高考数学总复习 基础知识名师讲义 第二章 第五节指数与指数函数 理(1)
第5节 指数与指数函数--2025年高考数学复习讲义及练习解析

第五节指数与指数函数1.根式(1)如果x n =a ,那么01x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做02根式,其中n 叫做根指数,a 叫做被开方数.(3)(na )n =03a.当n 为奇数时,na n =04a ;当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂正数的正分数指数幂,a mn =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂,a-m n =1a m n=1n a m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于050,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =06a r +s ;(a r )s =07a rs ;(ab )r =08a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R ,a 是底数.(2)指数函数的图象与性质a>10<a <1图象定义域R 值域09(0,+∞)性质图象过定点10(0,1),即当x=0时,y =1当x >0时,11y >1;当x <0时,120<y <1当x <0时,13y >1;当x >0时,140<y <1在(-∞,+∞)上是15增函数在(-∞,+∞)上是16减函数(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数.(2)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1)1(3)如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.(4)指数函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.1.概念辨析(正确的打“√”,错误的打“×”)(1)4(-4)4=-4.()(2)2a·2b=2ab.()(3)na n=(na)n=a.()(4)6(-3)2=(-3)13.()(5)函数y=2x-1是指数函数.()答案(1)×(2)×(3)×(4)×(5)×2.小题热身(1)(人教A必修第一册习题4.1T1改编)下列运算中正确的是()A.(2-π)2=2-πB.a-1a=-aC.(m 14n-38)8=m2n3D.(x3-2)3+2=x9答案C解析对于A,因为2-π<0,所以(2-π)2=π-2,故A错误;对于B,因为-1a>0,所以a<0,则a-1a=-(-a)·1-a=--a,故B错误;对于C,因为(m14n-38)8=(m14)8·(n-38)8=m2n3,故C正确;对于D,因为(x3-2)3+2=x9-2=x7,故D错误.(2)已知指数函数y=f(x)的图象经过点(-1,2),那么这个函数也必定经过点()21C.(1,2)答案D(3)函数y=2x+1的图象是()答案A(4)若函数y=a x(a>0,且a≠1)在区间[0,1]上的最大值与最小值之和为3,则a的值为________.答案2考点探究——提素养考点一指数幂的运算例1(1)(2024·湖北宜昌高三模拟)已知x,y>03x-34y12-14x14y-1y__________.答案-10y解析原式=3x -34y12-3 10 x -34y-12=-10y.(2)-0.752+6-2-23=________.答案1解析+136×-23=32-+136×2=32-916+136×94=1.【通性通法】【巩固迁移】-12·(4ab-1)3(0.1)-1·(a3·b-3)12(a>0,b>0)=________.答案85解析原式=2·432a 32b -3210a 32b-32=85.2.若x 12+x -12=3,则x 2+x -2=________.答案47解析由x 12+x -12=3,得x +x -1=7,再平方得x 2+x -2=47.考点二指数函数的图象及其应用例2(1)(2024·安徽合肥八中月考)函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是()A.54,3,13,12 B.3,54,13,12C.12,13,3,54 D.13,12,54,3答案C解析由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>12>13,故选C.(2)(2024·江苏南京金陵高三期末)若直线y =3a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围为________.答案解析当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<3a <1,∴0<a <13;当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<3a <1,∴0<a <13,结合a >1可得a 无解.综上可知,a【通性通法】(1)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.【巩固迁移】3.(2024·广东深圳中学高三摸底)函数y =e -|x |(e 是自然对数的底数)的大致图象是()答案C解析y =e -|x |,x ≥0,x <0,易得函数y =e -|x |为偶函数,且图象过(0,1),y =e -|x |>0,函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,故C 符合题意.故选C.4.(多选)若实数x ,y 满足4x +5x =5y +4y ,则下列关系式中可能成立的是()A .1<x <yB .x =yC .0<x <y <1D .y <x <0答案BCD解析设f (x )=4x +5x ,g (x )=5x +4x ,则f (x ),g (x )都是增函数,画出函数f (x ),g (x )的图象,如图所示,根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9,依题意,不妨设f (x )=g (y )=t ,则x ,y 分别是直线y =t 与函数y =f (x ),y =g (x )图象的交点的横坐标.