高中数学函数相关知识点整理.doc
高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:〔1〕定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. 〔2〕函数的三要素:定义域、值域、对应法那么〔3〕相同函数的判断方法:①表达式相同〔与表示自变量和函数值的字母无关〕;②定义域一致 (两点必须同时具备)2、定义域:〔1〕定义域定义:函数)(x f 的自变量x 的取值范围。
〔2〕确定函数定义域的原那么:使这个函数有意义的实数的全体构成的集合。
〔3〕确定函数定义域的常见方法:①假设)(x f 是整式,那么定义域为全体实数②假设)(x f 是分式,那么定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③假设)(x f 是偶次根式,那么定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥假设)(x f 为复合函数,那么定义域由其中各根本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. 〔4〕求抽象函数〔复合函数〕的定义域函数)(x f 的定义域为[0,1]求)(2x f 的定义域 函数)12(-x f 的定义域为[0,1〕求)31(x f -的定义域3、值域 :〔1〕值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
〔2〕确定值域的原那么:先求定义域 〔3〕常见根本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数〔正余弦、正切〕〔4〕确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
高中数学函数知识点梳理

高中數學函數知識點梳理1. .函數的單調性(1)設[]2121,,x x b a x x ≠∈⋅那麼[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函數; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是減函數. (2)設函數)(x f y =在某個區間內可導,如果0)(>'x f ,則)(x f 為增函數;如果0)(<'x f ,則)(x f 為減函數.注:如果函數)(x f 和)(x g 都是減函數,則在公共定義域內,和函數)()(x g x f +也是減函數;如果函數)(u f y =和)(x g u =在其對應的定義域上都是減函數,則複合函數)]([x g f y =是增函數. 2. 奇偶函數的圖象特徵奇函數的圖象關於原點對稱,偶函數的圖象關於y 軸對稱;反過來,如果一個函數的圖象關於原點對稱,那麼這個函數是奇函數;如果一個函數的圖象關於y 軸對稱,那麼這個函數是偶函數.注:若函數)(x f y =是偶函數,則)()(a x f a x f --=+;若函數)(a x f y +=是偶函數,則)()(a x f a x f +-=+.注:對於函數)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,則函數)(x f 的對稱軸是函數2b a x +=;兩個函數)(a x f y +=與)(x b f y -= 的圖象關於直線2b a x +=對稱. 注:若)()(a x f x f +--=,則函數)(x f y =的圖象關於點)0,2(a 對稱;若)()(a x f x f +-=,則函數)(x f y =為週期為a 2的週期函數.3. 多項式函數110()n n n n P x a x a x a --=+++的奇偶性多項式函數()P x 是奇函數⇔()P x 的偶次項(即奇數項)的係數全為零.多項式函數()P x 是偶函數⇔()P x 的奇次項(即偶數項)的係數全為零.23.函數()y f x =的圖象的對稱性(1)函數()y f x =的圖象關於直線x a =對稱()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函數()y f x =的圖象關於直線2a b x +=對稱()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 兩個函數圖象的對稱性(1)函數()y f x =與函數()y f x =-的圖象關於直線0x =(即y 軸)對稱. (2)函數()y f mx a =-與函數()y f b mx =-的圖象關於直線2a b x m +=對稱. (3)函數)(x f y =和)(1x f y -=的圖象關於直線y=x 對稱.25.若將函數)(x f y =的圖象右移a 、上移b 個單位,得到函數b a x f y +-=)(的圖象;若將曲線0),(=y x f 的圖象右移a 、上移b 個單位,得到曲線0),(=--b y a x f 的圖象.5. 互為反函數的兩個函數的關係a b f b a f =⇔=-)()(1.27.若函數)(b kx f y +=存在反函數,則其反函數為])([11b x f k y -=-,並不是)([1b kx f y +=-,而函數)([1b kx f y +=-是])([1b x f ky -=的反函數. 6. 幾個常見的函數方程 (1)正比例函數()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指數函數()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)對數函數()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)冪函數()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函數()cos f x x =,正弦函數()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 7. 幾個函數方程的週期(約定a>0)(1))()(a x f x f +=,則)(x f 的週期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,則)(x f 的週期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,則)(x f 的週期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,則)(x f 的週期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,則)(x f 的週期T=5a ;(6))()()(a x f x f a x f +-=+,則)(x f 的週期T=6a. 8. 分數指數冪(1)m n a=(0,,a m n N *>∈,且1n >). (2)1mn mn a a-=(0,,a m n N *>∈,且1n >).(2)當n a =;當n,0||,0a a a a a ≥⎧==⎨-<⎩. 10. 有理指數冪的運算性質(1)(0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注:若a >0,p 是一個無理數,則a p 表示一個確定的實數.上述有理指數冪的運算性質,對於無理數指數冪都適用.33.指數式與對數式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.對數的換底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推論 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 11. 對數的四則運算法則若a >0,a ≠1,M >0,N >0,則(1)log ()log log a a a MN M N =+; (2)log log log aa a M M N N=-; (3)log log ()n a a M n M n R =∈. 注:設函數)0)((log )(2≠++=a c bx ax x f m ,記ac b 42-=∆.若)(x f 的定義域為R ,則0>a ,且0<∆;若)(x f 的值域為R ,則0>a ,且0≥∆.對於0=a 的情形,需要單獨檢驗.12. 對數換底不等式及其推論若0a >,0b >,0x >,1x a≠,則函數log ()ax y bx = (1)當a b >時,在1(0,)a 和1(,)a+∞上log ()ax y bx =為增函數. (2)(2)當a b <時,在1(0,)a 和1(,)a +∞上log ()ax y bx =為減函數. 推論:設1n m >>,0p >,0a >,且1a ≠,則(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<.。
高中函数知识点总结(最新最全)

