初中数学中考纠错15
九年级下册数学纠错试卷【含答案】

九年级下册数学纠错试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪一个不是一次函数?()A. y = 2x + 3B. y = 3/xC. y = 4x 5D. y = x + 73. 在直角坐标系中,点P(3, -4)关于x轴的对称点是()。
A. (3, 4)B. (-3, -4)C. (3, 4)D. (-3, 4)4. 若一个等差数列的首项为2,公差为3,则第10项为()。
A. 29B. 30C. 31D. 325. 若一个圆的半径为r,则它的周长为()。
A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)6. 两个锐角互余。
()7. 一条对角线将平行四边形分成两个面积相等的三角形。
()8. 任何数乘以0都等于0。
()9. 两个负数相乘的结果是正数。
()10. 若a > b,则a² > b²。
()三、填空题(每题1分,共5分)11. 若一个三角形的两边长分别为3和4,则第三边的长度范围为______。
12. 一元二次方程ax² + bx + c = 0的判别式为______。
13. 若一个等边三角形的边长为a,则它的面积是______。
14. 一次函数y = kx + b的图像是一条______。
15. 在直角坐标系中,点(0, b)在______轴上。
四、简答题(每题2分,共10分)16. 解释什么是勾股定理。
17. 描述一次函数图像的特点。
18. 解释什么是等差数列。
19. 简述圆的周长和面积的计算公式。
20. 什么是负数?举例说明。
五、应用题(每题2分,共10分)21. 一个长方形的长是10cm,宽是5cm,求它的面积和周长。
22. 若一个等差数列的首项为3,公差为2,求前5项的和。
初中数学 文档:纠错必备

【纠错必备】 分解因式
病号1 部分分解因式
例1 分解因式:x 2+4x +4.
病症:x 2+4x +4=x (x +4)+4.
病因:一个多项式分解因式的结果必须是几个整式乘积的形式.该病号只将题目中的x 2+4x 部分进行分解,得病原因是概念不清.
药到病除:x 2+4x +4=(x +2)2.
祛病良药1 分解因式:a 2-b 2-c 2-2bc.
病症:原式=(a+b )(a-b )-c (c+2b ).
小雨诊治 不能只把原式的某些部分分解成积的形式,结果中各整式之间并没有化成积的形式.
药到病除:原式=_____________.
病号2 因式不是整式
例2 分解因式:2x 2-4x.
病症:2x 2-4x=2x 2(1-x
2). 病因:一个多项式分解因式的结果必须是几个整式乘积的形式.题中(1-
x 2)不是整式,得病原因是概念模糊.
药到病除:2x 2-4x=2x (x -2).
祛病良药2 分解因式:a 4-16.
病症:原式=a 2(a 2-a
216). 小雨诊治 分解后的各因式必须都是整式,错解错在(a 2-a 216)不是整式. 药到病除:原式=_______.
答案
1.(a +b +C )(a -b -C )
2.(a 2+4)(a+2)(a-2)。
初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)

初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
展开图:正方体展开图(难点)。
正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。
经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。
2023年中考数学反思15篇

2023年中考数学反思15篇中考数学反思1在我们走入新课程的这段时间,我对自己过去的教学思想和行为进行了反思,现将在反思中得到的体会总结出来,以求与同行共勉。
一、复习中不断总结⑴立足教材,理清概念,夯实基础,学生通过复习,应熟练掌握概率与统计的基本知识、基本技能和基本方法。
⑵要突出统计思想,用样本估计总体是统计的基本思想,在复习中要使学生更多的机会接触这一思想,使学生对抽样的必要性、样本的代表性、用样本估计总体的可行性,以及对不同的抽样所得结果的不确定性有更多的体会。
⑶统计与现实生活、科学领域的联系是非常紧密的,教学中应特别注意将统计的学习与实际问题密切结合,选择典型的、充满趣味性和富有时代气息的现实问题作为例子,使学生在解决问题的过程中,学习数据处理方法,理解统计的概念和原理,培养学生的统计观念。
⑷突出概率建模思想,对概率的计算问题,可以把不同背景下的各类问题加以变通,寻找他们之间是否存在相同的数学本质,对相同的一类问题,我们可以用一个概率模型来解决。
这样也能对学生思维的灵活性、缜密性和开放性加以锤炼。
⑸加强用列表法和树状图求解决简单事件的概率的复习,渗透分类讨论思想。
二、复习中要“用活”教材,和资料。
三、复习反思,或称为“反思性复习”,是指教师在复习实践中,批判地考察自我的主体行为表现及其行为依据,通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升复习的合理性,提高复习效率。
教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整复习计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织复习,确保复习过程沿着最佳的轨道运行。
中考数学反思2中考后我自己认真做了一遍中考题,仔细分析了每道题的考察目的,把中考题按两种方法进行了分类统计。
(一)按中考实际复习情况分类:中考题统计?讲过的题陌生题经常讲练题?曾经讲练题经常讲练题80分(1、2、3、4、6、7、8、9、11、12、13、14、15、16、19、20、21、22、23);曾经讲练题21分(5、24、25⑤、26⑤);陌生题19分(10、17、18、25⑤、26⑤)。