当t >9时,若f (x )=g (y ),则x >y >1,故A 不正确;当t =9或t =1时,若f (x )=g (y ),则x =y =1或x =y =0,故B 正确;当1<t <9时,若f (x )=g (y ),则0<x <y <1,故C 正确;当t <1时,若f (x )=g (y ),则y <x <0,故D 正确.故选BCD.考点三指数函数的性质及其应用(多考向探究)考向1比较指数式的大小例3(2023·天津高考)若a =1.010.5,b =1.010.6,c =0.60.5,则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >b >cD .b >a >c答案D解析解法一:因为函数f (x )=1.01x 是增函数,且0.6>0.5>0,所以1.010.6>1.010.5>1,即b >a >1.因为函数φ(x )=0.6x 是减函数,且0.5>0,所以0.60.5<0.60=1,即c <1.综上,b >a >c .故选D.解法二:因为函数f (x )=1.01x 是增函数,且0.6>0.5,所以1.010.6>1.010.5,即b >a .因为函数h (x )=x 0.5在(0,+∞)上单调递增,且1.01>0.6>0,所以1.010.5>0.60.5,即a >c .综上,b >a >c .故选D.【通性通法】比较两个指数式的大小时,尽量化成同底或同指.(1)当底数相同,指数不同时,构造同一指数函数,然后利用指数函数的性质比较大小.(2)当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;或构造同一幂函数,然后利用幂函数的性质比较大小.(3)当底数不同,指数也不同时,常借助1,0等中间量进行比较.【巩固迁移】5.(2023·福建泉州高三质检)已知a -13,b -23,c ()A .a >b >cB .c >b >aC .c >a >bD .b >a >c答案C解析-13-23,y 在R 上是增函数,-13-23,即c >a >b .考向2解简单的指数方程或不等式例4(1)(多选)若4x -4y <5-x -5-y ,则下列关系式正确的是()A .x <yB .y -3>x -3C.x >y <3-x答案AD解析由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f (x )=4x -5-x ,则f (x )<f (y ).因为g (x )=4x ,h (x )=-5-x 在R 上都是增函数,所以f (x )在R 上是增函数,所以x <y ,故A 正确;因为G (x )=x -3在(0,+∞)和(-∞,0)上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y 在R 上是减函数,且x <y ,,<3-x ,故D 正确.故选AD.(2)已知实数a ≠1,函数f (x )x ,x ≥0,a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.答案12解析当a <1时,41-a =21,解得a =12;当a >1时,2a -(1-a )=4a -1,无解.故a 的值为12.【通性通法】(1)解指数方程的依据:a f (x )=a g (x )(a >0,且a ≠1)⇔f (x )=g (x ).(2)解指数不等式的思路方法:对于形如a x >a b (a >0,且a ≠1)的不等式,需借助函数y =a x 的单调性求解,如果a 的取值不确定,则需分a >1与0<a <1两种情况讨论;而对于形如a x >b 的不等式,需先将b 转化为以a 为底的指数幂的形式,再借助函数y =a x 的单调性求解.【巩固迁移】6.函数y =(0.5x-8)-12的定义域为________.答案(-∞,-3)解析因为y =(0.5x -8)-12=10.5x -8,所以0.5x -8>0,则2-x >23,即-x >3,解得x <-3,故函数y =(0.5x-8)-12的定义域为(-∞,-3).7.当0<x <12时,方程a x =1x (a >0,且a ≠1)有解,则实数a 的取值范围是________.答案(4,+∞)解析依题意,当x ,y =a x 与y =1x 的图象有交点,作出y =1x的部分图象,如图所示,>1,12>2,解得a>4.考向3与指数函数有关的复合函数问题例5(1)函数f(x)=3-x2+1的值域为________.答案(0,3]解析设t=-x2+1,则t≤1,所以0<3t≤3,故函数f(x)的值域为(0,3].(2)函数yx-+17的单调递增区间为________.答案[-2,+∞)解析设t>0,又y=t2-8t+17=(t-4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.≤4,得x≥-2,>4,得x<-2,而函数t在R上单调递减,所以函数yx-+17的单调递增区间为[-2,+∞).【通性通法】涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【巩固迁移】8.(多选)已知定义在[-1,1]上的函数f(x)=-2·9x+4·3x,则下列结论中正确的是() A.f(x)的单调递减区间是[0,1]B.f(x)的单调递增区间是[-1,1]C.f(x)的最大值是f(0)=2D.f(x)的最小值是f(1)=-6答案ACD解析设t=3x,x∈[-1,1],则t=3x是增函数,且t∈13,3,又函数y=-2t2+4t=-2(t-1)2+2在13,1上单调递增,在[1,3]上单调递减,因此f(x)在[-1,0]上单调递增,在[0,1]上单调递减,故A正确,B错误;f(x)max=f(0)=2,故C正确;f(-1)=109,f(1)=-6,因此f (x )的最小值是f (1)=-6,故D 正确.故选ACD.9.若函数f (x )2+2x +3,19,则f (x )的单调递增区间是________.答案(-∞,-1]解析∵y 是减函数,且f (x ),19,∴t =ax 2+2x +3有最小值2,则a >0且12a -224a =2,解得a =1,因此t =x 2+2x +3的单调递减区间是(-∞,-1],故f (x )的单调递增区间是(-∞,-1].课时作业一、单项选择题1.(2024·内蒙古阿拉善盟第一中学高三期末)已知集合A ={x |32x -1≥1},B ={x |6x 2-x -2<0},则A ∪B =()A.12,-12,12-12,+∞答案D解析集合A ={x |32x -1≥1}=12,+B ={x |6x 2-x -2<0}={x |(3x -2)(2x +1)<0}=-12,所以A ∪B -12,+故选D.2.