全等三角形的应用学案
人教版数学八年级上册12.2三角形全等的判定和性质综合应用教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺规作图来演示全等三角形的判定方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形全等的判定方法和性质,以及它们在实际问题中的应用。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.解决实际问题,如测量不可到达的距离、确定物体位置等,运用三角形全等的判定和性质;
4.通过实际案例分析,培养学生运用数学知识解决实际问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过分析、归纳、总结全等三角形的判定方法和性质,形成严密的数学思维;
2.提高学生的空间想象力,运用全等三角形的性质解决实际问题,培养对几何图形的认知和操作能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形全等的判定方法。全等三角形是指在大小和形状上完全相同的两个三角形。掌握全等三角形的判定方法是解决几何问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用SSS、SAS、ASA、AAS判定方法在实际中确定全等三角形,以及这些方法如何帮助我们解决问题。
新人教板第12章全等三角形用导学案(整理完善)

第十二章 全等三角形学习内容: 12.1全等三角形学习目标: 1.能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2.能在全等三角形中正确地找出对应顶点、对应边、对应角。
3.能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 学习方法:小组讨论,合作探究一 课前预习:阅读课本P31-32,解决下列问题 (一)、全等形、全等三角形的概念阅读课本P31内容,回答课本思考问题,并完成下面填空: 1.能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.全等三角形.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
(二)、全等三角形的对应元素及表示阅读课本P31第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略. 2.全等三角形的对应元素(说一说)(1)对应顶点(三个)——重合的(2)对应边(三条) ——重合的 (3)对应角(三个) ——重合的第(4)题图EBAE 第(1)题图E BFCB第(2)题图D C B 3.寻找对应元素的规律(1)有公共边的,公共边是 ;(2)有公共角的,公共角是 ; (3)有对顶角的,对顶角是 ;(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.简单记为:(1)大边对应大边,大角对应 ;(2) 公共边是对应边,公共角是 ,对顶角也是 ;4.“全等”用“ ”表示,读作“ ”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作: 注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.(三)、全等三角形的性质阅读课本P32第二个思考及下面内容,完成下面填空:课堂探究(小组讨论 合作交流)活动一:观察下列各组的两个全等三角形,并回答问题:(1) 如图(1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC= 。
北师大版数学八年级上册第1章全等三角形学案

12.1 全等三角形学习目标1、了解全等三角形的有关概念,理解并掌握全等三角形的性质;2、能够准确辩认全等三角形的对应元素(对应顶点、对应边、对应角)学习重点:全等三角形性质的应用及准确辩认全等三角形的对应边、对应角.学习难点:理解全等三角形边、角之间的对应关系学法指导:观察思考,动手操作,参与概念的形成过程学习过程一、学前准备1、对于两条线段或两个角来说:如果它们的大小相等,那么放在一起能够;如果它们放在一起能够重合,那么它们的大小 .2、生活中的图片讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?二、合作探究1、全等形、全等三角形的有关概念(1)观察思考:每组中的两个图形有什么特点?(形状,大小 .)①②③(2)请再举出类似的例子(至少3个).(3)由此,你发现上述图形的共同特征是:完全相同——放在一起能够 .(4)进而得出概念:叫做全等形.类似的,叫做全等三角形.2. 对应顶点,对应边和对应角用半透明的纸描绘下图中左边的△ABC,然后按要求在三个图中依次操作.体验“平移、翻折、旋转前后的两个图形全等”.你发现变换前后的两个三角形有什么关系?结论:一个图形经过平移、翻折、旋转后,变化了,但、都没有改变,即平移、翻折、旋转前后的图形。