中考数学初中数学易错题集锦

中考數學易錯題集錦一、選擇題1、A、B是數軸上原點兩旁的點,則它們表示的兩個有理數是()A、互為相反數B、絕對值相等C、是符號不同的數D、都是負數2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()| 2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()| 2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()|a+b| 2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()A、2aB、2bC、2a-2bD、2a+ba bGAGGAGAGGAFFFFAFAF3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度()A、2千米/小時B、3千米/小時C、6千米/小時D、不能確定4、方程2x+3y=20的正整数解有()A、1個B、3個C、4個D、無數個5、下列說法錯誤的是()A、兩點確定一條直線B、線段是直線的一部分C、一條直線不是平角D、把線段向兩邊延長即是直線6、函數y=(m2-1)x2-(3m-1)x+2的圖象與x軸的交點情況是( )A、當m≠3時,有一個交點B、1±≠m時,有兩個交點GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAFC 、當1±=m 時,有一個交點D 、不論m 為何值,均無交點7、如果兩圓的半徑分別為R 和r (R>r ),圓心距為d ,且(d-r)2=R 2,則兩圓的位置關系是( ) A 、內切B 、外切C 、內切或外切D 、不能確定8、在數軸上表示有理數a 、b 、c 的小點分別是A 、B 、C 且b<a<c ,則下列圖形正確的是( )9、有理數中,絕對值最小的數是( )A 、-1B 、1C 、0D 、不存在10、21的倒數的相反數是( )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,則-x 一定是( )| 11、若|x|=x ,則-x 一定是( )| 11、若|x|=x ,則-x 一定是( )ABCCBAC ABBA CA、正數B、非負數C、負數D、非正數12、兩個有理數的和除以這兩個有理數的積,其商為0,則這兩個有理數為()A、互為相反數B、互為倒數C、互為相反數且不為0D、有一個為013、長方形的周長為x,寬為2,則這個長方形的面積為()A、2xB、2(x-2)C、x-4D、2·(x-2)/214、“比x的相反數大3的數”可表示為()A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列說法正確的是()A、a2比a大B、a2比a小GAGGAGAGGAFFFFAFAFC、a2與a相等D、a2與a的大小不能確定16、數軸上,A點表示-1,現在A開始移動,先向左移動3個單位,再向右移動9個單位,又向左移動5個單位,這時,A點表示的數是()A、-1B、0C、1D、817、線段AB=4cm,延長AB到C,使BC=AB再延長BA到D,使AD=AB,則線段CD的長為()A、12cmB、10cmC、8cmD、4cm18、21-的相反數是()A、2--D、12+1+B、12-C、21-19、方程x(x-1)(x-2)=x的根是()A、x1=1, x2=2B、x1=0, x2=1, x3=2GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAFC 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 時,若設y xx =+1,則原方程可化為( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、兩個相等的實數根B 、兩個不相等的實數根C 、三個不相等的實數根D 、沒有實數根22、一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4B 、4C 、-8D 、823、解關于x 的不等式⎩⎨⎧-<>ax ax ,正確的結論是( ) A 、無解 B 、解為全體實數 C 、當a>0時無解D 、當a<0時無解24、反比例函數xy 2=,當x ≤3時,y 的取值范圍是( )GAGGAGAGGAFFFFAFAFA 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤3225、0.4的算術平方根是( ) A 、0.2B 、±0.2C 、510 D 、±51026、李明騎車上學,一開始以某一速度行駛,途中車子發生故障,只好停車修理,車修好后,因怕耽誤時間,于時27、若一數組x 1, x 2, x 3, …, x n 的平均數為x ,方差為s 2,則另一數組kx 1, kx 2, kx 3, …, kx n 的平均數與方差分別是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks2D 、k 2x , ks 2GAGGAGAGGAFFFFAFAF28、若關于x 的方程21=+-ax x 有解,則a 的取值范圍是( ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列圖形中既是中心對稱圖形,又是軸對稱圖形的是( )A 、線段B 、正三角形C 、平行四邊形D 、等腰梯形30、已知d c b a =,下列各式中不成立的是( )A 、d c b a d c b a ++=--B 、db ca d c 33++=C 、bd ac b a 23++=D 、ad=bc31、一個三角形的三個內角不相等,則它的最小角不大于( ) A 