(2024·山东枣庄高三模拟)已知指数函数y =a x 的图象如图所示,则y =ax 2+x 的图象顶点横坐标的取值范围是()-12,-12,+∞答案A解析由图可知,a ∈(0,1),而y =ax 2+x =-14a (a ≠0),其顶点横坐标为x =-12a,所以-12a∈∞,故选A.3.已知函数f (x )=11+2x ,则对任意实数x ,有()A .f (-x )+f (x )=0B .f (-x )-f (x )=0C .f (-x )+f (x )=1D .f (-x )-f (x )=13答案C解析f (-x )+f (x )=11+2-x +11+2x =2x 1+2x +11+2x =1,故A 错误,C 正确;f (-x )-f (x )=11+2-x-11+2x =2x 1+2x -11+2x =2x -12x +1=1-22x +1,不是常数,故B ,D 错误.故选C.4.已知a =243,b =425,c =513,则()A .c <b <aB .a <b <cC .b <a <cD .c <a <b答案A 解析因为a =243=423,b =425,所以a =423>425=b ,因为b =425=(46)115=4096115,c =513=(55)115=3125115,所以b >c .综上所述,a >b >c .故选A.5.(2024·江苏连云港海滨中学高三学情检测)若函数f (x )=a x (a >0,且a ≠1)在[-1,2]上的最大值为4,最小值为m ,则实数m 的值为()A.12B.1142C.116D.12或116答案D解析当a >1时,f (x )=a x 在[-1,2]上单调递增,则f (x )max =f (2)=a 2=4,解得a =2,此时f (x )=2x ,m =f (x )min =2-1=12;当0<a <1时,f (x )=a x 在[-1,2]上单调递减,所以f (x )max =f (-1)=a -1=4,解得a =14,此时f (x ),m =f (x )min =f (2)=116.综上所述,实数m 的值为12或116.故选D.6.(2023·新课标Ⅰ卷)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上单调递增,而函数f (x )=2x (x -a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).故选D.7.(2023·辽宁名校联盟联考)已知函数f (x )满足f (x )x -2,x >0,-2-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)答案B解析当x >0时,-x <0,f (-x )=2-2x =-(2x -2)=-f (x );当x <0时,-x >0,f (-x )=2-x-2=-(2-2-x )=-f (x ),则函数f (x )为奇函数,所以f (a )>f (-a )=-f (a ),即f (a )>0,作出函数f (x )的图象,如图所示,由图象可得,实数a 的取值范围为(-1,0)∪(1,+∞).故选B.8.(2024·福建漳州四校期末)已知正数a ,b ,c 满足2a -1=4,3b -1=6,4c -1=8,则下列判断正确的是()A .a <b <cB .a <c <bC .c <b <aD .c <a <b答案A解析由已知可得a =2,b =2,c =2,则a ,b ,c 可分别看作直线y =2-x 和y ,y ,y 的图象的交点的横坐标,画出直线y =2-x 和y ,y ,y 的大致图象,如图所示,由图象可知a <b <c .故选A.二、多项选择题9.下列各式中成立的是()=n 7m 17(n >0,m >0)B .-1234=3-3C.39=33D .[(a 3)2(b 2)3]-13=a -2b -2(a >0,b >0)答案BCD解析=n 7m7=n 7m -7(n >0,m >0),故A 错误;-1234=-3412=-313=3-3,故B 正确;39=332=332=33,故C 正确;[(a 3)2(b 2)3]-13=(a 6b 6)-13=a -2b -2(a >0,b >0),故D 正确.故选BCD.10.已知函数f (x )=3x -13x +1,下列说法正确的是()A .f (x )的图象关于原点对称B .f (x )的图象关于直线x =1对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案AC解析由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,所以A 正确;因为f (0)=0,f (2)=45,f (0)≠f (2),所以B 错误;设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+y y -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.故选AC.三、填空题11.0.25-12-(-2×160)2×(2-23)3+32×(4-13)-1=________.答案3解析原式=[(0.5)2]-12-(-2×1)2×2-2+213×2231-4×14+2=2-1+2=3.12.不等式10x -6x -3x ≥1的解集为________.答案[1,+∞)解析由10x -6x -3x ≥1,≤1.令f (x ),因为y =,y ,y 均为R 上的减函数,则f (x )在R 上单调递减,且f (1)=1,所以f (x )≤f (1),所以x ≥1,故不等式10x -6x -3x ≥1的解集为[1,+∞).13.若函数f (x )=|2x -a |-1的值域为[-1,+∞),则实数a 的取值范围为________.答案(0,+∞)解析令g (x )=|2x -a |,由题意得g (x )的值域为[0,+∞),又y =2x 的值域为(0,+∞),所以-a <0,解得a >0.14.已知函数f (x )x -a ,x ≤0,x +a ,x >0,关于x 的不等式f (x )≤f (2)的解集为I ,若I(-∞,2],则实数a 的取值范围是________.答案(-∞,-1)解析当a ≥0时,结合图象可得f (x )≤f (2)的解集是(-∞,2],不符合题意.