(1)把两个全等三角形重合在一起,叫做对应顶点,叫做对应边,叫做对应角.(2)△ABC与△DEF全等,记作△ABC △DEF,读作△ABC △DEF.(注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置.)3、全等三角形的性质(1)把你自制的一对全等三角形纸片重合,你发现对应边、对应角有什么关系?(2)全等三角形的性质.全等三角形的相等;全等三角形的相等(3)如图,△ABC与△ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.AC4、确定全等三角形的对应边、对应角(1)如图,将△ABC沿直线BC平移得到△DEF.B C E F那么,对应顶点是,对应边是,对应角是 .(3)确定全等三角形的对应边、对应角还有哪些规律?三、巩固练习1、教科书P32练习1.2、教科书P32练习2.四、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?五、当堂清1、下列说法:①全等三角形的对应边相等,对应角相等;②全等三角形的周长相等,面积也相等;③面积相等的三角形是全等三角形;④周长相等的三角形是全等三角形,正确的说法是()A ②③B ③④C ①②D ①②③2、△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与_______是对应角;AB与_______是对应边,BC与_______是对应边,AC与_______是对应边.3、如图△ ABD ≌△CDB,若AB=4,AD=5,BD=6,求BC、CD的长.参考答案:1.C 2. ∠F,DE,EF,DF 3.5,4六、学习反思12.2.1 利用三边判定三角形全等学习目标1、理解三角形全等的“边边边”的条件,并利用其解决问题;2、理解作一个角等于已知角的理由. 学习重点:三角形全等条件的探索过程. 学习难点:寻找判定三角形全等的条件. 学习过程: 一、学习准备 1.全等三角形的定义2.全等三角形的性质.3.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.C 'B 'A 'C BA二、合作探究探究一:先任意画一个△ABC ,再画一个△A'B'C',使△ABC 与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC 一定全等吗?1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗? 只给定一条边时:只给定一个角时:2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.探究二:给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有种可能.即:.先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?三、例题讲解例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.ADB C尺规作图:已知:∠BAC.求作:∠B'A'C' ,使∠B'A'C'=∠BAC.四、巩固练习教科书P37练习1教科书P37练习2五、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?六、当堂清1.如图,ABC △中,AB AC =,EB EC =, 则由“SSS ”可以判定( ) A.ABD ACD △≌△ B.ABE ACE △≌△ C.BDE CDE △≌△ D.以上答案都不对2.下列结论错误的是( ) A.全等三角形对应角所对的边是对应边 B.全等三角形两条对应边所夹的角是对应角 C.全等三角形是一种特殊三角形D.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等3.小明用四根竹棒扎成如图所示的风筝框架,已知AB CD =,AD CB =,下列判断不正确的是( )(第3题) (第4题)A .A C ∠=∠B .ABC CDA ∠=∠ C .ABD CDB ∠=∠ D . ABD C ∠=∠4.如图,ABC △中,AB AC =,AE CF =,BE AF =,则E ∠=∠________,CAF ∠=∠__________. 5.如图,在△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE 的度数为__________.A CDBA EB D CABCDE6.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.参考答案:1.B 2.C 3.D 4.F ABE 5. 100° 6.全等七、学习反思利用两边夹角判定三角形全等【学习目标】1、理解三角形全等“边角边”的内容.2、会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3、经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.【重点】掌握一般三角形全等的判定方法SAS【难点】运用全等三角形的判定方法解决证明线段或角相等的问题一,学前准备1. 回顾判定三角形全等的方法”SSS”二,探究活动活动1:探索三角形全等的条件1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动2 :(全等三角形判定的简单应用)1、如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2、如图,已知AB=AC,AD=AE,∠1=∠2.求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)课堂练习1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:AB∥CD3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?利用两角一边判定三角形全等通过学生动手操作动脑思考等活动主动探索,发现规律;互动合作,解决问题学生动手画图、剪贴探索三角形全等的“角边角”判定方法及“角角边使用说明【学习目标】1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角”“角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.