二次函数图像与性质培优题及答案

合集下载

二次函数的图像和性质练习题(含答案)

二次函数的图像和性质练习题(含答案)

1.下列函数中是二次函数的为 A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x2D .y =x 3+2x -32.抛物线y =2x 2+1的的对称轴是 A .直线x =14B .直线x =14-C .x 轴D .y 轴3.抛物线y =-(x -4)2-5的顶点坐标和开口方向分别是 A .(4,-5),开口向上B .(4,-5),开口向下C .(-4,-5),开口向上D .(-4,-5),开口向下4.抛物线y =-x 2不具有的性质是 A .对称轴是y 轴B .开口向下C .当x <0时,y 随x 的增大而减小D .顶点坐标是(0,0)5.已知点(-1,2)在二次函数y =ax 2的图象上,那么a 的值是 A .1B .2C .12D .-126.已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是 A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>07.当函数y =(x -1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是 A .x >0B .x <1C .x >1D .x 为任意实数8.对于二次函数2(3)4y x =--的图象,给出下列结论:①开口向上;②对称轴是直线3x =-;③顶点坐标是34--(,);④与x 轴有两个交点.其中正确的结论是 A .①②B .③④C .②③D .①④9.一种函数21(1)53m y m x x +=-+-是二次函数,则m =__________.10.把二次函数y =x 2-4x +3化成y =a (x -h )2+k 的形式是__________.11.将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为__________. 12.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C (5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.13.已知:抛物线2y x bx c =-++经过(30)B ,、(03)C ,两点,顶点为A . 求:(1)抛物线的表达式;(2)顶点A 的坐标.14.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.15.在平面直角坐标系中,将抛物线y=-12x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是A.y=-12x2-x-32B.y=-12x2+x-12C.y=-12x2+x-32D.y=-12x2-x-1216.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+a的图象大致是A.B.C D.17.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()(0)a b m am b m +>+≠,其中正确的结论有A .2个B .3个C .4个D .5个18.二次函数y =x 2-2x -3,当m -2≤x ≤m 时函数有最大值5,则m 的值可能为__________. 19.若直线y =ax -6与抛物线y =x 2-4x +3只有一个交点,则a 的值是__________.20.如图,已知二次函数y =ax 2+bx +8(a ≠0)的图象与x 轴交于点A (-2,0),B (4,0),与y 轴交于点C .(1)求抛物线的解析式及其顶点D 的坐标; (2)求△BCD 的面积;(3)若直线CD 交x 轴与点E ,过点B 作x 轴的垂线,交直线CD 与点F ,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).21.(2018·四川成都)关于二次函数2241y x x =+-,下列说法正确的是A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-322.(2018·湖北黄冈)当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为A .-1B .2C .0或2D .-1或223.(2018·江苏连云港)已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t(s )满足函数表达式h =-t 2+24t +1.则下列说法中正确的是 A .点火后9 s 和点火后13 s 的升空高度相同 B .点火后24 s 火箭落于地面 C .点火后10 s 的升空高度为139 m D .火箭升空的最大高度为145 m24.(2018·山东德州)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是A .B .C D .25.(2018·湖北恩施州)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断中:①abc >0;②b 2-4ac >0;③9a -3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤5a -2b +c <0. 其中正确的个数有A.2 B.3 C.4 D.5 26.(2018·江苏淮安)将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是__________.27.(2018·山东淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.1.【答案】B2.【答案】D【解析】∵抛物线y =2x 2+1中一次项系数为0,∴抛物线的对称轴是y 轴.故选D . 3.【答案】B【解析】∵抛物线的解析式为2(4)5y x =---, 10a =-<,∴抛物线的开口向下.抛物线2()y a x h k =-+的顶点坐标为(h ,k )∴抛物线2(4)5y x =---的顶点坐标为(4,-5).故选B . 4.【答案】C5.【答案】B【解析】∵点(-1,2)在二次函数2y ax =的图象上,∴2(1)2a ⋅-=,解得2a =.故选B . 6.【答案】C【解析】∵抛物线y =ax 2(a >0)的对称轴是y 轴,∴A (-2,y 1)关于对称轴的对称点的坐标为(2,y 1).又∵a >0,0<1<2,且当x =0时,y =0,∴0<y 2<y 1.故选C . 7.【答案】B【解析】对称轴是:x =1,且开口向上,如图所示,∴当x <1时,函数值y 随着x 的增大而减小.故选B . 8.【答案】D【解析】∵a =1>0,∴开口向上,①正确;∵x -3=0,∴对称轴为x =3,②错误;∵顶点坐标为:(3,-4),故③错误;∴在第四象限,所以与x 轴有两个交点,故④正确.故选D . 9.【答案】-1【解析】根据二次函数的二次项的次数是2,二次项的系数不等于零,可由21(1)53my m x x +=-+-是二次函数,得m 2+1=2且m −1≠0,解得m =-1,m =1(不符合题意要舍去).故答案为:-1. 10.【答案】y =(x -2)2-1【解析】y =x 2-4x +3=(x 2-4x +4)-4+3=(x -2)2-1,故答案为:y =(x -2)2-1. 11.【答案】y =2(x +2)2+2【解析】将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为y =2(x -1+3)2+2,即y =2(x +2)2+2.故答案为:y =2(x +2)2+2.13.【解析】(1)把(30)B ,、(03)C ,代入2y x bx c =-++,得9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩.故抛物线的解析式为223y x x =-++.(2)223y x x =-++=2(21)31x x --+++2(1)4x =--+, 所以顶点A 的坐标为(1,4).14.【解析】(1)∵二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点,∴42011645a b c c a b c ++=⎧⎪=⎨⎪++=⎩, ∴a =12,b =-12,c =-1, ∴二次函数的解析式为y =12x 2-12x -1. (2)当y =0时,得12x 2-12x -1=0,解得x 1=2,x 2=-1, ∴点D 坐标为(-1,0). (3)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4. 15.【答案】A【解析】将抛物线y =-12x 2向下平移1个单位长度,得y =-12x 2-1,再向左平移1个单位长度,得到y =-12x +(1)2-1,即y =-12x 2-x -32.故选A .16.【答案】C【解析】∵二次函数图象开口向上,∴a >0,∵对称轴为直线x =-02ba,∴b <0,∴一次函数y =bx +a的图象经过一、二、四象限,故选C . 17.【答案】B18.【答案】0或4【解析】令y =5,可得x 2-2x -3=5,解得x =-2或x =4,所以m -2=-2或m =4,即m =0或4.故答案为:0或4. 19.【答案】2或-10【解析】由题意可知:x 2−4x +3=ax −6,整理得x 2−(4+a )x +9=0,∵只有一个交点,∴Δ=(4+a )2−4×1×9=0,解得a 1=2,a 2=−10.故答案为:2或-10.(3)如图,∵C(0,8),D(1,9),代入直线解析式y=kx+b,∴89bk b=⎧⎨+=⎩,解得18kb=⎧⎨=⎩,21.【答案】D【解析】∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误;该函数的对称轴是直线x=-1,故选项B错误;当x<-1时,y随x的增大而减小,故选项C错误;当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.22.【答案】D【解析】当y=1时,有x2-2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=-1,故选D.23.【答案】D【解析】A、当t=9时,h=136;当t=13时,h=144;所以点火后9 s和点火后13 s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24 s火箭离地面的高度为1 m,此选项错误;C、当t=10时h=141 m,此选项错误;D、由h=-t2+24t+1=-(t-12)2+145知火箭升空的最大高度为145 m,此选项正确.故选D.24.【答案】B【解析】A.由一次函数y=ax-a的图象可得:a<0,此时二次函数y=ax2-2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0.故选项正确;C.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上.故选项错误.故选B.25.【答案】B26.【答案】y=x2+2【解析】二次函数y=x2-1的顶点坐标为(0,-1),把点(0,-1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.27.【答案】2【解析】如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.。

2019-2020二次函数培优专题——图像与性质(真题含答案)

2019-2020二次函数培优专题——图像与性质(真题含答案)