当a <0时,2-a>2a ,由于f (x )在区间(-∞,0]和(0,2]上单调递增,所以要使f (x )≤f (2)的解集I 满足I(-∞,2],则2-a >f (2)=22+a ,解得a <-1.综上,实数a 的取值范围是(-∞,-1).四、解答题15.(2024·辽宁沈阳东北育才学校高三月考)已知函数f (x )是定义在R 上的奇函数,且函数g (x )=f (x )+e x 是定义在R 上的偶函数.(1)求函数f (x )的解析式;(2)求不等式f (x )≥34的解集.解(1)∵g (x )=f (x )+e x 是定义在R 上的偶函数,∴g (-x )=g (x ),即f (-x )+e -x =f (x )+e x ,∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴-f (x )+e -x =f (x )+e x ,∴f (x )=e -x -e x2.(2)由(1),知e -x -e x 2≥34,得2e -x -2e x -3≥0,即2(e x )2+3e x -2≤0,令t =e x ,t >0,则2t 2+3t -2≤0,解得0<t ≤12,∴0<e x ≤12,∴x ≤-ln 2,∴不等式f (x )≥34的解集为(-∞,-ln 2].16.(2024·山东菏泽高三期中)已知函数f (x )3+x.(1)解关于x 的不等式f (x 3+ax +1,a ∈R ;(2)若∃x ∈(1,3),∀m ∈(1,2),f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0,求实数n 的取值范围.解(1)3+x3+ax +1,得x 3+x <x 3+ax +1,即(1-a )x <1.当1-a =0,即a =1时,不等式恒成立,则f (x 3+ax +1的解集为R ;当1-a >0,即a <1时,x <11-a,则f (x 3+ax +1|x 当1-a <0,即a >1时,x >11-a,则f (x 3+ax +1|x 综上所述,当a =1时,不等式的解集是R ;当a <1时,|x当a >1时,|x (2)因为y =x 3和y =x 均为增函数,所以y =x 3+x 是增函数,因为y 是减函数,所以f (x )是减函数,则g (x )=f (x )-x 是减函数.由f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0可得,g (2mnx -4)=f (2mnx -4)-(2mnx -4)≤f (x 2+nx )-(x 2+nx )=g (x 2+nx ),所以2mnx -4≥x 2+nx ,所以2mn -n ≥x +4x ,又x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时,不等式取等号,即∀m ∈(1,2),2mn -n ≥4恒成立,由一次函数性质可知n -n ≥4,n -n ≥4,解得n ≥4,所以实数n 的取值范围是[4,+∞).17.(多选)已知函数f (x )=a |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是()A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案ABD解析∵函数f (x )=a |+b 的图象过原点,∴a +b =0,即b =-a ,则f (x )=a |-a ,又f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-|+2,故A 正确;由于f (x )为偶函数,且f (x )在[0,+∞)上单调递增,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于f (x )=2-|在(-∞,0)上单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;|∈(0,1],∴f (x )=-|+2∈[0,2),故D 正确.故选ABD.18.(多选)已知实数a ,b 满足3a =6b ,则下列关系式可能成立的是()A .a =bB .0<b <aC .a <b <0D .1<a <b答案ABC解析由题意,在同一坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,所以A 可能成立;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,所以B 可能成立;当0<k <1时,若3a =6b =k ,则a <b <0,所以C 可能成立.故选ABC.19.(2023·广东珠海一中阶段考试)对于函数f (x ),若其定义域内存在实数x 满足f (-x )=-f (x ),则称f (x )为“准奇函数”.若函数f (x )=e x -2e x +1,则f (x )________(是,不是)“准奇函数”;若g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,则实数m 的取值范围为________.答案不是-54,-1解析假设f (x )为“准奇函数”,则存在x 满足f (-x )=-f (x ),∴e -x -2e -x +1=-e x -2e x +1有解,整理得e x =-1,显然无解,∴f (x )不是“准奇函数”.∵g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,∴2-x+m =-2x -m 在[-1,1]上有解,∴2m =-(2x +2-x)在[-1,1]上有解,令2x =t ∈12,2,∴2m t ∈12,2上有解,又函数y =t +1t在12,,在(1,2]上单调递增,且t =12时,y =52,t =2时,y =52,∴y min =1+1=2,y max =52,∴y =t +1t 的值域为2,52,∴2m ∈-52,-2,解得m ∈-54,-1.。
【高考数学总复习】(第5讲)指数及指数函数(33页)

1
22
2. 2
2.定义域为[1,1],由单调性可知
( 1 )1 ≤ ( 1 ) 1x2 ≤ ( 1 )0,即 1 ≤ y ≤ 1.
33
3
3
3.(1)函数的定义域为 R.函数的值域为(0, 1 ]. 256
(2)函数 y ( 1 )x26 x17在[3, )上是减函数. 2
同理可知 y ( 1 )x26 x17在(, 3]上是增函数. 2
(2)由图象指出其单调区间.
解 (2)由图象知函数 y (1)|x1|在 , 1上是增
3
函数,在 1, 上是减函数.
