新版北师大版七年级下册第一章 整式的运算 复习教案2
数学七年级下北师大版第一章整式的运算教案

第一章整式的运算●课时安排17课时第一课时●课题§1.1 整式●教学目标(一)教学知识点1.在现实情景中进一步理解用字母表示数的意义,发展符号感.2.了解整式产生的背景和整式的概念,能求出整式的次数.(二)能力训练要求1.能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.2.进一步培养学生认识特殊与一般的辩证关系.(三)情感与价值观通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心.●教学重点单项式的系数、次数,多项式的项数、次数等概念.●教学难点对整式有关概念的理解.●教学方法讲授——自主探索相结合.通过学生自主探索现实情景中用字母表示数的问题,认识代数式的作用.在此基础上,通过教师讲解,掌握整式的有关概念.●教具准备1.教师所用三角板. 小黑板●教学过程Ⅰ.创设问题情景,引入新课[师]在七年级上册中,我们已经学习了用字母表示数,代数式等内容,这节课我们进一步认识代数式的表示作用.例如:很多小城镇里都有水塔,水塔可以用来储水,维持水压,每天水都不停地流进和流出水塔.一般地,白天,当人们从事生产活动时,流出水塔的水比流进水塔的水多;夜晚,当人们休息时,流进水塔的水比流出的水多.(1)如果水以每小时a升的速度流进水塔,那么4小时后,流进水塔多少升水,若a=20000升,计算一下结果;(2)如果水以每小时a升的速度流进水塔,同时又以每小时b升的速度流出水塔,那么4小时后,水塔里的储水量变化了多少?[生](1)4小时后,流进水塔的水为4a升;当a=20000升时,4小时后,流进水塔的水为:4a=4×20000=80000升;(2)4小时后,水塔里的储水量变化了(4a-4b)升.[师]在上述问题中列出的代数式4a,4a-4b都是整式,这节课我们就来学习整式的概念.Ⅱ.在实际情景中,明确整式的有关概念 出示投影片(§1.1 A):问题串小明房间的窗户如图1-1所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).图1-1(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计) (3)一个塑料三角尺如图1-2所示,阴影部分所占的面积是 ;图1-2(4)某校学生总数为x,其中男生人数占总数的53,男生人数为 ;(5)一个长方体的底面是边长为a 的正方形,高是h ,体积是 . [师生共析](1)装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为4b ,所以装饰物所占的面积恰好是半径为4b的一个圆的面积即216b π;(2)窗户中能射进阳光的部分的面积应该是窗户的面积与装饰物所占面积的差即ab -216b π;(3)塑料三角尺阴影部分所占的面积是21ab -21mn ; (4)男生人数为53x ;(5)这个长方体的体积是a 2h .[师]我们观察上面列出的几个代数式可以发现:4a , 216b π,53x ,a 2h 等,都是数字与字母的乘积.例如4a 是4与a 的积,216b π是16π与b 2的积,53x 是53与x 的积,a 2h 是1与a 2h的积.像这样的代数式我们把它们都叫做单项式(monomial).其中的数字因式如“4”“16π”“53”“1”是单项式的系数.一个单项式中,所有字母的指数和叫做这个单项式的次数. 哪位同学能给我分析一下上面几个单项式的次数呢?[生]4a 的次数是1次;16πb 2的次数是2次;53x 的次数是1次;a 2h 的次数是3次. [师]很好!你能给大家解释一下a 2h 这个单项式的次数为什么是3次吗?[生]这是因为a 2h 这个单项式中含字母a 和h .而a 的指数是2,h 的指数是1,所有字母的指数和当然是1+2=3喽.[师]这位同学很仔细,h 的指数是1,这一点很容易被部分同学误认为是0.h 的指数应是1,只不过作为指数时省略不写,你还能回忆起什么时候“1”可以省略不写吗?[生]“1”作为系数时,“1”作为一个字母的指数时,“1”作为分母时. [师]同学们总结的很好.[生]单独的一个数或一个字母是单项式吗?[师]是.单独的一个字母a ,我们可以看成1·a ,所以单独的一个字母系数是1,次数也是1,单独的一个非零的数的次数是0.[生]这就是说,我们学过的所有有理数都是单项式. [师]是的.[生]代数式4a -4b ,ab -16πb 2,21ab -21mn ,它们是什么样的式子呢? [师]代数式4a -4b 是单项式4a ,-4b 的和,像这样的几个单项式的和所形成的代数式,我们把它叫做多项式.请问:ab -16πb 2,21ab -21mn 是哪些单项式的和呢? [生]ab -16πb 2这个多项式是ab 与-16πb 2的和;21ab -21mn 是21ab 与-21mn 的和. [师]所以我们说ab -16πb 2这个多项式有两项,分别是ab ,-16πb 2.31x 2y +2y -1有几项呢?