2019-2020二次函数培优专题——图像与性质(真题含答案) 1.如图,函数y=ax2−2x+1和y=ax−a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.2.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为−1,则一次函数y=(a−b)x+b的图象大致是()A.B.C.D.3.(已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.44.若二次函数y=ax2+bx+a2−2(a,b为常数)的图象如图,则a的值为( (A .1B .√2C .−√2D .-25.函数y=ax 2+2ax+m(a(0)的图象过点(2(0),则使函数值y(0成立的x 的取值范围是( ) A .x((4或x(2 B .(4(x(2 C .x(0或x(2 D .0(x(26.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 7.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①(b ac ->②(4a 2b c 0++>③(3a c >-④(()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A.①②③B.②③⑤C.②③④D.③④⑤8.抛物线y=ax2+bx+c的对称轴为直线x=(1,部分图象如图所示,下列判断中:①abc(0(②b2(4ac(0(③9a(3b+c=0(④若点(﹣0.5(y1((((2(y2)均在抛物线上,则y1(y2(⑤5a(2b+c(0(其中正确的个数有()A.2B.3C.4D.59.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc>0;③4a−2b+c>0;④a+c>0,其中正确结论的个数为()A.1个B.2个C.3个D.4个10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1(n),且与x的一个交点在点(3(0)和(4(0)之间,则下列结论:①a-b+c(0(②3a+b=0(③b2=4a(c-n((④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.411.如图,抛物线y=ax2+bx+c交x轴于点((1(0(和(4(0(,那么下列说法正确的是((A.ac(0 B.b2(4ac(0C.对称轴是直线x=2.5 D.b(012.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(12,y1),点N(52,y2)是函数图象上的两点,则y1<y2;④﹣35<a<﹣25.其中正确结论有()A.1个B.2个C.3个D.4个13.已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(−1,0),(0,3),其对称轴在y 轴右侧,有下列结论:①抛物线经过点(1,0)(②方程ax 2+bx +c =2有两个不相等的实数根;③−3<a +b <3.其中,正确结论的个数为( (A .0B .1C .2D .314.如图,已知二次函数y=(x +1)2﹣4,当﹣2≤x≤2时,则函数y 的最小值和最大值()A .﹣3和5B .﹣4和5C .﹣4和﹣3D .﹣1和515.已知二次函数y =a (x +3)2+b 有最大值0,则a,b 的大小关系为( (A .a < bB .a =bC .a > bD .大小不能确定16.对于抛物线y (ax 2((2a (1)x (a (3,当x (1时,y (0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限17.若二次函数y((a(1)x 2(3x(a 2(1的图象经过原点,则a 的值必为( (A .1或-1B .1C .(1D .018.二次函数2y ax bx c =++的图象如图所示,下列结论中正确的是( )①0abc <②240b ac -<③2a b >④22()a c b +<A .1个B .2个C .3个D .4个19.如图,边长为2的正(ABC 的边BC 在直线l 上,两条距离为l 的平行直线a 和b 垂直于直线l(a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记(ABC 夹在a 和b 之间的部分的面积为s ,则s 关于t 的函数图象大致为( )A .B .C .D .20.如图是在同一平面直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大致图象,正确的是 ( )A .B .C .D . 21.已知一次函数y=b ax+c 的图象如图,则二次函数y=ax 2+bx+c 在平面直角坐标系中的图象可能是( )A .B .C .D .22.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .23.如图,已知抛物线y1=(x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2(①当x(2时,M=y2(②当x(0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).24.抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在抛物线上求一点P,使S△PAB=S△ABC,写出P点的坐标;(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.25.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A((1(0(B(3(0)两点,与y 轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A(P(C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.26.已知二次函数y=2(x−1)(x−m−3)(m为常数).(1)求证:不论m为何值,该函数的图像与x轴总有公共点;(2)当m取什么值时,该函数的图像与y轴的交点在x轴的上方?27.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1(0)和点B与y轴交于点C(0(3),抛物线的对称轴与x轴交于点D((1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M(N同时停止运动,问点M(N运动到何处时,△MNB面积最大,试求出最大面积.28.如图,抛物线y=﹣1x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).2(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.29.如图(抛物线y=x2 +bx+c与x轴交于A((1(0((B(3(0(两点((1(求该抛物线的解析式((2(求该抛物线的对称轴以及顶点坐标((3(设(1(中的抛物线上有一个动点P(当点P在该抛物线上滑动到什么位置时(满足S△P AB=8(并求出此时P点的坐标(30.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.参考答案1.B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解(A(由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B(由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣−2>0.故选项正确;2aC(由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口>0,和x轴的正半轴相交.故选项错误;向上,对称轴x=﹣−22aD(由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.2.D【解析】【分析】根据二次函数的图象可以判断a(b(a−b的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a<0(b<0(当x=−1时,y=a−b<0(∴y=(a−b)x+b的图象经过二、三、四象限,观察可得D选项的图象符合,故选D(【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.3.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.4.C【解析】【分析】根据图象开口向下可知a(0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a 的一元二次方程即可.【详解】由图可知,函数图象开口向下,∴a(0(又∵函数图象经过坐标原点(0(0((∴a2-2=0(解得a1=√2(舍去),a2=-√2(故选C(【点睛】本题考查了二次函数图象上点的坐标特征,观察图象判断出a是负数且经过坐标原点是解题的关键.5.A【解析】【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【详解】抛物线y=ax2+2ax+m的对称轴为直线x=-2a2a=-1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(-4,0),∵a<0,∴抛物线开口向下,∴当x<-4或x>2时,y<0.故选A.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.6.A【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=(1时,y=a(b+c;然后由图象确定当x取何值时,y(0(【详解】①∵对称轴在y轴右侧,∴a(b异号,∴ab(0,故正确;=1,②∵对称轴x=−b2a∴2a+b=0;故正确;③∵2a+b=0(∴b=(2a(∵当x=(1时,y=a(b+c(0(∴a(((2a(+c=3a+c(0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c(所以a+b≥m(am+b((m为实数).故正确.⑤如图,当﹣1(x(3时,y不只是大于0(故错误.故选:A(【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a(0时,抛物线向上开口;当a(0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab(0),对称轴在y轴左;当a与b异号时(即ab(0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0(c((7.B【解析】【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所给结论进行判断即可.【详解】①对称轴在y轴的右侧,Q∴<(ab0>(由图象可知:c0∴<,故①不正确;abc0=-+<(②当x1=-时,y a b c0∴->,故②正确;b a c③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确;b x 12a=-=Q ④( b 2a ∴=-(a b c 0-+<Q (a 2a c 0∴++<(3a c <-,故④不正确;⑤当x 1=时,y 的值最大·此时,y a b c =++(而当x m =时,2y am bm c =++(所以()2a b c am bm c m 1++>++≠( 故2a b am bm +>+,即()a b m am b +>+,故⑤正确,故②③⑤正确,故选B(【点睛】本题考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键. 8.B【解析】【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1(0((∴-2b a=-1(a+b+c=0( ∴b=2a(c=-3a(∵a(0(∴b(0(c(0(∴abc(0,故①错误,∵抛物线对称轴x=-1,经过(1(0((可知抛物线与x 轴还有另外一个交点(-3(0(∴抛物线与x 轴有两个交点,∴b 2-4ac(0,故②正确,∵抛物线与x 轴交于(-3(0((∴9a -3b+c=0,故③正确,∵点(-0.5(y 1(((-2(y 2)均在抛物线上,(-0.5(y 1(关于对称轴的对称点为(-1.5(y 1((-1.5(y 1(((-2(y 2)均在抛物线上,且在对称轴左侧,-1.5(-2(则y 1(y 2;故④错误,∵5a -2b+c=5a -4a -3a=-2a(0,故⑤正确,故选:B(【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.B【解析】【分析】根据抛物线的开口方向和对称轴判断①;根据抛物线与y轴的交点和对称轴判断②;根据x=-2时,y<0判断③;根据x=±1时,y>0判断④.【详解】①∵抛物线开口向下,∴a<0,<1,∵−b2a∴2a+b<0,①正确;②抛物线与y轴交于正半轴,∴c>0,>0,a<0,∵−b2a∴b>0,∴abc<0,②错误;③当x=−2时,y<0,∴4a−2b+c<0,③错误;x=±1时,y>0,∴a−b+c>0,a+b+c>0,∴a+c>0,④正确,故选:B【点睛】本题考核知识点:二次函数图象与系数的关系.解题关键点:理解二次函数图象与系数的关系. 10.C【解析】试题解析:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y>0,即a-b+c>0,所以①正确;∵抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴4ac−b 24a=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选B.11.D【解析】分析:直接利用二次函数图象与系数的关系进而分析得出答案.详解:A(∵抛物线开口向下,∴a(0(∵抛物线与y轴交在正半轴上,∴c(0(∴ac(0,故此选项错误;B(∵抛物线与x轴有2个交点,∴b2-4ac(0,故此选项错误;C(∵抛物线y=ax2+bx+c交x轴于点(-1(0)和(4(0((∴对称轴是直线x=1.5,故此选项错误;D(∵a(0,抛物线对称轴在y轴右侧,∴a(b异号,∴b(0,故此选项正确.故选:D(点睛:此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.12.D【分析】根据二次函数的图象与系数的关系即可求出答案. 