数形结合思想
21
回顾反思
(1)思想方法:指数型函数的作图一般从最基本的 (2)指知数能函提数升入:手带,有通绝过对平值移的,伸函缩数,图对象称,变一换般得有到两. 种方法,一是去掉绝对值作图,二是不去绝对值, 如 y f ( x )可依据函数是偶函数,先作出函数 f ( x)( x ≥ 0)的图象; x 0时的图象只需将函数 f ( x)( x ≥ 0)的图象关于 y 轴对称即可;又如函数 y f ( x) 的图象,可先作出函数 y f ( x)的图 象,然后保留 x 轴上方图象,将下方图象关于 x 轴 对称即可得函数 y f ( x) 的图象.
1
1
3
2
14
解 原式 [(2 3)2 ]2 - (33 )6 (24 )4 - 2 (23 )3 25 25
2
3
1
32
23
2 22
14
25 5
2 3 3 8 8 2 4.
(2
1
新高考2023版高考数学一轮总复习第2章第5讲指数与指数函数课件

1
2
D,左边=a3 ÷a-3 =a1=a,左边=右边.故选 D.
3.(必修 1P107T2 改编)设 a>0,将
a2 表示成分数指数幂,其结
3
a·
a2
果是
( C)
A.a12
B.a56
C.a76
D.a32
[解析] 由题意得
a2
=a2-12
-1 3
=a67
,故选 C.
3
a·
a2
4.(必修 1P109T4 改编)化简4 16x8y4(x<0,y<0)=__-__2_x_2y___.
当 n 为偶数时,正数的 n 次方根有__两__个___,
它们互为__相__反__数___
±n a
零的 n 次方根是零
负数没有偶次方 根
(2)两个重要公式 __a__,n为奇数,
①n an=|a|=____-a____a_a_≥a<00,, n为偶数.
②(n a)n=__a__(注意 a 必须使n a有意义).
3.f(x)=ax 与 g(x)=1ax(a>0 且 a≠1)的图象关于 y 轴对称.
题组一 走出误区
1.判断下列结论是否正确(请在括号中打“√”或“×”)
4
(1)
-44=-4.
m
(2)分数指数幂 an
可以理解为mn 个 a 相乘.
m
m
(3)a-n =-an (n,m∈N*).
(× ) (× ) (× )
考点突破·互动探究
考点一
例1
指数与指数运算——自主练透 (1)(多选题)下列命题中不正确的是
A.n an=a
B.a∈R,则(a2-a+1)0=1
(广东专用)高考数学总复习 第二章第五节 指数与指数函数课件 理

17
已知函数 f(x)=(13)ax2-4x+3. (1)若 a=-1 时,求函数 f(x)的单调增区间; (2)如果函数 f(x)有最大值 3,求实数 a 的值.
【解】 (1)当 a=-1 时,f(x)=(13)-x2-4x+3, 令 g(x)=-x2-4x+3=-(x+2)2+7, 由于 g(x)在(-2,+∞)上递减,y=(13)x 在 R 上是减函数, ∴f(x)在(-2,+∞)上是增函数,即 f(x)的单调增区间是(- 2,+∞).
9
指数幂的化简与求值
化简:(1)a41ba123b4a23-a31bb213(a>0,b>0); (2)(-287)-23+(0.002)-12-10( 5-2)-1+( 2- 3)0. 【思路点拨】 将根式化为分数指数幂,负分数指数化为正分数 指数,然后运用幂的运算性质进行运算.
10
【尝试解答】
C.关于 x 轴对称
D.关于 y 轴对称
【解析】 ∵f(x)=4x2+x 1=2x+2-x, ∴f(-x)=2-x+2x=f(x),
∴函数 f(x)为偶函数,其图象关于 y 轴对称.
【答案】 D
7
3.(2012·广州六校联考)已知函数 g(x)=2x,且有 g(a)g(b)
=2,若 a>0 且 b>0,则 ab 的最大值为( )
1
1
A.2 B.4
C.2 D.4
【解析】 由 g(a)·g(b)=2,得 2a+b=2, ∴a+b=1,且 a>0,b>0, ∴ab≤(a+2 b)2=14,当且仅当 a=b=12时取等号, ∴ab 的最大值为14.
高考总复习数学(理科)第二章 第五节 指数与指数函数

【例 2】 若函数 f(x)=13ax2+2x+3的值域是0,19, 则 f(x)的单调递增区间是________.
解析:令 g(x)=ax2+2x+3, 由于 f(x)的值域是0,19,所以 g(x)的值域是[2,+
解析:画出曲线|y|=2x+1 与直线 y=b 的图象如图所 示,由图象可知,如果|y|=2x+1 与直线 y=b 没有公共点 则 b 应满足的条件是 b∈[-1,1].
答案:[-1,1]
考点 3 指数函数的性质及应用(多维探究)
角度 指数函数的单调性
【例 1】 (2019·河南八市第一次测评)设函数 f(x)=
3
2)6÷( 3)6
=23+2-89=196.
(2)原式=1 6040015-5223-28713-1
1 5 2
1
=14035×-2×3-3233-1
=52-32-1=0.
第二章 函数、导数及其应用
第五节 指数与指数函数
最新考纲
1.了解指数函数模型的实际背 景. 2.理解有理数指数幂的含义, 了解实数指数幂的含义,掌握 幂的运算. 3.理解指数函数的概念,理解 指数函数的单调性,掌握指数 函数图象通过的特殊点. 4.知道指数函数是一类重要的 函数模型.
