π2. 16. 解:∵f (x )=sin x -2cos x x +φ),其中tan φ=-2,φ是第四象限角.当x +φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ=2k π+π2-φ(k ∈Z ), ∴cos θ=πcos()2ϕ-=sin φ=5-. 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 则11330,5105,a d a d +=⎧⎨+=⎩ …2分 解得a 1=1,d =-1. …4分 故{a n }的通项公式为a n =2-n . …6分(2)由(1)知21211n n a a -+=1111()321222321n n n n =-(-)(-)--, …8分 从而新数列的前n 项和为111111[(11)(1)()][1]23232122112n n T n n n n =--+-++-=--=---- …12分 18.解: (1)设A 药数据的平均数为x B 药观测数据的平均数为y . x =(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3 +2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9 +3.0+3.1+3.2+3.5)/20=2.3,…3分 y =+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)/20=1.6. …6分由以上计算结果可得x >y ,因此可看出A 药的疗效更好.(2)绘制茎叶图如图: … 9分 从茎叶图可以看出,A 药疗效数据有710的叶集中在茎“2.”,“3.”上,而B 药疗效数据有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.… 12分19. (1)证:取AB 的中点O ,连结OC ,OA 1,A 1B .由于AB =AA 1,∠BAA 1=60°,故ΔAA 1B 为等边三角形,所以OA 1⊥AB . 又CA =CB ,所以OC ⊥AB . …3分因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,所以AB ⊥A 1C . …6分(2)解:依题ΔABC 与ΔAA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C,则A 1C 2=OC 2+OA 12,故OA 1⊥OC ,又OA 1⊥AB ,OC ∩AB =O ,所以OA 1⊥平面ABC , …9分OA 1为三棱柱ABC -A 1B 1C 1的高. 又ΔABC 的面积S △ABC故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. …12分20.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 依题f (0)=4,f ′(0)=4. …3分故b =4,a +b =8. 从而a =4,b =4. …6分(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=2(x +2)·(2e x -1).令f ′(x )=0得,x =-ln 2或x =-2. …8 分所以在(-∞,-2)与(-ln2,+∞)上,f ′(x )>0;f (x )单调递增.在(-2,-ln 2) 上,f ′(x )<0. f (x )单调递减. …10 分当x =-2时,函数f (x )取得极大值,极大值为f (-2)=-4e -2+4. …12 分21.解:(1)由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R .依题, |PM |=R +1. |PN |=3-R . 所以|PM |+|PN |=4. …3 分由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点的椭圆(左顶点除外),且a =2,c =1,∴b∴C 的方程为22=143x y +(x ≠-2). …6 分 (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. …7 分若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|= …8 分若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,可设l 与x 轴的交点为Q (m ,0),由1||222||1QP R m QM r m-===--即,解得m =-4. 所以Q (-4,0),故可设l :y =k (x +4).由l 与圆M=1,解得k=4±.当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0, 解得x=47-±,所以|AB|x 2-x 1|=187. …10分 当k=4-时,由图形的对称性可知|AB |=187. 综上,|AB|=|AB |=187. …12 分 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,所以BE =CE . 又因为DB ⊥BE ,所以DE 为直径,所以∠DCE =90°,由勾股定理可得DB =DC . …5分(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG. 设DE 的中点为O ,连结BO , 则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故RtΔBCF. …10分 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 将x=ρcos θ, y=ρsin θ代入整理得C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. …5分(2)C 2的普通方程为x 2+y 2-2y =0. 联立C 1的方程x 2+y 2 -8x -10y +16=0,解得交点为(1,1)与(0,2),其极坐标分别为π)(2,)42π与. …10分 24.解:(1)当a =-2时,不等式f (x )>g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. …5分(2)当a >-1,且x ∈1[,)22a -时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1[,)22a -都成立.故2a -≥a -2,即a ≤43. 从而a 的取值范围是4(1,]3-. …10分。

2013年高考文科数学试卷--湖南卷(含答案)

2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=i ·(1+i)(i 为虚数单位)在复平面上对应的点位于___ ____ A .第一象限 B .第二象限 C .第三象限 D .第四象限2.“1<x <2”是“x <2”成立的______ A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。

为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D ____A .9B .10C .12D .134.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于____ A .4 B .3 C .2 D .15.在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2sinB=3b ,则角A 等于______ A .3πB .4πC .6πD .12π6.函数f (x )=㏑x 的图像与函数g (x )=x 2-4x+4的图像的交点个数为______ A.0 B.1 C.2 D.37.已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于______A .B.1 8.已知a,b 是单位向量,a ·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为____ C ____1-12+9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为.21,则ADAB=____A.12 B.14二、填空题:本大题共6小题,每小题5分,共30分。

2013年普通高等学校招生全国统一考试全国卷新课标1数学文科

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) =( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校夏季招生全国统一考试数学文史类
(全国卷I 新课标)
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).
A .{1,4}
B .{2,3}
C .{9,16}
D .{1,2} 2.(2013课标全国Ⅰ,文2)
2
12i
1i +(-)=( ).
A .
11i 2-- B .11+i 2- C .11+i 2 D .11i
2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对
值为2的概率是( ).
A .12
B .13
C .14
D .16
4.(2013课标全国Ⅰ,文4)已知双曲线C :22
22=1x y a b
-(a >0,b >0)
C 的渐近线方程为( ).
A .y =14x ±
B .y =13x ±
C .y =1
2x
± D .y =±x
5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x
<3x
;命题q :∃x ∈R ,x 3
=1-x 2
,则下列命题中为真命题的是( ).
A .p ∧q
B .⌝p ∧q
C .p ∧⌝q
D .⌝p ∧⌝q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为
2
3
的等比数列{a n }的前n 项和为S n ,则( ).
A .Sn =2an -1
B .Sn =3an -2
C .Sn =4-3an
D .Sn =3-2an
7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).
A .[-3,4]
B .[-5,2]
C .[-4,3]
D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2
=的焦点,P
为C 上一点,若|PF |
=,则△POF 的面积为( ).
A .2 B

..4 9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).
10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2
A +cos 2A =0,a =7,c =6,则b =( ).
A .10
B .9
C .8
D .
5
11.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).
A .16+8π
B .8+8π
C .16+16π
D .8+16π
12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,
ln(1),0.x x x x x ⎧-+≤⎨+>⎩

|f (x )|≥ax ,则a 的取值范围是( ).
A .(-∞,0]
B .(-∞,1]
C .[-2,1]
D .[-2,0]
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分.
13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.
14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件13,
10,
x x y ≤≤⎧⎨
-≤-≤⎩则z =2x -y 的最大值
为______.
15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.
16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.
(1)求{a n }的通项公式; (2)求数列21211
n n a a -+⎧
⎫⎨
⎬⎩⎭
的前n 项和.
18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.
20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.
21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于点D.
23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线
C1的参数方程为
45cos,
55sin
x t
y t
=+


=+

(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立
极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)当a=-2时,求不等式f(x)<g(x)的解集;
(2)设a>-1,且当x∈
1
,
22
a
⎡⎫
-⎪
⎢⎣⎭时,f(x)≤g(x),求a的取值范围.。

相关文档
最新文档