、300B 、450C 、550D 、60032、已知三角形內的一個點到它的三邊距離相等,那么這個點是( )A 、三角形的外心B 、三角形的重心C 、三角形的內心D 、三角形的垂心GAGGAGAGGAFFFFAFAF33、下列三角形中是直角三角形的個數有( )①三邊長分別為3:1:2的三角形 ②三邊長之比為1:2:3的三角形③三個內角的度數之比為3:4:5的三角形 ④一邊上的中線等于該邊一半的三角形A 、1個B 、2個C 、3個D 、4個34、如圖,設AB=1,S △OAB =43cm 2,則弧)A 、3πcm B 、32πcmC 、6πcmD 、2πcm35、平行四邊形的一邊長為5cm ,則它的兩條對角線長可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如圖,△ABC 與△BDE 都是正三角形,且AB<BD ,若△BABC不動,將△BDE繞B點旋轉,則在旋轉過程中,AE與CD的大小關系是()A、AE=CDB、AE>CDC、AE>CDD、無法確定37、順次連結四邊形各邊中點得到一個菱形,則原四邊形必是()A、矩形B、梯形C、兩條對角線互相垂直的四邊形D、兩條對角線相等的四邊形38、在圓O中,弧AB=2CD,那么弦AB和弦CD的關系是()A、AB=2CDB、AB>2CDC、AB<2CDD、AB與CD不可能相等39、在等邊三角形ABC外有一點D,滿足AD=AC,則∠BDC 的度數為()GAGGAGAGGAFFFFAFAFA 、300B 、600C 、1500D 、300或150040、△ABC 的三邊a 、b 、c 滿足a ≤b ≤c ,△ABC 的周長為18,則( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一個等于641、如圖,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,則下列說法正確的是( )A 、∠B=300B 、斜邊上的中線長為1C 、斜邊上的高線長為552D 、該三角形外接圓的半徑為142、如圖,把直角三角形紙片沿過頂點B 的直線BE (BE 交CA 于E )折疊,直角頂點C 得到等腰三角形EBA (2)B點C與AB的中點重合(3)點E到AB的距離等于CE的長,正確的個數是()A、0B、1C、2D、343、不等式6+x>x的解是()2+32A、x>2B、x>-2C、x<2D、x<-244、已知一元二次方程(m-1)x2-4mx+4m-2=0有實數根,則m的取值范圍是()A、m≤1B、m≤1且m≠1C、m≥1D、-1<m≤145、函数y=kx+b(b>0)和y=k-(k≠0),在同一坐标系中的x图象可能是()GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数x y 1=的图像上,则下列结论中正确的是( ) A 、y 1>y2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( )A 、a 8B 、22b a +C 、x 1.0D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-GAGGAGAGGAFFFFAFAF50、把a a 1--(a 不限定为正数)化简,结果为( )A 、aB 、a -C 、-aD 、-a - 51、若a+|a|=0,则22)2(a a +-等于( )A 、2-2aB 、2a-2C 、-2D 、2 52、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21C 、21D 、-21 53、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( ) A 、18 B 、6 C 、23 D 、±2354、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A、2个B、3个C、4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
初三数学错题分析与纠正

初三数学错题分析与纠正在初三数学学习过程中,我们难免会遇到一些错题。
错题的分析和纠正对于我们提高数学能力和应对考试非常重要。
本文将对初三数学中的常见错题进行分析,并提供相应的纠正方法,帮助同学们更好地掌握数学知识。
一、整式的乘法错误整式的乘法是初中数学的基础知识。
很多同学在应用这个知识点时容易出错。
例如下面这个题目:题目:(3x + 4)(2x - 5) = ?错误分析:有些同学容易出现以下错误:1. 直接将两个括号里的项相乘,而未使用分配律。
2. 乘法运算时,未正确应用正负号。
纠正方法:正确的解题方法是使用分配律:(3x + 4)(2x - 5) = 3x × 2x + 3x × (-5) + 4 × 2x + 4 × (-5)= 6x² - 15x + 8x - 20= 6x² - 7x - 20因此,正确答案是 6x² - 7x - 20。
二、平面图形的性质理解错误平面图形的性质是初中数学的另一个重要知识点。
在几何题目中,经常需要根据平面图形的性质进行计算和推理。
以下是一个典型的错题:题目:直角三角形中两直角边的比为3:4,求斜边的长。
错误分析:有些同学误将两直角边的比值直接作为斜边和直角边的比值。
纠正方法:正确解法是应用勾股定理:设直角边为3x和4x,斜边为5x,则根据勾股定理得到:(3x)² + (4x)² = (5x)²9x² + 16x² = 25x²25x² = 25x²因此,两直角边的比值不影响斜边的长,斜边的长仍然为5x。
三、函数的图像绘制错误函数的图像绘制是初中数学中的难点之一。
下面是一个典型的错题:题目:绘制函数 y = |x - 2| 的图像。
错误分析:有些同学只画出了函数的一部分,忽略了x < 2 和 x > 2时的情况。