考情索引
2018·上海卷, T11 2017·北京卷, T8 2017·全国卷Ⅰ, T11 2016·全国卷Ⅲ, T6
核心素
1.逻辑 2.数学 3.直观
1.根式
n
(1)概念:式子 a叫做_根__式__,其中 n 叫做根指数, 叫做被开方数.
n
高三数学一轮复习 第二章 第五节 指数与指数函数课件 理 新人教A版

2 ax2+1
-
2 ax1+1
=
(ax21(+a1x)1-(aaxx22)+1).
第二十八页,共36页。
∴当a>1时,ax2>ax1>0, 从而(cóng ér)ax1+1>0,ax2+1>0,ax1-ax2<0, ∴f(x1)-f(x2)<0,f(x)为R上的增函数. 当0<a<1时,ax1>ax2>0, 从而(cóng ér)ax1+1>0,ax2+1>0,ax1-ax2>0, ∴f(x1)>f(x2),f(x)为R上的减函数.
画指数函数y=ax(a>0且a≠1)的图象,应抓住三个关 键点:(1,a),(0,1),(-1,1a).
第三十一页,共36页。
从近两年高考看,本节多以指数函数为载体,考查指数 运算和指数函数的图象(tú xiànɡ)与性质的应用;题型以选择 题、填空题为主,中低档难度,预计2014年仍延续这一特 点,对指数函数与二次函数结合的题目,重点注意参数的计 算与比较大小.
第五页,共36页。
【提示】 图中直线x=1与它们(tā men)图象交点的纵 坐标即为它们(tā men)各自底数的值,即c1>d1>1>a1> b1,∴c>d>1>a>b,即无论在y轴的左侧还是右侧,底数 按逆时针方向变大.
第六页,共36页。
2.函数y=ax,y=a|x|(a>0,a≠1)二者之间有何关系? 【提示】 函数y=a|x|与y=ax不同,前者(qián zhě)是 一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相 同.
∴ab的最大值为14.
【答案】
1 4
第十一页,共36页。
化简:(1)(a14ba123)b243a-ab132 b13(a>0,b>0); (2)(-287)-23+(0.002)-12-10( 5-2)-1+( 2- 3)0. 【思路(sīlù)点拨】 将根式化为分数指数幂,负分数指 数化为正分数指数,底数为小数的化成分数,然后运用幂的 运算性质进行运算.
高考数学总复习 基础知识名师讲义 第二章 第五节指数与指数函数 理
高考数学总复习 基础知识名师讲义 第二章 第五节指数与指数函数 理错误!知识梳理 一、指数 1.根式.(1)定义:如果x n=a 那么 x 叫做a 的n 次方根(其中n >1,且n ∈N *),式子na 叫做根式,这里的n 叫做根指数,a 叫做被开方数.(2)性质.①当n 为奇数时,na n=a ;当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.②负数没有偶次方根. ③零的任何次方根都是零. 2.幂的有关概念. (1)正整数指数幂:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -p =1ap (a ≠0,p ∈N *).(4)正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1). (5)负分数指数幂:a -mn =1a mn=1na m(a >0,m ,n ∈N *,且n >1).(6)零的正分数指数幂为零,零的负分数指数幂没有意义. 3.有理数指数幂的性质.(1)a r a s =a s +r(a >0,r ,s ∈Q ).(2)(a r )s =a sr(a >0,r ,s ∈Q ).(3)(ab )r =a r b r(a >0,b >0,r ∈Q ). 二、指数函数的定义1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点.3.了解指数函数模型的实际背景,知道指数函数是重要的函数模型.形如y=a x(a>0且a≠1)的函数叫做指数函数,其中x是自变量,定义域是(-∞,+∞),值域是(0,+∞).三、指数函数的图象和性质基础自测1.化简 (a,b为正数)的结果是( )A.baB.aC.abD.B解析:原式=a13b83a3a23b43=a53b43a23b43=a,故选B.答案:B2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( ) A.(-∞,-1)∪(1,+∞)B.(-2,2)C.(-∞,2)D.(-2,-1)∪(1,2)解析:0<a2-1<1,1<a2<2,解得-2<a<-1或1<a< 2.故选D. 答案:D3.函数y =4x +2x +1-3的值域是________.解析:定义域为R ,因为y =4x +2x +1-3=(2x )2+2·2x +1-4=(2x +1)2-4,因为2x >0,所以(2x +1)2-4>1-4=-3.所以y =4x +2x +1-3的值域为{y |y >-3}. 答案:{y |y >-3}4.若x >0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=______.解析:(2x 14+332)(2x 14-332)-4x -12(x -x 12)=4x 12-33-4x 12+4=-23.答案:-231.(2013·北京卷)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e -x +1D .e-x -1解析:与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1.故选D. 答案:D2.已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解析:(1)f ′(x )=(x -k +1)e x .令f ′()x =0,得x =k -1. f (x )与f ′(x )随x 的变化情况见下表:x (-∞,k -1)k -1 (k -1,+∞)f ′(x ) -0 +f (x )-e k -1↗所以,f (x )的单调递减区间是(-∞,k -1),单调递增区间是(k -1,+∞).(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1]上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上所述,f (x )min=⎩⎪⎨⎪⎧-k ,k ≤1,-e k -1,1<k <2,(1-k )e ,k ≥2.答案:见解析1.已知a =52,函数f (x )=a x,若实数m ,n 满足f (m )>f (-n ),则m ,n 满足的关系为( )A .m +n <0B .m +n >0C .m >nD .m <n解析:f (x )=⎝⎛⎭⎫52x是R 上的增函数,实数m ,n 满足f (m )>f (-n ),故m >-n ,即m +n >0.故选B.答案:B2.若函数f (x )=e -(x -μ)2的最大值是m ,且f (x )是偶函数,则m +μ=______.解析:∵函数f (x )=e -(x -μ)2的最大值是1,∴m =1.又∵f (x )是偶函数,∴μ=0.∴m +μ=1.答案:1。
高三数学一轮复习第二章函数第5课时指数与指数函数课件
考点二 指数函数的图象及应用 1.指数函数 (1)概念:函数y=ax(a>0,且a≠1)叫做指数函数,其中指数x是自变量,定义域 是_R_,_a_是底数. (2)形如y=kax, y=ax+k(k∈R,且k≠0,如果是y=kax,k≠1;a>0且a≠1)的函 数叫做指数型函数,不是指数函数.