【详解】①由开口可知:a <0, ∴对称轴x=−2ba>0, ∴b >0,由抛物线与y 轴的交点可知:c >0, ∴abc <0,故①正确;②∵抛物线与x 轴交于点A (-1,0), 对称轴为x=2,∴抛物线与x 轴的另外一个交点为(5,0), ∴x=3时,y >0,∴9a+3b+c >0,故②正确;③由于12<2<52, 且(52,y 2)关于直线x=2的对称点的坐标为(32,y 2),∵12<32, ∴y 1<y 2,故③正确, ④∵−2ba=2,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵2<c<3,∴2<-5a<3,∴-35<a<-25,故④正确故选:D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.13.C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(−1,0),其对称轴在y轴右侧,故抛物线不能经过点(1,0),因此①错误;抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(−1,0),(0,3),其对称轴在y轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程ax2+bx+c=2有两个不相等的实数根,故②正确;∵对称轴在y轴右侧,∴−b2a>0∵a<0∴b>0∵y=ax2+bx+c经过点(−1,0),∴a-b+c=0∵y=ax2+bx+c经过点(0,3),∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.14.B【解析】【分析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1(2-4(对称轴是:x=-1∵a=-1(0(∴x(-1时,y随x的增大而增大,x(-1时,y随x的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1(2-4=5(x=-1时y有最小值,是-4(故选B(【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.15.A【解析】【分析】根据二次函数有最大值可判断a(0,再根据最大值为0可判断b=0,据此即可进行比较a(b的大小.【详解】∵二次函数y=a(x+1(2-b(a≠0)有最大值,∴抛物线开口方向向下,即a<0(又最大值为0(∴b=0(∴a<b(故选A(【点睛】本题考查了二次函数的顶点式以及二次函数的性质,熟练掌握二次函数的性质是解题的关键.16.C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1(∴2a-1>0(∴−2a−12a<0(4a(a−3)−(2a−1)24a=−8a+14a<0(∴抛物线的顶点在第三象限, 故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键. 17.C 【解析】 【分析】将(0,0)代入求出a 的值,因为二次函数二次项系数不能为0,排除一个a 的值即可. 【详解】将(0,0)代入y((a(1)x 2(3x(a 2(1,得a=±1(∵a≠1(∴a=-1. 【点睛】本题考查二次函数求常数项,解题的关键是将已知二次函数过的点代入,注意二次函数二次项系数不能为0. 18.A 【解析】 【分析】由函数图象可知a <0,对称轴-1<x <0,20b a ->;0b <,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;△=b 2-4ac >0;再由图象可知当x=1时,y <0,即a+b+c <0;当x=-1时,y >0,即a -b+c >0;即可求解. 【详解】解:由函数图象可知0a <,对称轴10x -<<,图象与y 轴的交点0c >,函数与x 轴有两个不同的交点,∴2b a >,0b <;③错误240b ac ∆=->;②错0abc >;①错误当1x =时,0y <,即0a b c ++<;当1x =-时,0y >,即0a b c -+>;∴()()0a b c a b c ++-+<,即22()a c b +<; ∴只有④是正确的; 故选:A . 【点睛】本题考查二次函数的图象及性质;熟练掌握函数的图象及性质,能够通过图象获取信息,推导出a ,b ,c ,△,对称轴的关系是解题的关键. 19.B 【解析】 【分析】依据a 和b 同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t <1时,函数图象为开口向上的抛物线的一部分,当1≤t <2时,函数图象为开口向下的抛物线的一部分,当2≤t≤3时,函数图象为开口向上的抛物线的一部分. 【详解】如图①,当0≤t <1时,BE=t ,DE=√3t ,∴s=S △BDE =12×t×√3t=√32t 2;如图②,当1≤t <2时,CE=2-t ,BG=t-1,∴DE=√3(2-t ),FG=√3(t-1),∴s=S五边形AFGED=S △ABC -S △BGF -S △CDE =12×2×√3-12×(t-1)×√3(t-1)-12×(2-t )×√3(2-t )=-√3t 2+3√3t-32√3;如图③,当2≤t≤3时,CG=3-t ,GF=√3(3-t ),∴s=S △CFG =12×(3-t )×√3(3-t )=√32t 2-3√3t+9√32,综上所述,当0≤t <1时,函数图象为开口向上的抛物线的一部分;当1≤t <2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,故选B.【点睛】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.20.C【解析】【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+(a+c(x+c的图象相比较看是否一致,用排除法即可解答.【详解】一次函数图像过二、四象限,则a<0(二次函数开口向上,a>0,故A选项错误;∵y=ax2+(a+c)x+c=(ax+c)(x+1)∴图像与x轴的交点为(-ca(0(((-1(0((∵y=0时,一次函数ax+c=0(∴x=-ca ,即图像与x轴的交点为(-ca(0((∴二次函数与一次函数在x轴上有交点(-ca(0((故B选项错误;根据A(B选项的判断,C选项正确,一次函数图像过一、三象限,则a>0,二次函数开口向下,a<0,故D选项错误,【点睛】本题考查二次函数与一次函数的图象性质,熟练掌握相关知识是解题关键. 21.A 【解析】 【分析】由一次函数的图象判断出ba<0, c>0,再判断二次函数的图象特征,进而求解. 【详解】由一次函数的图象可得:b a <0, c>0,所以二次函数y=ax 2+bx+c 图象的对称轴=2b a->0,与y 轴的交点在正半轴,符合题意的只有A.故选A. 【点睛】本题考查了二次函数图象与一次函数的图象,解题的关键是根据一次函数的图象判断出ba<0, c>0. 22.D 【解析】 【分析】采用赋值法,选取符合图形条件的未知数的值,再采用排除法即可确定答案. 【详解】解答本题可采用赋值法. 取2,1a b ==,可知A 选项是可能的;取2,1a b ==-,可知B 选项是可能的;取2,1a b =-=-,可知C 选项是可能的,那么根据排除法,可知D 选项是不可能的. 故选:D.本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.23.②③【解析】分析:①观察函数图象,可知:当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,进而可得出当x <0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=-x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+√2,结论④错误.此题得解.详解:①当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=-x2+4x=-(x-2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有-x2+4x=2,解得:x1=2-√2(舍去),x2=2+√2;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+√2,结论④错误.综上所述:正确的结论有②③.故答案为:②③.点睛:本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.24.(1)y=﹣x2﹣2x+3;(2)所求P点的坐标为(﹣2,3)或(﹣1+√7,﹣3)或(﹣1﹣√7,﹣3);(3)点Q的坐标是(﹣1,2).【解析】【分析】(1)将A(-3(0((B(1(0)两点代入y=-x2+bx+c,利用待定系数法求解即可求得答案;(2)首先求得点C的坐标为(0(3),然后根据同底等高的两个三角形面积相等,可得P点的纵坐标为±3,将y=±3分别代入抛物线的解析式,求出x的值,即可求得P点的坐标;(3)根据两点之间线段最短可得Q点是AC与对称轴的交点.利用待定系数法求出直线AC的解析式,将抛物线的对称轴方程x=-1代入求出y的值,即可得到点Q的坐标.【详解】(1(∵抛物线y=(x2+bx+c与x轴交于A((3(0((B(1(0)两点,∴{−9+3b +c =0−1+b +c =0 ,解得{b =−2c =3 (∴抛物线的解析式为:y=(x 2(2x+3( (2(∵y=(x 2(2x+3( ∴x=0时,y=3(∴点C 的坐标为(0(3((设在抛物线上存在一点P(x(y ),使S △PAB =S △ABC ( 则|y|=3,即y=±3(如果y=3,那么﹣x 2(2x+3=3,解得x=0或﹣2( x=0时与C 点重合,舍去,所以点P((2(3(( 如果y=(3,那么﹣x 2(2x+3=(3,解得x=(1±√7( 所以点P((1±√7((3((综上所述,所求P 点的坐标为(﹣2(3)或(﹣1+√7((3)或(﹣1(√7((3(( (3)连结AC 与抛物线的对称轴交于点Q ,此时△QBC 的周长最小. 设直线AC 的解析式为:y=mx+n( ∵A((3(0((C(0(3((∴{−3m +n =0n =3 ,解得:{m =1n =3 (∴直线AC 的解析式为:y=x+3( ∵y=(x 2(2x+3的对称轴是直线x=(1( ∴当x=(1时,y=(1+3=2( ∴点Q 的坐标是(﹣1(2((【点睛】此题考查了抛物线与x 轴的交点,待定系数法求函数的解析式,二次函数的性质,三角形的面积以及轴对称-最短路线问题.正确求出函数的解析式是解此题的关键.25.(1)抛物线解析式为y=(x 2+2x+3;直线AC 的解析式为y=3x+3((2)点M 的坐标为(0(3(( (3)符合条件的点P 的坐标为(73(209)或(103((139((【解析】分析:(1)设交点式y=a(x+1((x -3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C(0(3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D 的坐标为(1(4),作B 点关于y 轴的对称点B′,连接DB′交y 轴于M ,如图1,则B′(-3(0),利用两点之间线段最短可判断此时MB+MD 的值最小,则此时△BDM 的周长最小,然后求出直线DB′的解析式即可得到点M 的坐标;(3)过点C 作AC 的垂线交抛物线于另一点P ,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-13x+b ,把C 点坐标代入求出b 得到直线PC 的解析式为y=-13x+3,再解方程组{y =−x 2+2x +3y =−13x +3得此时P 点坐标;当过点A 作AC 的垂线交抛物线于另一点P 时,利用同样的方法可求出此时P 点坐标.详解:(1)设抛物线解析式为y=a(x+1((x(3(( 即y=ax 2(2ax(3a( ∴(2a=2,解得a=(1(∴抛物线解析式为y=(x 2+2x+3(当x=0时,y=(x 2+2x+3=3,则C(0(3(( 设直线AC 的解析式为y=px+q(把A((1(0((C(0(3)代入得{−p +q =0q =3 ,解得{p =3q =3 (∴直线AC 的解析式为y=3x+3((2(∵y=(x2+2x+3=((x(1(2+4(∴顶点D的坐标为(1(4((作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′((3(0((∵MB=MB′(∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3(当x=0时,y=x+3=3(∴点M的坐标为(0(3(((3)存在.过点C作AC的垂线交抛物线于另一点P,如图2(∵直线AC 的解析式为y=3x+3( ∴直线PC 的解析式可设为y=(13x+b(把C(0(3)代入得b=3( ∴直线PC 的解析式为y=(13x+3(解方程组{y =−x 2+2x +3y =−13x +3,解得{x =0y =3 或{x =73y =209,则此时P 点坐标为(73(209((过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=(x+b(把A((1(0)代入得13+b=0,解得b=(13( ∴直线PC 的解析式为y=(13x(13(解方程组{y =−x 2+2x +3y =−13x −13 ,解得{x =−1y =0 或{x =103y =−139 ,则此时P 点坐标为(103((139(. 综上所述,符合条件的点P 的坐标为(73(209(或(103((139(.点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.26.(1)证明见解析;(2)m >−3时,该函数的图像与y 轴的交点在x 轴的上方. 【解析】分析:(1)首先求出与x 轴交点的横坐标x 1=1,x 2=m +3,即可得出答案; (2)求出二次函数与y 轴的交点纵坐标.根据交点纵坐标大于0即可求出. 详解:(1)证明:当y =0时,2(x −1)(x −m −3)=0.解得x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根.所以,不论m为何值,该函数的图像与x轴总有公共点.(2)解:当x=0时,y=2m+6,即该函数的图像与y轴交点的纵坐标是2m+6.当2m+6>0,即m>−3时,该函数的图像与y轴的交点在x轴的上方.点睛:本题考查了抛物线与x轴的交点坐标,熟练掌握抛物线与x轴的交点的证明方法,求出抛物线与y轴交点的纵坐标是解决问题(2)的关键.27.(1)二次函数的表达式为:y=x2(4x+3((2(点P的坐标为:()或()或(0(-3)或(0(0(((3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=12×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,。