[生]31x 2y +2y -1有三项,分别是31x 2y ,2y ,-1. [师]每一项的次数是多少呢?[生]31x 2y 次数是3次,2y 的次数是1次,-1的次数是0.[师]在一个多项式中,次数最高项的次数,叫做这个多项式的次数.31x 2y 这一项在31x 2y +2y -1中次数最高,因此我们把31x 2y 的次数3作为多项式31x 2y +2y -1的次数,即31x 2y +2y -1是一个三次三项式.那么ab -16πb 2, 21ab -21mn 是几次几项式呢?[生]它们都是二次二项式.[师]我们刚才讨论了单项式和多项式,而且还知道了单项式的系数、次数;多项式的项数、次数.我们也就知道了整式,因为单项式和多项式统称为整式.研究单项式、多项式就是在研究整式.在研究单项式和多项式的概念时,我们注意到在数字和字母之间只出现了乘法、加法、减法(可转化为加法)的运算,没有出现2÷x 即x 2,或x ÷2即2x 这样的式子,那么2x ,x2是整式吗?同学们不妨讨论一下.[师生共析]2x 可以写成21·x ,所以2x是单项式,而x 2是数字与字母的商,所以不是单项式,更不是整式,所以整式最显著的特征是字母不能作分母.Ⅲ.议一议出示投影片(§1.1 B)小红和小兰房间窗户的装饰物如图1-3所示,它们分别由两个四分之一圆和四个半圆组成(半径分别相同).图1-3(1)窗户中能射进阳光的部分的面积分别是多少?(窗框面积忽略不计) (2)你能指出其中的单项式或多项式吗?它们的次数分别是多少?[生]左图小红房间的装饰物所占的面积相当于半径为2b 的圆的面积的一半,即8πb 2.窗户中能射进阳光的部分的面积为ab -8πb 2. 右图小兰房间的装饰物所占面积是半径为8b 的两个小圆的面积,即2×64πb 2=32πb 2.窗户中能射进阳光的部分的面积是ab -32πb 2. [生]ab -8πb 2和ab -32πb 2它们都是多项式,且次数都是2次. Ⅳ.练一练1.随堂练习(课本P 4)下列整式哪些是单项式,哪些是多项式?它们的次数分别是多少? a ,-31x 2y ,2x -1,x 2+xy +y 2解:单项式:a ,-31x 2y ;次数分别是1次和3次.多项式:2x -1,x 2+xy +y 2;次数分别是1次和2次. 2.补充练习(1)下列说法正确的是( ) A.单项式A 的系数是0B.单项式a 的次数是0C.a1是单项式 D.1是单项式(2)关于2×103·a ,下列说法中正确的是( ) A.系数是2,次数是1 B.系数是2,次数是4C.系数是2×103,次数是0D.系数是2×103,次数是1(3)已知出租汽车行驶3千米以内(包括3千米)的车费是7元,以后每行驶1千米,再加1元.如果某人坐出租汽车行驶了m 千米(m 是整数,且m ≥3),则车费是( )A.(7+m)元B.(4+m)元C.(7-m)元D.(3+m)元(4)下列各式中,哪些是单项式?哪些是多项式?哪些不是整式?-2a 2,32xy ,51(m -n ),0,y x 4,1+3b,x 2+x 1+1,x (5)写出系数是21,含有字母a 、b 、c 的五次单项式. 解:(1)D (2)D (3)B (4)单项式:-2a 2,32xy ,0,x ; 多项式:51(m -n ),1+3b ; 不是整式:y x 4,x 2+x 1+1 (5)21a 3bc , 21a 2b 2c , 21a 2bc 2, 21ab 2c 2, 21ab 3c , 21abc 3. Ⅵ.课时小结这节课我们主要学习了整式的概念,特别整式中单项式和多项式的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅶ.课后作业课本P5 习题1.1问题解决1 其它题做为课外作业 Ⅷ.活动与探究已知多项式3x n -2-2x n -x n +1是四次三项式,则单项式(2-n )x n -1y n +1的系数、次数分别是多少?[过程]根据多项式次数的定义,可以确定n 的值.因为n +1,n ,n -2相比较,n +1最大,所以n +1=4,n =3.把n =3代入(2-n )x n -1·y n +1中,单项式的系数、次数都可以确定.[结果]根据题意,得n +1=4,n =3;把n =3代入(2-n )x n -1y n +1中得单项式-x 2y 4.所以-x 2y 4的系数为-1,次数为6次.●板书设计§1.1 整式1.单项式:数和字母的积的代数式为单项式①单项式的系数:单项式中的数字因数;②单项式的次数:单项式中所有字母的指数和;③单独的一个数和一个字母也是单项式;④单独的一个非零数次数是0.2.多项式:几个单项式的和在一个多项式中,次数最高项的次数叫做多项式的次数.3.课堂练习:(由学生口答)第二课时§1.2.1 整式的加减(一)●教学目标(一)教学知识点1.经历用字母表示数量关系的过程,发展符号感.2.会进行整式加减运算,并能说明其中的算理.(二)能力训练要求1.在进行整式加减运算的过程中,发展学生有条理的思考及语言表达能力.2.