【教学重点】已知两角一边的三角形全等探究.【教学难点】灵活运用三角形全等条件证明.【学习过程】一、复习回顾1、三角形全等的判定Ⅰ、三角形全等的判定II的内容是什么?2、判断两个三角形全等的推理过程,叫做________________.3、证明三角形全等的步骤:①准备条件:证全等时要用的间接条件要先证好;②书写证明三角形全等三步骤:⑴写出在哪两个三角形中⑵摆出三个条件用大括号括起来⑶写出全等结论③写出最终要证得的结论此步骤不是一成不变的,同学们应根据做题经验灵活掌握4、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.二、活动探究思考探究5的结果反映了什么规律?我们可以得出一个判定两个三角形全等的方法:__________________________________________(可以简写成“边角边”或者“________”[例1]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.DCABE利用斜边、直角边判定直角三角形全等学习目标:掌握三角形全等的判定(5)HL 学习方法:自我学习,小组合作学习 一、自主学习 (一)复习小测1、如图,在□ABCD 中,BD 是对角线,AE⊥BD于E,CF⊥BD于F ,求证BE=DF.(二)阅读书本P35-P37,并思考下列几个问题.1、如图,已知Rt △ABC ,∠C=90°,求作Rt △C B A ''',使∠C '=90°, AB C B ='',AB B A ='',那么C B A Rt ABC Rt '''△与△全等吗?得出判定直角三角形全等的方法: 的两个直角三角形全等.2、如图,已知AC ⊥BC,BD ⊥AD,AC=BD.求证BC=AD.二、研学释疑1、如图,BE,CD 是△ABC 的高,要证明△BCD ≌△CBE,还需增加一个条件 ,理由是 ,或增加一个条件 ,理由是 .2、书本P37,练习23、要将图中的∠MON 平分,小明设计了如下方案:在射线OM,ON 上分别取OA=OB,过点A 作DA ⊥OM 交ON 于D,过点B 作EB ⊥ON 交OM 于E,AD,EB 交于C,过点O,C 作射线OC,即为∠MON 的平分线,试说明这样做的理由.CBABACD三、实践探究1、在C B A Rt ABC Rt '''△与△中,∠C=∠C '=90°,下列条件中能判定两三角形全等的有( ) ①C A AC ''=,∠A=∠A '; ②C A AC ''=,B A AB ''=; ③C A AC''=,C B BC ''= ; ④B A AB ''=,∠A=∠A '.A. 1个B. 2个C. 3个D. 4个2、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:(1)△BFD ≌△ACD ;(2)BE ⊥AC.四、拓展延伸如图,在△ABC中,已知D 是BC 的中点,DE⊥AC,DF⊥AB ,垂足非别是E ,F ,DE=DF ,求证AB=AC.五、小结:HLFE DCBACOEDBNMA。
全等三角形的学案11.2和11.3

11.2三角形全等的条件(1)班级 姓名 学号教学目标1.掌握“边边边”条件的内容2、能初步应用“边边边”条件判定两个三角形全等 教学重点“边边边”的条件。
教学难点探究三角形全等的条件。
. 教学过程一.创设情境,引入新课什么叫全等三角形?△ABC ≌△DEF,说出对应边及对应角全等三角形的性质: 二、实践与探索三组对应角、对应边分别相等的两个三角形全等。
满足这六个条件的一部分两个三角形能否全等呢?1.如果两个三角形有一条边相等,作出的两个三角形一定全等吗?2.如果两个三角形有两条边相等,作出的两个三角形一定全等吗?3.如果两个三角形有三条边相等,那么作出的三角形一定全等吗?全班同学都画一个三边为4cm 、5cm 、2cm 的三角形,这些三角形全等吗?你能得到什么规律? 三、归纳总结全等三角形的条件: 四、【应用新知】例题 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .【小试牛刀】练习1、如图, C 是BF 的中点,AB = DC ,AC=DF.求证: △ABC ≌ △DCFA BC FE D BC A DFAB CD【变式练习】练习2、已知: 如图,点B 、E 、C 、F 。
在同一直线上 ,AB = DE ,AC = DF , BE = CF .求证:(1)△ABC ≌△DEF(2)【夯实基础 】练习3、已知: 如图,AC=EF,BC=BF ,BA=BE 。
求证:△ABC ≌ △EBF【能力提高】已知: 如图, AB = DE ,AC = DF , 点B 、E 、C 、F 在同一直线上,BE = CF .求证: △ABC ≌△DEF五.课时小结本节课你有什么收获?B CA E F D A C BE F ∠A=∠DB CA EFDO DCBAE DCBA 11.2 全等三角形的判定(2)学习目标1.掌握边角边条件的内容2.能初步应用边角边条件判定两个三角形全等 探究:先任意画出一个ABC ∆,再画出一个///C B A ∆,使AB B A =//,AC C A =//,A A ∠=∠/(即使两边和它们的夹角对应相等)。
全等三角形的判定-边角边应用-学案

边角边
第二课时
一、教学目标:掌握三角形全等的判定方法---边角边及应用
二、教学重点、难点:
重点:会用S.A.S 判定方法证明两个三角形全等。
难点:用S.A.S 判定方法证明两个三角形全等,并能进行简单的应用。
三、教学过程:
1、回顾:
前面我们学了三角形全等的其中一个判定方法是什么?