二次函数的图像和性质习题-含答案

二次函数的图像和性质习题-含答案

1、将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.2、二次函数y =x 2+bx +c 的图象经过A (-1,0)、B (3,0)两点,其顶点坐标是___.3、已知抛物线与轴的一个交点为,则代数m 2-m+2010的值为( )A .2008B .2009C .2010D .2011 4、抛物线y =-3(2x 2-1)的开口方向是_____,对称轴是_____. 6、已知抛物线(>0)的对称轴为直线,且经过点,试比较和的大小:_(填“>”,“<”或“=”)7、.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示:(1)这个二次函数图象的关系式是___________________.(2)对称轴方程为________.8、函数y=ax 2+bx+c 的图象如图所示, 那么关于x 的方程ax 2+bx+c-3=0的根的情况是( ) A.有两个不相等的实数根 B.有两个异号实数根 C.有两个相等实数根 D.无实数根9、把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是 ( ) A. B.C .D.10、二次函数y=mx 2-4x+1有最小值-3,则m 等于( )A .1B .-1C .±1D .±11、若点(x 1,y 1)、(x 2,y 2)和(x 3,y 3)分别在反比例函数的图象上,且,则下列判断中正确的是( )ABCD12、抛物线y=(x-1)2+2的顶点是( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2) 13、若抛物线与轴的交点为,则下列说法不正确的是( )A.抛物线开口向上 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点坐标为14、某幢建筑物,从10 m高的窗口A,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图4,如果抛物线的最高点M离墙1 m,离地面m,则水流落地点B离墙的距离OB是()A、2 mB、3 mC、4 mD、5 m15、二次函数的图象可能是()7、某同学从右图二次函数y=ax2+bx+c的图象中,观察得出了下面的五个结论:①c=0,②函数的最小值为-3,③a-b+c<0,④4a+b=0,⑤b-4ac>0.你认为其中正确的命题有( )A.5个 B.4个 C.3个 D.2个18、如图,抛物线y=-x2+5x+n经过点A(1,0),与y轴的交点为B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.。

初中数学二次函数的图象与性质培优练习题(附答案详解)

初中数学二次函数的图象与性质培优练习题(附答案详解)