2023年初中数学作业纠错心得体会 初中数学心得体会(优质11篇)
2023年初中数学作业纠错心得体会初中数学心得体会(优质11篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、工作计划、活动方案、规章制度、心得体会、演讲致辞、观后感、读后感、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, work plans, activity plans, rules and regulations, personal experiences, speeches, reflections, reading reviews, essay summaries, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!2023年初中数学作业纠错心得体会初中数学心得体会(优质11篇)心得体会是我们在成长和进步的过程中所获得的宝贵财富。
北京第十五中学数学整式的乘法与因式分解易错题(Word版 含答案)
北京第十五中学数学整式的乘法与因式分解易错题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.4.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.5.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.6.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--【答案】D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7.下列各式从左边到右边的变形是因式分解的是( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3)2C .x 2+2x +1=x (x +2x )+1D .-18x 4y 3=-6x 2y 2·3x 2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A 、是多项式乘法,不是因式分解,错误;B 、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误.故选B .【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.8.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.9.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案. 【详解】因为a =69=312,b =143,c =527=315, 所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.12.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.13.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.14.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.15.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.16.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.17.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+18.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.若m+n=3,则2m 2+4mn+2n 2-6的值为________.【答案】12【解析】原式=2(m 2+2mn +n 2)-6,=2(m +n )2-6,=2×9-6,=12.。
专题15利用相似三角形测高(3个知识点2种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册
整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上,已知纸板的两条边 DE=8cm,
DF=10cm,测得边 DF 离地面的高度 AC=1.5m,CD=8m,则树高 AB=
m.
【变式】如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通
过竹杆的顶端刚好看到塔顶,若小明眼睛离地面1.6m ,竹杆顶端离地面 2.4m ,小明到竹杆的距离 DF 2m , 竹杆到塔底的距离 DB 33m ,求这座古塔的高度.
【学习目标】
1. 掌握几种测量物体高度的方法与原理,能综合运用相似三角形的判定定理和相似三角形的定义解决问题。 2. 通过设计测量旗杆高度的方案,学会将实物图形抽象成几何图形的方法,体会将实际问题转化成数学模 型的转化思想。
【知识导图】
【倍速学习四种方法】
【方法一】脉络梳理法
知识点 1.利用阳光下的影子测量旗杆的高度(重点)
为12m , CF 为1.8m , CF 为 3.84m ,求树高. 【变式 1】(2022 秋·九年级课时练习)每年的秋冬季节,青竹湖湘一外国语学校的银杏大道是学校最为靓丽
的一条风景线,数学彭老师有一天为了测量一棵高不可攀的银杏树高度,他利用了反射定律,利用一面镜 子和皮尺,设计如图所示的测量方案:把镜子放在离银杏树 (AB)8 m 的点 E 处,然后观测者沿着直线 BE 后 退到点 D ,这时恰好在镜子里看到树梢顶点 A ,再用皮尺量得 DE 2 m,观测者目高 CD 1.75 m,则树高 AB 约是多少米?