(3)指数函数的图象与性质
√
√
(3)设a,b为实数,a>0,a≠1.已知函数y=ax+b的 图象如图所示,求a,b的取值范围.
考点三 指数函数的性质及应用 (1)比较大小问题:常化为同底或同指,利用指数函数的单调性,图象或1,0等 中间量进行比较. (2)简单的指数方程或不等式的求解问题:解决此类问题应利用指数函数的单调 性,要特别注意底数a的取值范围,并在必要时进行分类讨论.
项目
a>1
0<a<1
图象
定义域
R
值域
_(0_,__+__∞__)_
过定点_(_0_,__1_) ,即x=0时,y=_1
性质
当x>0时,_y_>_1_; 当x<0时,_0_<_y_<_1___
当x<0时,__y_>_1__; 当x>0时,_0_<_y_<_1_
在(-∞,+∞)上是增__函数
在(-∞,+∞)上是减__函数
√
(-3,1) 24
第二章 函数 第5课时 指数与指数函数
x 根式 a
a
0
3.指数幂的运算性质ቤተ መጻሕፍቲ ባይዱ(1)aras=_a_r+_s_; (2)(ar)s=_a_rs_; (3)(ab)r=a_r_b_r. (其中a>0,b>0,r,s∈Q).
高考数学一轮复习第二章函数的概念及其基本性质2.5指数与指数函数课件理
A.a<b<c
B.b<a<c
C.c<b<a
D.b<c<a
(2)已知函数 y=kx+a 的图象如图所示,则函数 y=ax+k 的图象可能是( )
(3)若方程|3x-1|=k 有两个解,则实数 k 的取值范围是______(0_,_1_)____.
[解析] (1)∵x>1,∴c>logxx2=2,又 1<a=20.3<2,0<b=0.32<1,则 b<a<c.故选 B. (2)由函数 y=kx+a 的图象可得 k<0,0<a<1,又因为与 x 轴交点的横坐标大于 1,所以 k>-1,所以- 1<k<0.函数 y=ax+k 的图象可以看成把 y=ax 的图象向右平移-k 个单位得到的,且函数 y=ax+k 是减函数, 故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,应该选 B. (3)曲线 y=|3x-1|与直线 y=k 的图象如图所示,由图象可知,如果 y=|3x-1|与直线 y=k 有两个公共 点,则实数 k 应满足 0<k<1.
叫做指数函数,其中指数 x 是自变量,函数的定义域是 R,a 是底数.
说明:形如 y=kax,y=ax+k(k∈R 且 k≠0,a>0 且 a≠1)的函数叫做指数型函数.
(2)指数函数的图象和性质
底数
a>1
0<a<1
图 象
函数的定义域为 R,值域为 (0,+∞)
性 函数图象过定点 (0,1) ,即 x=0 时,y=1
(2)a
m nBiblioteka =man1 = n am (a>0,m、n∈N*,n>1).
2024届新高考一轮总复习人教版 第二章 第5节 指数与指数函数 课件(40张)
分数指数幂 负分数指数幂
1 规定 a-mn= 1m=__n_a_m__(a>0,m,n∈N*,n>1)
an
0 的分数指数幂 0 的正分数指数幂等于_0__,0 的负分数指数幂没有意义
4.有理数指数幂的运算性质 (1)aras=__a_r+__s __(a>0,r,s∈Q). (2)(ar)s=__a_r_s _(a>0,r,s∈Q). (3)(ab)r=__a_rb_r__(a>0,b>0,r∈Q). 5.指数函数定义 一般地,函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,定义域是 _R___.