初中数学二次函数的图象与性质培优练习题(附答案详解)1.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个2.已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线l 上的点,且x 3<﹣1<x 1<x 2,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 3.已知二次函数2333(11)y x bx b =-+-≤≤当b 从1-逐渐变化到1的过程中,它对应的抛物线位置也随之变化,下列关于抛物线的移动过程描述正确的是( ). A .先向左上方移动,瑞向左下方移动B .先向左下方移动,再向左上方移动C .先向右上方移动,再向右下方移动D .先向右下方移动,再向右上方移动4.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=3a ;④am 2+bm +a >0(m ≠﹣1),其中正确的个数是( )5.已知二次函数y=2(x+1)(x-a),其中a>0,且对称轴为直线x=2,则a的值是()A.3B.5C.7D.不确定6.题目:观察图像写性质,每写对一条得2分,写错不扣分.小亮的答案是:①图像开口向下;②图像与x轴有一个交点坐标为(3,0);③当x<1时,y随x的增大而增大;④2a+b=0.小亮的得分是()A.8分B.6分C.4分D.2分7.在平面直角坐标系中,把一条抛物线先向上平移3个单位,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的函数表达式是( )A.y=--B.y=--C.y=--D.y=-+8.已知二次函数y=a(x+3)2-h(a≠0)有最大值1,则该函数图象的顶点坐标为()A.(-3,-1) B.(-3,1) C.(3,1) D.(3,-1) 9.如图为二次函数y=ax2+bx+c (a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当-1<x<3时,y>0 其中正确的个数为()A.1 B.2 C.3 D.410.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④a b cb a++-的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个11.若抛物线y=x 2﹣bx+9的顶点在x 轴上,则b 的值为_______________12.如图,抛物线y=ax 2+bx+c (a <0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (3,0)在该抛物线上,则a ﹣b+c 的值为_____.13.抛物线2y ax bx c =++经过点A (-3,0),B (1,0),则抛物线的对称轴是__________.14.将抛物线y =x 2向左平移5个单位,得到的抛物线解析式为_____________.15.已知函数y =2x 2-4x -3,当-2≤x ≤2时,该函数的最小值是___,最大值是____. 16.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,对称轴是x=1,下列结论:①abc <0;②b 2>4ac ;③a+b+c <0;④3a+c >0,其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.请写出一个开口向上,并且与y 轴的交点为(0,0)的抛物线解析式是__________. 18.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①a <0;②2b a-=1;③b 2﹣4ac <0;④当x >1时,y 随x 的增大而减小;⑤当﹣1<x <3时,y <0,其中正确的是_____.(只填序号)19.二次函数2y ax bx c =++的图象如图所示,下列结论:①abc<0;②a+c <b ;③2a +b>0;④4a+2b+c <0;⑤2ax bx c 20++-=有两个不相等的实数根.其中结论正确的有_____________.(填写正确结论的序号)20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,32 ).(1)若此抛物线经过点B(2,-12),且与轴相交于点E、F.①填空:b= (用含a的代数式表示);②当EF的值最小时,求出EF的最小值和抛物线的解析式;(2)若12a=,当01x≤≤,抛物线上的点到x轴距离的最大值为3时,求b的值.21.已知抛物线y=12x2﹣4x+7与y=12x交于A、B两点(A在B点左侧).(1)求A、B两点坐标;(2)求抛物线顶点C的坐标,并求△ABC面积.22.某商场销售一种学生用计算器,进价为每台20 元,售价为每台30 元,每周可卖160 台,如果每台售价每上涨 2 元,每周就会少卖20 元,但厂家规定最高每台售价不能超过33 元,设每台售价上x 元,每周的销售利润为 y 元.(1)直接写出 y 与 x 之间的函数关系式;(2)当计算器定价为多少元时,商场每周的利润恰好为1680 元?23.已知二次函数图象的对称轴是x=-3,且函数有最大值为2,图象与x轴的一个交点是(-1,0),求这个二次函数的解析式.24.已知抛物线y=x2+bx+c经过点(1,﹣4)和(﹣1,2),求这个抛物线的顶点坐标.25.有一个运算装置,当输入值为x时.其输出值为y,且y是x的二次函数.已知输入值为﹣2,0,1时,相应的输出值分别为5,﹣3,﹣4.(1)求二次函数的关系式;(2)如图,在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时,输入值x的范围.26.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关系为y=-12x2+3x+2.问:小球能达到的最大高度是多少?参考答案1.D【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0,对称轴为x=2b a- <1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac , ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.2.D【解析】因为抛物线的对称轴为直线x =-1,开口向下,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,且-1<x 1<x 2,根据二次函数的性质:在对称轴的右侧,y 随x 的增大而减小,可得y 2< y 1;P 3(x 3,y 3)是直线l 上的点,直线y 随x 的增大而减小,且x 3<-1,由图象可知,直线上x 3对应的函数值y 3大于-1对应的函数值,又因x =-1时,抛物线的顶点最高,可得y 3最大,所以y 2<y 1< y 3.故选D.点睛:本题主要考查了二次函数的性质及二次函数与一次函数值的大小比较,根据二次函数的增减性和图象的位置确定函数值的大小是解决本题的关键,解决本题注意利用数形结合思想.3.C【解析】由题可得解析式配为顶点式32b 3y 3x 3b 24⎛⎫=-+- ⎪⎝⎭. 抛物线顶点坐标为2b 3,3b 24⎛⎫- ⎪⎝⎭. 当b 由1-变到1的过程中,b 2逐渐增大,233b 4-先增大后减小. 因此,抛物线先向右上方移动,后向下方移动,故选C .点睛:由于抛物线平移后形状不变,故a 不变,所以求平移后的抛物线的解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二十只考虑平移后的顶点坐标,即可求出解析式.4.A【解析】试题解析:抛物线与y 轴交于原点,c=0,(故①正确);该抛物线的对称轴是:直线x=202-+=-1,(故②正确); 当x=1时,y=a+b+c∵对称轴是直线x=-1,∴-b/2a=-1,b=2a ,又∵c=0,∴y=3a ,(故③正确);x=m 对应的函数值为y=am 2+bm+c ,x=-1对应的函数值为y=a-b+c ,又∵x=-1时函数取得最小值,∴a-b+c <am 2+bm+c ,即a-b <am 2+bm ,∵b=2a ,∴am 2+bm+a >0(m≠-1).(故④正确).故选A .5.B【解析】试题解析:22(1)()22(1)2.y x x a x a a =+-=+-- 对称轴:1 2.22b a x a -=-== 解得: 5.a =故选B.6.A【解析】图像开口向下,①正确;根据图像可得抛物线与x 轴的一个交点坐标为(-1,0),抛物线对称轴为x =1,根据抛物线的对称性可得图像与x 轴的另一个交点坐标为(3,0)所以②正确;当x <1时,y 随着x 的增大而增大,③正确;因为抛物线对称轴为x =1,所以-2b a=1,b =-2a ,b +2a =0,④正确.写对了4条,得8分. 故选A.点睛:熟练掌握并运用二次函数图像的性质.7.A【解析】∵y =x 2+5x +6=-,∴它的顶点坐标为.把该抛物线绕原点旋转180°,顶点坐标变为,且开口向下,函数表达式变为y =-+.再把它向下平移3个单位,得到y =--. 8.B【解析】 ∵二次函数()()230y a x b a =+-≠有最大值1,∴该函数图象的顶点坐标为(-3,1).故选B.点睛:(1)在二次函数中,当自变量的取值范围没有限制时,其最大值(或最小值)等于其图象顶点的纵坐标;(2)在二次函数2()y a h k =-+中,其图象的顶点坐标为(h ,k ). 9.C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b 与0的关系,根据图象判断-1<x <3时,y 的符号.【详解】①由二次函数y=ax 2+bx+c (a≠0)的开口向下,可知a <0,故错误;②由二次函数与x 轴的交点的坐标为(-1,0),(3,0),可知对称轴为x=1312-+==1,即-2b a=1, 因此可得b=-2a ,即2a+b=0,故正确;③由函数的顶点在第一象限,因此可知,当x=1时,y=a+b+c >0,故正确;④由二次函数与x 轴的交点的坐标为(-1,0),(3,0),图象开口向下,因此当-1<x <3时,y >0,故正确.共3个正确的.