在实际情景中,进一步发展学生的符号感.(三)情感与价值观要求1.在解决问题的过程中了解数学的价值,发展“用数学”的信心.2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.●教学重点1.经历字母表示数的过程,发展符号感.2.会进行整式加减运算,并能说明其中的算理.●教学难点灵活地列出算式和去括号.●教学方法活动——讨论法教师利用活动游戏或根据情况创设情景,鼓励学生通过讨论发现数量关系,运用符号进行表示,再利用所学的合并同类项、去括号的法则验证自己的发现,从而理解整式加减运算的算理.●教具准备小黑板●教学过程Ⅰ.提出问题,引入新课[师]下面我们先来做一个游戏:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这个两位数的和.[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.[师]这个规律是不是对任意的两位数都成立呢?为什么?(鼓励同伴之间互相讨论,相互启发)[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.[师]很棒!(10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.[师]如果要是求这两个数的差,又如何列出计算的式子呢?[生](10a+b)-(10b+a).[师]这就是整式的减法.你能发现它们的差有何规律吗?[生](10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b由此可知,这两个数的差是9的倍数.[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法则是什么呢?(10a+b)-(10b+a)是9的倍数呢?[生]第一步的依据是去括号法则;第二步是合并同类项法则.[师]从上面的例子中可以发现整式的加减法可以帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.Ⅱ.合作讨论新课,学会运算整式的加减1.做一做图1-6两个数相减后,结果有什么规律?这个规律对任意一个三位数都成立吗?为什么?[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?[生]任取一个三位数,经过上述程序后结果一定是99的倍数.[师]是不是任意的三位数都有这样的规律呢?首先我们先要设出一个任意的三位数.如何设呢?[生]可以设百位、十位、个位上的数字分别为a,b,c,则这个三位数为100a+10b+c.[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?[生]100c+10b+a.[师]两个数相减,可得到一个算式为什么呢?[生](100a+10b+c)-(100c+10b+a).[师]为什么在上面的算式中要加上括号呢?[生]“两个数相减”,而这两个三位数,我们都是用多项式表示出来的,每一个多项式,它都是一个整体,因此需加括号.[师]这一点很重要,如何说明这个差就是99的倍数呢?[生]化简可得,即(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =(100a -a )+(10b -10b )+(c -100c )=99a -99c也就是说任意一个三位数,经过上述程序后结果一定是99的倍数. 2.议一议[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.[师]在去括号和合并同类项时应注意什么呢? [生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-”号的情况,去掉“-”号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法则即可完成.3.例题讲解 [例1]计算(1)2x 2-3x +1与-3x 2+5x -7的和(2)(-x 2+3xy -21y 2)-(-21x 2+4xy -23y 2)(这样的题目,我们已经训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观察,对于发现的问题,可以通过让学生表达算理即去括号法则和合并同类项法则,自纠自改)解:(1)(2x 2-3x +1)+(-3x 2+5x -7) =2x 2-3x +1-3x 2+5x -7 =2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6(2)(-x 2+3xy -21y 2)-(-21x 2+4xy -23y 2) =-x 2+3xy -21y 2+21x 2-4xy +23y 2 =-x 2+21x 2+3xy -4xy -21y 2+23y 2 =-21x 2-xy +y 2注:1°列算式时,每一个多项式表示的是一个整体,因此必须加括号. 