在(-∞,+∞)上是_减__函__数___
[必记结论] 指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
第二章 函 数
[课标解读] 1.了解指数幂的拓展过程,掌握指数幂的运算性质. 2.了解指数函数 的实际意义,理解指数函数的概念. 3.能画具体指数函数的图象,探索并理解指数函 数的单调性与特殊点.
备考第 1 步——梳理教材基础,落实必备知识 1.根式及相关概念 (1)a 的 n 次方根定义 如果_x_n_=__a__,那么 x 叫做 a 的 n 次方根,其中 n>1,且 n∈N*. (2)根式:式子n a叫做根式,这里 n 叫做_根__指__数___,a 叫做_被__开__方__数___.
备考第 2 步——突破核心考点,提升关键能力 考点 1 指数幂的运算 【考点集训】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 指数与指数函数
错误!
知识梳理 一、指数 1.根式.
(1)定义:如果x n
=a 那么 x 叫做a 的n 次方根(其中n >1,且n ∈N *
),式子n
a 叫做根式,这里的n 叫做根指数,a 叫做被开方数.
(2)性质.
①当n 为奇数时,n
a n
=a ;当n 为偶数时,n
a n
=|a |=⎩⎪⎨⎪
⎧
a ,a ≥0,-a ,a <0.
②负数没有偶次方根. ③零的任何次方根都是零. 2.幂的有关概念. (1)正整数指数幂:
(2)零指数幂:a 0
=1(a ≠0).
(3)负整数指数幂:a -p =1a
p (a ≠0,p ∈N *
).
(4)正分数指数幂:a m
n =n
a m (a >0,m ,n ∈N *
,且n >1). (5)负分数指数幂:a -
m
n =
1
a m
n
=
1
n
a m
(a >0,m ,n ∈N *
,且n >1).
(6)零的正分数指数幂为零,零的负分数指数幂没有意义. 3.有理数指数幂的性质.
(1)a r a s =a s +r
(a >0,r ,s ∈Q ).
(2)(a r )s =a sr
(a >0,r ,s ∈Q ).
(3)(ab )r =a r b r
(a >0,b >0,r ∈Q ). 二、指数函数的定义
形如 y =a x
(a >0且a ≠1)的函数叫做指数函数,其中x 是自变量,定义域是(-∞,+∞),值域是(0,+∞).
三、指数函数的图象和性质
1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
2.理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点.
3.了解指数函数模型的实际背景,知道指数函数是重要的函数模型.
基础自测
1.化简 (a,b为正数)的结果是( )
A.b
a
B.a
C.a
b
D.B
解析:原式=
a
1
3b
8
3a
3
a
2
3b
4
3
=
a
5
3b
4
3
a
2
3b
4
3
=a,故选B.
答案:B
2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( ) A.(-∞,-1)∪(1,+∞)
B.(-2,2)
C.(-∞,2)
D.(-2,-1)∪(1,2)
解析:0<a2-1<1,1<a2<2,解得-2<a<-1或1<a< 2.故选D. 答案:D
3.函数y=4x+2x+1-3的值域是________.
解析:定义域为R ,因为y =4x +2x +1-3=(2x )2+2·2x +1-4=(2x +1)2-4,因为2x >0,所以(2x +1)2-4>1-4=-3.
所以y =4x +2x +1-3的值域为{y |y >-3}. 答案:{y |y >-3}
4.若x >0,则(2x 1
4+33
2)(2x 1
4-33
2)-4x -
1
2(x -x 1
2)=______.
解析:(2x 14+332)(2x 14-332)-4x -12(x -x 12)=4x 12-33-4x 1
2+4=-23. 答案:-23
1.(2013·北京卷)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x
关于y 轴对称,则f (x )=( )
A .e x +1
B .e x -1
C .e -x +1
D .e
-x -1
解析:与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.
∴f (x )=e -(x +1)=e -x -1.故选D. 答案:D
2.已知函数f (x )=(x -k )e x
. (1)求f (x )的单调区间;
(2)求f (x )在区间[0,1]上的最小值.
解析:(1)f ′(x )=(x -k +1)e x .令f ′()x =0,得x =k -1. f (x )与f ′(x )随x 的变化情况见下表:
x (-∞,k -1)
k -1 (k -1,+∞)
f ′(x ) -
0 +
f (x )
-e k -1
↗
(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1]上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.
综上所述,f (x )min
=⎩⎪⎨⎪
⎧
-k ,k ≤1,-e k -1
,1<k <2,(1-k )e ,k ≥2.
答案:见解析
1.已知a =
52
,函数f (x )=a x
,若实数m ,n 满足f (m )>f (-n ),则m ,n 满足的关系为( )
A .m +n <0
B .m +n >0
C .m >n
D .m <n
解析:f (x )=⎝⎛⎭
⎫52x
是R 上的增函数,实数m ,n 满足f (m )>f (-n ),故m >-n ,即m +n >0.故选B.
答案:B
2.若函数f (x )=e -(x -μ)2
的最大值是m ,且f (x )是偶函数,则m +μ=______.
解析:∵函数f (x )=e -(x -μ)2的最大值是1,∴m =1.又∵f (x )是偶函数,∴μ=0.∴m +μ=1.
答案:1。