故选C.10.D【解析】【分析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【详解】解:∵0b a >>,∴抛物线的对称轴2b x a=- <0,∴该抛物线的对称轴在y 轴左侧,故①正确;∵抛物线2(0)y ax bx c b a =++>>与x 轴最多有一个交点,∴240,b ac =-≤ ∴关于x 的方程220ax bx c +++=中()2242480,b a c b ac a =-+=--<∴关于x 的方程220ax bx c +++=无实数根,故②正确;∵抛物线2(0)y ax bx c b a =++>>与x 轴最多有一个交点,∴当1x =- 时,a b c -+≥0正确,故③正确;当2x =-时,()2420,33,3,,3a b c a b c a b c b a a b c b a b a b a++-+≥++≥-++≥->∴≥- ,故④正确.故选D.【点睛】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化. 11.±6. 【解析】 【分析】抛物线y=ax 2+bx+c 的顶点坐标为(2b a-,244ac b a -),因为抛物线y=x 2﹣bx+9的顶点在x轴上,所以顶点的纵坐标为零,列方程求解. 【详解】∵抛物线y=x2﹣bx+9的顶点在x 轴上,∴顶点的纵坐标为零,即y=244ac b a -=2364b -=0, 解得b=±6. 12.0 【解析】 【分析】 【详解】解:由题意可知:对称轴为x=1,∴(3,0)关于x=1的对称点坐标为(﹣1,0), 将(﹣1,0)代入y=ax 2+bx+c , ∴a﹣b+c=0.点睛:本题主要考查二次根式的性质,能利用二次函数的对称性确定抛物线与x 轴交点的坐标是解题的关键. 13.1x =- 【解析】因为二次函数与x 轴的交点是关于对称轴对称的两点,根据对称性可得:抛物线的对称轴1231122x x x +-+===-,故答案为:1x =-. 14.y=(x+5)2(或y=x 2+10x+25).【解析】根据抛物线的平移规律“左加右减,上加下减”可得将抛物线y=x 2向左平移5个单位,得到的抛物线解析式为y=(x+5)2. 15. -5, 13.【解析】y=2x²-4x+2-5=2(x-1)²-5 对称轴x=1,开口向上 所以x=1,最小值= -5 离对称轴越远,函数值越大 所以x= -2,最大值=13 16.C 【解析】由二次函数y=ax 2+bx+c (a≠0)的图象可知:0012ba c a><-=,,,图象和x 轴有两个不同的交点,∴2400b ac a b c ->++<,,20b a =-< ∴24b ac >,0abc >.由图可知,当1x =-时,0y a b c =-+>, ∴(2)0a a c --+>,即30a c +>. ∴上述结论中正确的是②③④,共3个. 故选C.17.y=x²(答案不唯一)【解析】抛物线y=x ²开口向上,且与y 轴的交点为(0,0).故答案为:y=x² (答案不唯一). 18.②⑤. 【解析】图像开口向上,所以a >0,所以①说法错误;抛物线与x 轴的交点坐标分别是(-1,0)和(3,0),所以对称轴-2b a =132-+=1,所以②说法正确;根据图像可得,二次函数y =ax 2+bx +c (a ≠0)与x 轴有两个交点,所以一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,所以b 2﹣4ac >0,所以③说法错误;当x >2时,y 随着x 的增大而增大,所以④说法错误;通过图像不难得出当﹣1<x <3时,y <0,所以⑤说法正确.正确的说法有②⑤. 故答案为②⑤.点睛:(1)开口方向由a 的正负决定,a >0,开口向上;a <0,开口向下;(2)二次函数y =ax 2+bx +c (a ≠0)与x 轴的交点的情况问题可以转化为一元二次方程ax 2+bx +c =0(a ≠0)根的情况的问题;(3)若二次函数与x 轴的两个交点坐标分别为(x 1,0),(x 2,0),那么对称轴为x =122x x +. 19.①②③ 【解析】试题解析:∵函数的开口向下, ∴a <0,∵函数与y 轴的正半轴相交, ∴c >0, ∵对称轴02bx a=->, ∴b >0,∴abc <0,故①正确.当1x =-时,0.y a b c =-+<即.a c b +<故②正确. ∵对称轴12bx a=->,整理得:2.b a >-即20.a b +>故③正确. 当x =2时,函数的纵坐标大于0,则y =4a +2b +c >0,故④错误.2ax bx c 20++-=即22ax bx c ++=没有实数根.故正确的是:①②③. 故答案为:①②③.20.(1)①b=-2a-1;②EF y=x 2﹣3x+32;(2)b 的值为1或﹣5. 【解析】试题分析:(1)①由A 点坐标可求得c ,再把B 点坐标代入可求得b 与a 的关系式,可求得答案;②用a 可表示出抛物线解析式,令y=0可得到关于x 的一元二次方程,利用根与系数的关系可用a 表示出EF 的值,再利用函数性质可求得其取得最小值时a 的值,可求得抛物线解析式;(2)可用b 表示出抛物线解析式,可求得其对称轴为x=-b ,由题意可得出当x=0、x=1或x=-b 时,抛物线上的点可能离x 轴最远,可分别求得其函数值,得到关于b 的方程,可求得b 的值.试题解析:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,32),∴c=32,∵抛物线经过点B(2,-12),∴-12=4a+2b+32,∴b=-2a-1,故答案为:-2a-1;②由①可得抛物线解析式为y=ax2-(2a+1)x+32,令y=0可得ax2-(2a+1)x+32=0,∵△=(2a+1)2-4a×32=4a2-2a+1=4(a-14)2+34>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=2a1a+,x1x2=32a,∴EF2=(x1-x2)2=(x1+x2)2-4x1x2=22421a aa-+=(1a-1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2-3x+32;(2)当a=12时,抛物线解析式为y=12x2+bx+32,∴抛物线对称轴为x=-b,∴只有当x=0、x=1或x=-b时,抛物线上的点才有可能离x轴最远,当x=0时,y=32,当x=1时,y=12+b+32=2+b,当x=-b时,y=12(-b)2+b(-b)+32=-12b2+32,①当|2+b|=3时,b=1或b=-5,且顶点不在范围内,满足条件;②当|-12b2+32|=3时,b=±3,对称轴为直线x=±3,不在范围内,故不符合题意,综上可知b的值为1或-5.点睛:在(1)①中注意利用待定系数法的应用,在(1)②中用a表示出EF2是解题的关键,注意一元二次方程根与系数的关系的应用,在(2)中确定出抛物线上离x轴距离可能最远的点是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.21.(1)A(2,1),B(7,3.5);(2)S△ABC=7.5.【解析】试题分析:(1)求曲线的交点,只需要联立方程组.(2)利用顶点坐标公式求顶点,过C作x轴平行线,可以得到△BCD,△ACD同底不等高,因为(1)已经求出A,B点坐标,所以可以得到△BCD,△ACD的高,最后求出两个三角形面积,作差就可以得到△ABC面积.试题解析:解:(1)联立214721.2y x xy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得21xy=⎧⎨=⎩或77.2xy=⎧⎪⎨=⎪⎩∴A(2,1),B(7,72).(2)∵y=12x2-4x+7=12(x-4)2-1,∴顶点坐标为C(4,-1).过C作CD∥x轴交直线AB于D.∵y=12 x,令y=-1,得12x=-1,解得x=-2.∴D(-2,-1).∴CD=6. ∴S△ABC=S△BCD-S△ACD=12×6×(72+1)-12×6×(1+1)=152. 22.(1)y =-10x 2+60x +1600;(2)定价为32元时,最大利润为1680元. 【解析】试题分析:(1)根据题意可以得到y 与x 之间的函数关系式,本题得以解决; (2)根据题意可以列出相应的方程,从而可以得到当计算器定价为多少元时,商场每周的利润恰好为1680元,注意厂家规定最高每台售价不能超过33元. 试题解析:(1)由题意可得, y =(30+x -20)(160-2x×20)=-10x 2+60x +1600, 即y 与x 之间的函数关系式是:y =-10x 2+60x +1600; (2)∵y =-10x 2+60x +1600=-10(x -3)2+1690 ∴当y =1680时,1680=-10(x -3)2+1690, 解得,x 1=2,x 2=4, ∵x ≤33-30=3, ∴x =2符合题意,∴此时计算器的售价为30+2=32(元),即当计算器定价为32元时,商场每周的利润恰好为1680元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式和列出相应的方程,注意题目中的限制条件. 23.21(3)22y x =-++ 【解析】试题分析:由于已知抛物线的顶点坐标,则可设顶点式y=a (x+3)2+2,然后把(-1,0)代入求出a 的值即可.试题解析:根据题意得抛物线的顶点坐标为(−3,2), 设抛物线解析式为y=a(x+3)2+2, 把(−1,0)代入得a ⋅(−1+3)2+2=0,解得a=−12, 所以抛物线解析式为为y=−12(x+3)2+2. 24.317,24⎛⎫⎪⎝⎭【解析】试题分析:首先将两点代入函数解析式求出b 和c 的值,然后将所得的二次函数进行配方,得出顶点式,从而得到顶点坐标.试题解析:将(1,-4)和(-1,2)代入函数解析式可得: 1412b c b c ++=-⎧⎨-+=⎩ 解得:32b c =-⎧⎨=-⎩ 则抛物线的函数解析式为:y=23x 2x --=2317x 24⎛⎫-+ ⎪⎝⎭则抛物线的顶点坐标为31724⎛⎫⎪⎝⎭,25.(1) y=x 2-2x-3;(2)x <-1或x >3. 【解析】(1)把三个点的坐标代入二次函数根据待定系数法求出函数的解析式即可;(2)函数值为正数,即是二次函数与与x 轴的交点的上方的函数图象所对应的x 的值. 解:(1)设所求二次函数的解析式为y=ax 2+bx+c , 把(-2,5)(0,-3)(1,-4)代入得,即3241c a b a b =-⎧⎪-=⎨⎪+=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,故所求的解析式为:y=x 2-2x-3; (2)如图所示,由图象可得:x <-1或x >3. 26. 【解析】试题分析:求函数y=-x2+3x+2的最大值即可. 试题解析:∵a=-<0,∴y有最大值.当x=-=3时,y==,最大即小球能达到的最大高度是m.。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