2°在第(2)小题中,去括号要注意符号问题.[例2](1)已知A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A +B +C =0,求C . (2)已知xy =-2,x +y =3,求代数式(3xy +10y )+[5x -(2xy +2y -3x )]的值. 分析:(1)可用逆运算来代入求解;(2)求代数式的值,一般是先化简,再求值,这个地方应注意整体代入. 解:(1)根据A +B +C =0,可得C =-A -B即C =-(a 2+b 2-c 2)-(-4a 2+2b 2+3c 2) =-a 2-b 2+c 2+4a 2-2b 2-3c 2 =-a 2+4a 2-b 2-2b 2+c 2-3c 2 =3a 2-3b 2-2c 2(2)原式=3xy +10y +[5x -2xy -2y +3x ] =3xy +10y +5x +3x -2xy -2y =3xy -2xy +10y -2y +5x +3x =xy +8x +8y =xy +8(x +y )当xy =-2,x +y =3时原式=xy +8(x +y )=-2+8×3 =-2+24=22. Ⅲ.随堂练习出示投影片(§1.2.1 C)1.计算:(1)(4k 2+7k )+(-k 2+3k -1) (2)(5y +3x -15z 2)-(12y -7x +z 2)2.解下列各题(1)-5ax 2与-4x 2a 的差是 ; (2) 与4x 2+2x +1的差为4x 2;(3)-5xy 2+y 2-3与 的和是xy -y 2;(4)已知A =x 2-x +1,B =x -2,则2A -3B = ; (5)比5a 2-3a +2多32a 2-4的数是 . 1.解:(1)原式=4k 2+7k -k 2+3k -1 =4k 2-k 2+7k +3k -1 =3k 2+10k -1(2)原式=5y +3x -15z 2-12y +7x -z 2 =5y -12y +3x +7x -15z 2-z 2 =-7y +10x -16z 22.解:(1)-5ax 2-(-4x 2a ) =-5ax 2+4ax 2 =-ax 2;(2)设所求整式为A ,则 A -(4x 2+2x +1)=4x 2A =4x 2+4x 2+2x +1=8x 2+2x +1;也可根据:被减式=差+减式,列式求解. (3)(xy -y 2)-(-5xy 2+y 2-3) =xy -y 2+5xy 2-y 2+3 =xy +5xy 2-2y 2+3(4)2A -3B =2(x 2-x +1)-3(x -2) =2x 2-2x +2-3x +6 =2x 2-5x +8(5)设这个数为A ,则 A -(5a 2-3a +2)=32a 2-4 A =(32a 2-4)+(5a 2-3a +2)=317a 2-3a -2 注:在上述求解的过程中,可利用逆运算来求解.Ⅳ.课时小结[师]这节课我们学习了整式的加减,你有何收获和体会呢?[生]在实际情景中,利用整式的加减发现了一般规律,使我们认识到学习整式加减的重要性.[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项. [生]在去括号时,特别注意括号前是“-”号的情况. ……Ⅴ.课后作业1.课本P 8、习题1.2,第1、2、3题;2.自己设计一个数字游戏,并用整式加减运算说明其中的规律. ●板书设计§1.2.1 整式的加减(一)一、做一做,议一议二、练一练 (由学生板演)注:1°括号前是“-”号,去掉“-”号和括号,里面的各项都变号; 2°在列算式时,突出括号的整体作用;3°在求解一些整式时,注意用逆运算或方程的思想. ●备课资料 一、参考例题[例1]已知A +B =3x 2-5x +1,A -C =-2x +3x 2-5,当x =2时,求B +C 的值.解:B +C =(A +B )-(A -C )=(3x 2-5x +1)-(-2x +3x 2-5)=3x 2-5x +1+2x -3x 2+5=-3x +6 当x =2时,原式=-3x +6=-3×2+6=0评述:先观察分析到B +C =A +B -A +C =(A +B )-(A -C )是解本题的关键.因此,一定要先观察,再分析.[例2]已知有理数a 、b 、c 如图1-7所示,化简|a +b |-|c -a |.图1-7解:由已知得:a <0,b >0,c <0且|a |<|b |,|c |>|a |,所以a +b >0,c -a <0. |a +b |-|c -a |=(a +b )-[-(c -a )]=a +b +c -a =b +c评述:要化简掉绝对值符号,必须判定被绝对值的数的正负,然后由绝对值定义化掉绝对值符号.[例3]已知yx xy +=2,求代数式y xy x yxy x -+-+-3353的值.解:由yx xy+=2,得xy =2(x +y ) y xy x y xy x -+-+-3353=xyy x xyy x 3)(5)(3++--+=)(6)()(10)(3y x y x y x y x +++-+-+=)(5)(7y x y x ++-=-57.