2.(2022 秋·九年级课时练习)如图,在斜坡的顶部有一铁塔 AB,B 是 CD 的中点,CD 是水平的,在阳光的 照射下,塔影 DE 留在坡面上.若铁塔底座宽 CD=12m,塔影长 DE 18 m,小明和小华的身高都是 1.6m,同 一时刻小明站在点 E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为 2m 和 1m,
七年级下数学纠错题
七年级下试卷1、已知△ABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B+∠C=3∠A 。
则三角形( )A 、一定有一个内角为45°B 、一定有一个内角为60°C 、一定是直角三角形D 、一定是钝角三角形2、如图,AB=DC ,AC=BD ,AC ,BD 相交于点O ,则图中全等三角形有( ) A 、1对 B 、2对 C 、3对 D 、无法确定3、如图,在△ABC 中,AB=4,AC=6,AD 是△ABC 的中线,则AD 的取值范围是 。
4、在猜一件商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从下图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格,若商品的价格是360元,那么他一次就能猜中的概率是 。
5、某校举行以“保护环境,从我做起”为主题的演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛。
那么决赛后前两名都是九年级同学的概率是 。
6、下列图中,正确表示出将正方形绕点O 顺时针方向旋转的是( )7、如果253(5)0x y x y +-+-=,那么X= 。
y= .8、11233210x y x y +⎧-=⎪⎨⎪+=⎩9、下列各式中,能用完全平方公式分解因式的是( )A 、241x -B 、2441x x +- C 、22x xy y -+ D 、214x x -+10、将34x x -进行因式分解正确的是( )A 、(21)(21)x x x +-B 、(41)(41)x x x +-C 、2(21)x x -D 、2(41)x x - 11、(3)(3)a b a b --+是下列哪个多项式因式分解后的结果( ) A 、229a b - B 、229a b + C 、—229a b - D 、—229a b +12、把多项式2(2)(2)m a m a -+-分解因式等于( )A 、2(2)()a m m -+B 、2(2)()a m m --C 、(2)(1)m a m --D 、(2)(1)m a m -+ 13、2x —( )+29y =( )14、若22(4)25x a x +++是完全平方式,则a 的值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中考纠错15
1 已知:如图,在直角梯形ABCD 中,AD//BC ,∠A=90°,BC=CD ,BE ⊥DC 于点E 。
求证:AD=ED 。
2 遥控赛车在比赛中,电脑记录了速度的变化过程如图所示,能否用函数解析式表示这段记录?
3 已知:如图,在直角坐标系中,E 为第二象限内一点,⊙E 与x 轴自左至右交于A 、B 两点,直线PC 切⊙E 于C ,交x 轴于P ,D 为线段PC 上一点,ED ⊥BC ,已知PB=2,△PBD 的周长为322+。
(1)求证:DB 是⊙E 的切线;
(2)若抛物线2m -x x 2
1Y 2+=经过A 、B 两点,求m 的值; (3)在过P 点的直线中,是否存在这样的直线,该直线与(2)
中的抛物线的两个交点的横坐标之和等于2?若存在,求出这
样的直线的解析式;若不存在,请说明理由。
1
4 如果一次函数的图像与双曲线x
y 2-=交于(-1,m),且经过(0,1),求这个一次函数的解析式。
5 已知等腰三角形的周长为8cm ,腰长为x cm ,底边长为y cm
(1) 请写出y 与x 之间的函数关系式,并求出x 的取值范围
(2) 画出这个函数图像
6 已知:如图,⊙O 与⊙A 交于M 、N 点,且点A 在⊙O 上,弦MC 交⊙O 于D 点,连结AD 、NC ,并延长DA 交NC 于E 。
求:∠AEC 的度数。