二次函数的图象和性质练习题(含参考答案)

二次函数的图象和性质练习题(含参考答案)

新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。

(新编)2020年中考数学专题培优:二次函数图像和性质(含答案)

(新编)2020年中考数学专题培优:二次函数图像和性质(含答案)

2020 年中考数学专题培优 二次函数图像和性质(含答案)一、单项选择题(共有10 道小题)1. 抛物线 yx 2 4x 7 的极点坐标是()A . (2 , -11)B . (-2 , 7)C . (2 , 11)D .(2 , -3)2. 把抛物线 y 3x 2 先向上平移 2 个单位,再向右平移3个单位,所得抛物线的分析式是()2222A. y 3 x 3B. y 3 x 22222C. y 3 x 3D. y 3 x 33. 若抛物线 yx 2 2xc 与 y 轴的交点坐标为( 0, -3 ),则以下说法不正确的选项是( )A. 抛物线的张口向上B.抛物线的对称轴是直线 x =1C. 当 x =1 时, y 的最大值为 -4D. 抛物线与 x 轴的交点坐标为( -1 , 0),( 3, 0)。

4. 如图,二次函数 y ax 2 bx c, a 0 的图象与 x 轴交于 A 、B 两点,与 y 轴交于 C 点,且对称轴为 x1 ,点 B 坐标为 ( - 1,0) .则下边的四个结论中正确的个数是()y x=1① 2a b 0 ;C② 4a- 2b c 0 ;③ ac 0 ;-1④当 y 0 时, x -1 或 x 2 .B OA xA .1B .2C .3D .45. 将抛物线 y = 1x 2-6x +21 向左平移 2 个单位后,获得新抛物线的分析式为 ()2A . y = 1( x -8)2+5 B . y = 1( x -4) 2+5C . y = 1( x -8) 2+3 D . y = 1( x -4) 2+322226. 已知二次函数 yax2 bx c, c0 的图象以下图,以下说法错误..的是 ( )yA. 图像对于直线 x 1 对称B. 函数 y ax2bx c, c 0 的最小值是- 4 1C. - 1 和 3 是方程 ax2 bxc 0, c 0-1 Ox的两个根D. 当 x 1时, y 随 x 的增大而增大-47. 对于二次函数 yx 2 2x ,有以下四个结论,此中正确的结论的个数为()①它的对称轴是直线 x 1 ;②设 y 1x 12 2x 1, y 2 x 22 2x 2 ,则 x 2x 1 时,有 y 2 y 1 ;③它的图象与 x 轴的两个交点是 (0 ,0) 和 (2 , 0) ④当 0 x 2 时, yA.1B.2C.3D.48. 已知二次函数 yax 2bx c 的 y 与 x 的部分对应值以下表:x-1 0 1 3y-3 1 3 1则以下判断中正确的选项是 ( ) A. 抛物线张口向上B. 抛物线与 y 轴交于负半轴C. 图象对称轴为直线 x=1D.方程 ax 2 bx c 0 有一个根在 3 与 4 之间9. 如图,一段抛物线 y =-x 2+4(-2 x2) 为 C 1 ,与 x 轴交于 A 0 , A 1 两点,极点为 D 1 ;将 C 1 绕点 A 1 旋转 180°获得 C 2 ,极点为 D 2 ;C 1 与 C 2 构成一个新的图象,垂直于 y 轴的直线 l 与新图象交于点 P( x , y ) , P ( x , y ) ,与线段 D D 交于点11122212P 3 (x 3, y 3 ) ,设 x 1, x 2, x 3 均为正数, t=x 1+x 2+x 3 ,则 t 的取值范围是 ( )D 1yC 1A 0A 1Ox C 2D 2A . 6 t 8B . 6 t 8C . 10 t 1210. 在同一平面直角坐标系中,函数ymx 2 2x 2,( m 是常数 , 且 m 0)的图象可能是 ( )D .10 t 12y mx m , 和 函 数yyyyOOOOxxxxA B C D二、填空题(共有 7 道小题)11.抛物线张口方向 对称轴 极点坐标2 y3 x 2y 1x 3 2 212. 抛物线 y 2 x21 的张口,极点坐标是,对称轴是;4当 x=时, y 有最值为;在对称轴左边,即当x 时, y 随 x 的增大而,在对称轴右边,即当x 时, y 随 x 的增大而.13. 在平面直角坐标系中,若将抛物线y x 3 2 1先向左平移2个单位长度,再向下平移 3 个单位长度,则经过这两次平移后所得抛物线的极点坐标是.14. 二次函数 y x2 2x 4 的图象的张口方向是,对称轴是,极点坐标是15. 抛物线 y 2x2 4x 3绕坐标原点旋转180°所得的抛物线的表达式是.16. 若抛物线 y x2 4x c 的极点在直线 y x 1上,求c的值______17. 已知点P(m,n)在抛物线y ax2x a 上,当m≥﹣1时,总有n≤1成立,则 a 的取值范围是.三、解答题(共有 6 道小题)18. 抛物线y 3 x2与 x 轴交点为 A,与 y 轴交点为 B,求 A,B 两点坐标及△ AOB的面3积19. 已知,在同一平面直角坐标系中,反比例函数 y 5与二次函数2 A -,mxy 2x c 的图象交于点.x ( 1 )(1)求 m,c 的值;(2)求二次函数图象的对称轴和极点坐标.20.已知抛物线 y ax2 bx 3 的对称轴是直线x=1.( 1)求证: 2a+b=0;( 2)若对于 x 的方程ax2bx 8 0的一个根为 4,求方程的另一个根.21. 当 k 分别取 -1 , 1, 2 时,函数y k 1 x2 4x 5 k 都有最大值吗?请写出你的判断,并说明原因;如有最大值,恳求出最大值。