基本事实:
在△ABC 和△A ′B ′C ′中,已知AB=A ′B ′,∠A=∠A ′,AC=A ′C ′.
书写:
2、 例题讲解:
例1:如图,已知AB=AC,AE=AF,求证:△ABF ≌△ACE.
练习:如图,AB 是∠CAD 的角平分线,AC=AD,求证:△ABC ≌△ABD.
例2:如图,AB =AD ,∠BAD =∠CAE ,AC=AE ,求证:BC=DE
练习:如图,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF
思考:用“S.A.S ”判定三角形全等应注意什么问题?
3、 课堂检测:
(1)选择题
如图,已知BC =B 'C ',BA =B 'A ',用(S.A.S )证明两个三角形全等,添加的条件是()
A 、∠A =∠A '
B 、∠B =∠B '
C 、 ∠C =∠C '
(2)如图, A ,C ,D ,B 在同一条直线上,AE ∥BF ,AE=BF ,AD=BC ,
求证:FD ∥EC .
证明
四、课堂小结:
(1)、学生谈收获、体会、疑惑。
(2)、注意观察图形的特征,找出是否具备满足两个三角形全等的条件。
D C F B A E。
直角三角形全等的判定-学案

19.7直角三角形全等的判定-学案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直角三角形全等的判定一、课前练习已知:如图,AB⊥BC,DC⊥BC,根据下列条件能否判定两个直角三角形ABC与DCB全等,为什么?(1)AB=DC;(2)∠A=∠D;(3)∠ACB=∠DBC;(4)AC=DB.二、阅读理解1.阅读教材P112~113.2.直角三角形全等的判定定理是3.判定直角三角形全等的方法有: 、、、 .4.尝试:想一想把斜边和一条直角边对应相等的两个直角三角形拼在一起,有哪几种不同的拼法其中,哪几种拼法可以创设边或角对应相等的条件,依据已学过的定理来判断这两个三角形全等5.阅读中遇到的问题有三、新课探索已知:如图,在Rt△ABC和Rt△A'B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′.求证:Rt△ABC≌Rt△A′B′C′.由前面“的证明方法的启示,是否可以考虑也将这两个三角形拼在一起,构造图形,创设条件请尝试把两个图形拼在一起,看看有几种不同的拼法.拼法中,哪几种不可取为什么例题1 已知:如图,在△ABC中,BD⊥AC,CE⊥AB,BD=CE.求证:△ABC是等腰三角形.例题2 求证:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.四、课内练习1.如图,AB、CD垂直相交于点O,根据下列条件,要判定△AOC与△DOB全等,分别用哪条判定定理?(1)∠A=∠D,AC=DB;(2)AO=DO,CO=BO;(3)AC=DB,CO=BO;(4)∠C=∠B,CO=BO.2.已知:如图,在△ABC中,AD是∠BAC的平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足分别为点E、F.求证:EB=FC.3.已知:如图,EC⊥AB,FD⊥AB,垂足分别为C、D,AF=BE,FD=EC.求证:AC=BD.4.已知:如图,AB⊥BC,AE⊥ED,垂足分别为点B、E,AB=AE,∠1=∠2.求证:BC=ED.5.已知:如图,AD⊥CD,BC⊥CD,D、C分别为垂足,AB的垂直平分线EF交AB于点E,交CD于点F,BC=DF.求证:AD=FC.BM直角三角形全等的判定一、选择题1、如图,在△ABC 中,MD 垂直平分AB ,交AB 于M ,交BC 与D,NE 垂直平分AC ,交AC 于N ,交BC 于E ,若∠BAC=100°,则∠DAE 的度数为( )° ° ° °2、如图,在△ABC 中,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于点F ,则图中全等的直角三角形的对数为( ) A .3二、填空题1、已知Rt △ABC ≌Rt △A ’B ’C ’,∠C=∠C ’=90°,AB=5,BC=4,AC=3,则△A ’B ’C ’的周长为___________,面积为__________,斜边上的高_____________.2、如图,在△ABC 中,∠C=90°,AM 平分∠CAB ,CM=10cm ,那么点M 到AB的距离是_______cmABCDEM N ABCDEFOAC三、简答题1、已知:如图,点A 、B 、C 、D 在同一直线上,BE ⊥AD ,CF ⊥AD ,垂足分别是B 、C ,AB=DC ,AE=DF 求证:AF=DEABCEFD。
第十二章全等三角形12.1全等三角形教案

在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的应用复习学案
班级
姓名
例1 电线杆MN 直立在水平的地面上,缆绳AB ,AC 将它加固(如图)。
小民测得BN
=CN 后,就说缆绳AB ,AC 的长一定相等。
你能说明理由吗?