高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。
(完整word版)高中数学公式及知识点总结大全(精华版)(word文档良心出品)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中数学知识点总结最全版doc

高中数学知识点总结最全版doc一、集合与函数概念1. 集合的含义、表示方法以及集合与集合之间的关系;2. 函数的概念、函数的性质、函数的运算;3. 函数的图像、函数的变换(平移、对称、伸缩);4. 常见函数类型:一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。
二、数列1. 数列的概念及表示;2. 等差数列、等比数列的定义、通项公式、求和公式;3. 数列的极限概念及其计算;4. 数列的实际应用问题。
三、三角函数1. 三角函数的定义、性质;2. 三角恒等变换;3. 三角函数的图像及性质;4. 解三角形问题:正弦定理、余弦定理。
四、平面向量1. 向量的概念、线性运算;2. 向量的坐标表示、数量积;3. 向量的数量积的计算及其应用;4. 向量的夹角及其计算。
五、立体几何1. 空间几何体的性质;2. 空间直线与平面的位置关系;3. 立体图形的表面积与体积计算;4. 空间向量在立体几何中的应用。
六、解析几何1. 直线与圆的方程;2. 圆锥曲线(椭圆、双曲线、抛物线)的标准方程;3. 曲线与方程的关系;4. 坐标变换。
七、概率与统计1. 随机事件与概率的定义;2. 概率的计算方法:加法公式、乘法公式、条件概率、贝叶斯公式;3. 随机变量及其分布列、期望值、方差;4. 统计量的概念、样本及其分布、估计理论。
八、数学归纳法1. 数学归纳法的原理;2. 完全归纳法与不完全归纳法;3. 数学归纳法的应用。
九、复数1. 复数的概念、代数形式和几何意义;2. 复数的运算;3. 复数的极限、导数和积分。
十、数学思想方法1. 函数与方程的思想;2. 转化与化归的思想;3. 数形结合的思想;4. 统计与概率的思想。
结语高中数学是一门基础学科,涵盖了丰富的知识点和多样的解题方法。
掌握这些知识点不仅能够帮助学生在学术上取得优异的成绩,更能培养他们的逻辑思维能力和解决问题的能力。
通过系统地学习和练习,学生可以逐步提高自己的数学素养,为未来的学习和生活打下坚实的基础。
高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
高中数学知识点函数(最全)

高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A B对数函数指数函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义 设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2,⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。
高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点归纳 11.函数的定义函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设a、b是非空的数集,如果按照某种确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a->b为从集合a到集合b的一个函数,记作y=f(x),x∈a2.函数的定义域函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式求函数的解析式一般有三种种情况:(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。
掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
高中数学函数知识点归纳 2(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数相关知识点整理
函数在高中数学中的地位不可动摇,考生必须掌握函数相关知识点,下面是我给大家带来的,希望对你有帮助。
高中数学反比例函数知识点
形如 y=k/x(k为常数且k0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为|k|。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(xm)m 为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)
高中数学对数函数知识点
对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,
因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
高中数学指数函数知识点
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
可以得到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。