(完整版)二次函数的图像与性质练习题及答案

(完整版)二次函数的图像与性质练习题及答案

二次函数的图像和性质练习题一、选择题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A 、1个;B 、2个;C 、3个;D 、4个 2.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定 5.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像开口由小到大的顺序是( )A 、321y y y <<B 、123y y y <<C 、231y y y <<D 、132y y y <<6.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①0abc >;②a+b+c>0③a-b+c<0;A .1个B .2个C .3个D .4个8.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( )A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32)1(-x +29.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与抛物线y=-12x 2+3x -5的形状、开口方向都相同,只有位置不同的抛物线是( )A. y = x 2+3x -5B. y=-12x 2xC. y =12x 2+3x -5D. y=12x 212.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反13.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,14.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1 15.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )16.函数y=12-2x +2x -5的图像的对称轴是( ) A .直线x=2 B .直线a=-2 C .直线y=2 D .直线x=4 17.二次函数y=221x x --+图像的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 18.如果抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为( )A .0B .6C .3D .9ABCD19.已知二次函数2y ax bx c =++,如果a >0,b <0,c <0,那么这个函数图像的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限 20.已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-= 21.如图所示,满足a >0,b <0的函数y=2ax bx +的图像是( )22.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 2二、填空题:23.二次函数2y ax =(0<a )的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016/11/24 14:57:23一.选择题(共10小题)1.一次函数y=ax +b (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.二次函数y=ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x … ﹣3 ﹣2 ﹣1 0 1 … y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11… 则该函数图象的对称轴是( )A .直线x=﹣3B .直线x=﹣2C .直线x=﹣1D .直线x=0 3.二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .4.已知函数y=ax 2﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( ) A .当a=1时,函数图象过点(﹣1,1) B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大5.如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ②4a +2b +c >0 ③4ac ﹣b 2<8a ④<a <⑤b >c .其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤ 6.抛物线y=x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y=0(1≤x ≤3)有交点,则c 的值不可能是( ) A .4 B .6 C .8 D .107.如图是抛物线y=ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b +c >0;②3a +b=0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c=n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .48.二次函数y=ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a +b=0;(2)9a +c >3b ;(3)8a +7b +2c >0;(4)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x +1)(x ﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个9.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y310.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.二.选择题(共10小题)11.如图,在平面直角坐标系中,菱形OABC的顶点A 在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.12.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.13.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是.14.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D (0,1),点P是抛物线上的动点.若△PCD是以CD 为底的等腰三角形,则点P的坐标为.15.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)16.如图,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=﹣2,则m的值为.17.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y 随x的增大而增大,则m的取值范围是.18.抛物线y=x2﹣x+p与x轴相交,其中一个交点坐标是(p,0).那么该抛物线的顶点坐标是.19.如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为.20.二次函数y=x2﹣2x+b的对称轴是直线x=.三.选择题(共6小题)21.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B 两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC 的值最小时,求点P的坐标.22.已知平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P 作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值.23.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.24.如图,直线y=kx+2k﹣1与抛物线y=kx2﹣2kx﹣4(k>0)相交于A、B两点,抛物线的顶点为P.(1)抛物线的对称轴为,顶点坐标为(用含k 的代数式表示).(2)无论k取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k﹣1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k﹣1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC 的解析式.25.已知二次函y=x2+px+q图象的顶点M为直线y=x+与y=﹣x+m﹣1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=x+的值均随x的增大而增大,求m的取值范围(3)若m=6,当x取值为t﹣1≤x≤t+3时,二次函数y 最小值=2,求t的取值范围.26.如图,已知抛物线y=ax2+x+c经过A(4,0),B (1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.四.选择题(共3小题)27.在二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …8 3 0 ﹣1 0 …求这个二次函数的解析式.28.如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A、B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.29.如图,抛物线y=ax2+bx﹣4a的对称轴为直线x=,与x轴交于A,B两点,与y轴交于点C(0,4).(1)求抛物线的解析式,结合图象直接写出当0≤x≤4时y的取值范围;(2)已知点D(m,m+1)在第一象限的抛物线上,点D关于直线BC的对称点为点E,求点E的坐标.五.解答题(共1小题)30.已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.(写出详细的解题过程)参考答案与试题解析一.选择题(共10小题) 1.(2016•毕节市)一次函数y=ax +b (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .【解答】解:A 、由抛物线可知,a <0,由直线可知,故本选项错误;B 、由抛物线可知,a >0,x=﹣>0,得b <0,由直线可知,a >0,b >0,故本选项错误; C 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b <0,故本选项正确; D 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b >0故本选项错误.故选C . 2.(2016•衢州)二次函数y=ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x … ﹣3 ﹣2 ﹣1 0 1 … y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11… 则该函数图象的对称轴是( )A .直线x=﹣3B .直线x=﹣2C .直线x=﹣1D .直线x=0【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等, ∴二次函数的对称轴为直线x=﹣2. 故选:B . 3.(2016•泰安)二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .【解答】解:∵y=ax 2+bx +c 的图象的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0,∴一次函数y=ax +b 的图象经过一,二,三象限. 故选A . 4.(2016•宁波)已知函数y=ax 2﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .当a=1时,函数图象过点(﹣1,1)B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大 【解答】解:A 、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误; B 、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x 轴有两个交点,故错误; C 、∵抛物线的对称轴为直线x=﹣=1,∴若a >0,则当x ≥1时,y 随x 的增大而增大,故错误; D 、∵抛物线的对称轴为直线x=﹣=1,∴若a <0,则当x ≤1时,y 随x 的增大而增大,故正确; 故选D . 5.(2016•达州)如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ②4a +2b +c >0 ③4ac ﹣b 2<8a ④<a <⑤b >c .其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤【解答】解:①∵函数开口方向向上, ∴a >0;∵对称轴在y 轴右侧 ∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴, ∴c <0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c ,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a <﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.6.(2016•绍兴)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.7.(2016•孝感)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c >0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.8.(2016•随州)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A (﹣3,y1)、点B (﹣,y2)、点C (,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D .5个【解答】解:(1)正确.∵﹣=2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B (﹣,y2)、点C (,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.9.(2016•兰州)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.10.(2016•舟山)二次函数y=﹣(x﹣1)2+5,当m≤x ≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.【解答】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,所以m+n=﹣2+=.故选:D.二.选择题(共10小题)11.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.12.(2016•泰州)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1+,3)或(2,﹣3).【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的纵坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x>0,∴x=1+或x=2∴C(1+,3)或(2,﹣3)故答案为:(1+,3)或(2,﹣3)13.(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是P>Q.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.14.(2016•梅州)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+,2)或(1﹣,2).【解答】解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±,∴P点坐标为(1+,2)或(1﹣,2),故答案为:(1+,2)或(1﹣,2).15.(2016•镇江)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b<c(用“>”或“<”号填空)【解答】解:∵二次函数y=x2﹣2ax+3的图象的对称轴为x=a,二次项系数1>0,∴抛物线的开口向上,在对称轴的右边,y随x的增大而增大,∵a+1<a+2,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,∴b<c,故答案为:<.16.(2016•绵阳校级自主招生)如图,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=﹣2,则m的值为1.【解答】解:连接BC,如图,根据题意得A(0,mc),即OA=mc,∵四边形ABCD为正方形,∴OA=BC,OA与BC互相垂直平分,∴C点坐标为(,),把C(,)代入y=ax2+mc得a•()2+mc=,整理得amc=﹣2,∵ac=﹣2,∴m=1.故答案为1.17.(2016•新县校级模拟)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m 的取值范围是m≥﹣1.【解答】解:抛物线的对称轴为直线x=﹣=,∵当x>1时,y的值随x值的增大而增大,∴≤1,解得:m≥﹣1.故答案为:m≥﹣1.18.(2016•同安区一模)抛物线y=x2﹣x+p与x轴相交,其中一个交点坐标是(p,0).那么该抛物线的顶点坐标是(,﹣).【解答】解:将(p,0)代入得:p2﹣p+p=0,p2=0,p=0,则y=x2﹣x=x2﹣x+﹣=(x﹣)2﹣,∴顶点坐标为(,﹣).19.(2016•宽城区一模)如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为(1,).【解答】解:由抛物线y=x2﹣2x+2=(x﹣1)2+1可知A (0,2),对称轴为x=1,∴OA=2,∵OB=2OA,∴B(4,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB为y=﹣x+2,当x=1时,y=,∴C(1,).20.(2016•闸北区二模)二次函数y=x2﹣2x+b的对称轴是直线x=1.【解答】解:∵y=x2﹣2x+b=x2﹣2x+1+b﹣1=(x+1)2+b﹣1故对称轴是直线x=1.故答案为:1.三.选择题(共6小题)21.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x 轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC 的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC 的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).22.(2016•封开县二模)已知平面直角坐标系xOy中,抛物线y=ax2﹣(a +1)x与直线y=kx的一个公共点为A (4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值.【解答】解:(1)由题意,可得8=16a﹣4(a+1)及8=4k,解得a=1,k=2,所以,抛物线的解析式为y=x2﹣2x,直线的解析式为y=2x.(2)设点P的坐标为(t,2t)(0≤t≤4),可得点Q的坐标为(t,t2﹣2t),则PQ=2t﹣(t2﹣2t)=4t﹣t2=﹣(t﹣2)2+4,所以,当t=2时,PQ的长度取得最大值为4.23.(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.24.(2016•江西模拟)如图,直线y=kx+2k﹣1与抛物线y=kx2﹣2kx﹣4(k>0)相交于A、B两点,抛物线的顶点为P.(1)抛物线的对称轴为直线x=1,顶点坐标为(1,﹣k﹣4)(用含k的代数式表示).(2)无论k取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k﹣1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k﹣1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC 的解析式.【解答】解:(1)∵抛物线y=kx2﹣2kx﹣4(k>0),∴对称轴为直线x=﹣=1,当x=1时,y=k﹣2k﹣4=﹣k﹣4,∴顶点P为(1,﹣k﹣4),故答案为直线x=1,(1,﹣k﹣4);(2)由y=kx2﹣2kx﹣4=k(x﹣2)x﹣4可知,无论k取何值,抛物线总经过定点(0,﹣4)和(2,﹣4)两个点,∵交点Q与点P关于x轴对称,∴Q(1,k+4),∵直线y=kx+2k﹣1与抛物线的对称轴的交点为Q,∴k+4=k+2k﹣1,解得k=,∴P(1,﹣),∵线PC与直线y=kx+2k﹣1平行,∴设直线PC的解析式为y=x+b,代入P(1,﹣)得﹣=+b,解得b=﹣9,∴直线PC的解析式为y=x﹣9.故存在定点C,使直线PC与直线y=kx+2k﹣1平行,直线PC的解析式为y=x﹣9.25.(2016•萧山区模拟)已知二次函y=x2+px+q图象的顶点M为直线y=x+与y=﹣x+m﹣1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=x+的值均随x的增大而增大,求m的取值范围(3)若m=6,当x取值为t﹣1≤x≤t+3时,二次函数y 最小值=2,求t的取值范围.【解答】解:(1)由,解得,即交点M坐标为;(2)∵二次函y=x2+px+q图象的顶点M为直线y=x+与y=﹣x+m﹣1的交点为,且当x≥2时,二次函数y=x2+px+q与y=x +的值均随x的增大而增大,∴≤2,解得m ≤,∴m的取值范围为m≤;(3)∵m=6,∴顶点为(3,2),∴抛物线为y=(x﹣3)2+2,∴函数y有最小值为2,∵当x取值为t﹣1≤x≤t+3时,二次函数y最小值=2,∴t﹣1≤3,t+3≥3,解得0≤t≤4.26.(2016•湘潭一模)如图,已知抛物线y=ax2+x+c 经过A(4,0),B(1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.【解答】解:(1)把A(4,0),B(1,0)代入抛物线的解析式得:,解得:,则抛物线解析式为y=﹣x2+x﹣2;(2)存在,理由如下:设D的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,连接CD ,AD,如图所示,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t ﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t 2+2t ,∴△DAC的面积S=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,S最大=4,∴此时D(2,1),△DAC面积的最大值为4.四.选择题(共3小题)27.(2016秋•宁县校级期中)在二次函数y=ax2+bx+c (a≠0)中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …8 3 0 ﹣1 0 …求这个二次函数的解析式.【解答】解:根据题意得,解得:,则二次函数的解析式是y=x2﹣4x+3.28.(2016秋•丹江口市校级月考)如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A、B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.1111【解答】解:(1)由图象可知:B(2,4)在二次函数y2=ax2上,∴4=a×22,∴a=1,则二次函数y2=x2,又A(﹣1,n)在二次函数y2=x2上,∴n=(﹣1)2,∴n=1,则A(﹣1,1),又A、B 两点在一次函数y1=kx +b上,∴,解得:,则一次函数y1=x+2,答:一次函数y1=x+2,二次函数y2=x2;(2)根据图象可知:当﹣1<x<2时,y1>y2.29.(2016春•江阴市校级月考)如图,抛物线y=ax2+bx﹣4a的对称轴为直线x=,与x轴交于A,B两点,与y轴交于点C(0,4).(1)求抛物线的解析式,结合图象直接写出当0≤x≤4时y的取值范围;(2)已知点D(m,m+1)在第一象限的抛物线上,点D关于直线BC的对称点为点E,求点E的坐标.【解答】解:(1)将C(0,4)代入y=ax2+bx ﹣4a中得a=﹣1又∵对称轴为直线x=,∴,得b=3.∴抛物线的解析式为y=﹣x2+3x+4,∵y=﹣x2+3x+4=﹣(x ﹣)2+.∴顶点坐标为:(,),∴当0≤x ≤4时y的取值范围是0≤y≤.(2)∵点D(m,m+1)在抛物线上,∴m+1=﹣m2+3m+4,解得:m=﹣1,或m=3;∵点D在第一象限,∴点D的坐标为(3,4).又∵C(0,4),∴CD∥AB,且CD=3.当y=﹣x2+3x+4=0时,解得:x=﹣1,或x=4,∴B(4,0);当x=0时,y=4,∴C(0,4),∴OB=OC=4,∴∠OCB=∠DCB=45°,∴点E在y轴上,且CE=CD=3,∴OE=1.即点E的坐标为(0,1).五.解答题(共1小题)30.(2016秋•临沭县校级月考)已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP 的面积为6,求点P的坐标.(写出详细的解题过程)【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x+3),把C(0,﹣3)代入得a×(﹣1)×3=﹣3,解得a=1,所以这个二次函数的解析式为y=(x﹣1)(x+3)=x2+2x ﹣3.(2)∵A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为6,∴AB•|n|=6,解得:n=±3,当n=3时,m2+2m﹣3=3,解得:m=﹣1+或﹣1﹣,1212∴P(﹣1+,3)或P(﹣1﹣,3);当n=﹣3时,m2+2m﹣3=﹣5,解得m=0或m=﹣2,∴P(0,﹣3)或P(﹣2,﹣3);故P(﹣1+,3)或P(﹣1﹣,3)或(0,﹣3)或P(﹣2,﹣3).1313。

相关文档
最新文档