例2 如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,但绳子不够长,你能帮他想个办法吗?
例3已知线段a 及∠1, ①用尺规作△ABC ,使得AC=a,AB=2a, ∠A=∠1
②作AC 边上的高线BD 。
(
例4 如何量河两岸相对两点A 、B 的距离?
A
B
B
C
N
B
A
1
例5 如图,太阳光线AC 与A ’C ’是平行的, 同一时刻两根木杆在太阳光照射下的影子 一样长就能说这两根木杆一样长吗?说说 你的理由?
例6 如图(12):已知AB=AC,在什么条件下,AD ⊥BC ? 验证你的判断(只需验证一种情况即可)
例7 如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD ,BC=DE ,
请你判断AC 垂直于CE 吗?并说明理由。
例8、如图(14),已知AB=DC , DE=BF, ∠B=∠D ,试说明(1)DE ∥BF (2)AE=CF
A
B C (12)
A B E C
(13) F
D
C
E
作业: 一、填空 1、如图1,△ABC 沿BC 边折叠,A 与D 重合,则△ABC △DBC ,其中对应角为 。
对应边为 。
2、如图2,已知△ABC ≌△EFC ,且CF=3cm ,∠EFC=52O ,则∠A= O ;BC= cm 。
3、如图3,已知OA=OB ,OC=OD ,AD 、BC 相交于E ,则图中全等三角形有 对。
4、如图4,已知AB = AC ,AD = BD = BC ,那么,是 等腰三角形的三角形有
5、如图5,AB ∥CD ,∠A=380
,∠C=800,那么∠M= 。
6、如图6,补充条件 , 能够说明△ABD ≌△ADC
二、选择
1、将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则
CBD ∠的度数为( )
A .60°
B .75°
C .90°
D .95°
2.根据下列已知条件,能惟一画出△ABC 的是( )
A .A
B =3,B
C =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4
D .∠C =90°,AB =6
3.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且PD =PE ,则△APD 与△APE 全等的理由是( ).
(A )SAS (B )AAS (C )SSS (D )HL
4.在下列条件中,不能说明△ABC ≌△A’B’C 的是( ). (A )∠A =∠A ’,∠C =∠C ’,AC =A ’C ’ (B )∠A =∠A ’,AB =A ’B ’,BC =B ’C ’ (C )∠B =∠B ’,∠C =∠C ’,AB =A ’B ’ (D )AB =A ’B ’, BC =B ’C ,AC =A ’C ’ 5.在下列说法中,准确的有( ). ①三角对应相等的两个三角形全等 ②三边对应相等的两个三角形全等
③两角、一边对应相等的两个三角形全等 ④两边、一角对应相等的两个三角形全等
图1B C A
图2F
E B
图3D B
B
E A C
A B
C
D 图4 D
B
C A
M
E 图5
图6
A
B
D
B
P D
E
(A )1条 (B )2条 (C )3条 (D )4条
6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是( ). (A )锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D)等边三角形
三、解答题
1、如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,O A ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.
2、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角; (2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2
的度数分别是多少?(用含有x 或y 的代数式表示)
(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
3、如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:
①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;
③量出DE 的长a 米,FG 的长b 米.
如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?
A D E C
B
A ′ 2
1 A
D E C
B
F
G。