评述:此题运用了“整体”代换的思想,把xy 和x +y 分别看作“整体”,添括号在形成“整体”的过程中起了很重要的作用.[例4]三角形的周长为48,第一边长为3a +2b ,第二边长的2倍比第一边少a -2b +2,求第三边长.解:根据题意,得48-(3a +2b )-21[(3a +2b )-(a -2b +2)] =48-3a -2b -21[3a +2b -a +2b -2] =48-3a -2b -21[2a +4b -2] =48-3a -2b -a -2b +1 =49-4a -4b所以第三边的长为49-4a -4b .评述:先求出第二边,利用等式第二边×21=第一边-(a -2b +2),求得第二边为21[(3a +2b )-(a -2b +2)]再利用三角形的周长即可解出答案.第三课时§1.2.2 整式的加减(二)●教学目标(一)教学知识点1.在探索规律的过程中,进一步体会符号表示的意义.2.经历“由特殊的例子进行归纳、建立、猜想、用符号表示,并给出证明”这一重要的数学探索过程.3.体会整式加减的必要性,并进一步熟练整式加减运算,并用它来比较不同的算法.(二)能力训练要求1.在进一步体会符号表示的意义的同时,发展符号感.2.在探索过程中发展推理能力和运算能力.(三)情感与价值观要求1.学会与同学合作交流,在合作交流的过程中获益.2.在探索规律的过程中,获得成功的体验,增强学数学的信心.●教学重点1.进一步在探索规律的过程中,发展符号感.2.体会整式加减运算的必要性,熟练掌握整式加减运算.3.经历“由特例归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程.●教学难点利用整式的加减运算,解决简单的实际问题.●教学方法探究——交流法教师让学生在探究规律的过程中,学会交流、合作,并能用整式的加减来解决生活中简单问题.●教具准备小黑板●教学过程Ⅰ.创设问题情景,引入新课让学生看课本回答1.为什么总是1089?用不同的三位数再做几次,结果都是1089吗?你能发现其中的原因吗?图1-8[师]我们来做上面的数字游戏,取满足条件的一个三位数,按图示所给定的程序运算,结果是1089吗?然后用不同的满足条件的三位数再做几次,结果一样吗?请同学们独立完成然后回答.[生]我试了几个数,结果都是1089.[师]你能解释其中的原因吗?[生]根据题意,可设个位上的数字是a,十位上的数字是b,百位上的数字则为(a+2),所以这个三位数为100(a+2)+10b+a.交换百位上的数字与个位上的数字,可得到一个较小的三位数即100a+10b+(a+2).按图示所给定程序,得[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-(a+2)=100a-100a+10b-10b+200+a-a-2=200-2=198 即按照给定的程序的前三步,运算结果都为198,这样,继续程序的后两步可得到1089.也就是任何一个满足条件的三位数,按照题目给定的顺序,结果总是1089.[师]真棒!我们已学会了用整式的加减运算解释这一实际情景,用整式的加减运算还能解释哪些现象呢?这一节课,我们继续来学习整式的加减运算及它的应用.Ⅱ.探索规律,体会整式运算的必要性下面是用棋子摆成的“小屋子”.摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子.图1-9按照这样的方式继续摆下去.(1)摆第10个这样的“小屋子”需要多少枚棋子?(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?与同伴进行交流.(教师教学中要鼓励学生独立思考的基础上探索出规律.鼓励学生算法多样化,并可实际操作探索规律)[生]实际操作可以发现摆后面一个“小屋子”,总比它前面一个多用6枚棋子.摆第2个“小屋子”需要(5+6)枚即11枚棋子,摆第3个需要(5+6×2)枚即17枚棋子,……摆第10个这样的“小屋子”需要(5+6×9)枚即59枚棋子.进而可以概括出摆第n 个“小屋子”需用5+6(n -1)=6n -1枚棋子.[师]很好.这位同学能抓住图形变化的规律.有没有别的方法呢?[生]通过观察还可以发现,摆前几个“小屋子”分别用的棋子数5,11,17,23,从而也概括出规律来,即摆第n 个这样的“小屋子”需要(6n -1)枚棋子.[生]老师,我也有一种方法,将图1-9的“小屋子”拆成上下两部分,上面部分是一个“三角形”(第一个为一个点),下面部分可以看成一个“正方形”,摆第n 个“小屋子”分别需要2n -1和4n 枚棋子(如图1-10).图1-10这样摆第n 个“小屋子”共用的棋子数为(2n -1)+4n =6n -1.[师]很好!有的同学对数敏感,通过数棋子数发现了规律;有的同学对图形的组成比较敏感,将图分成两部分(上面部分是“三角形”,下面部分是“正方形”)发现了规律.最后都推出第n 个这样的“小屋子”需(6n -1)枚棋子.我相信同学们一定还有其他的办法.下面同学们可相互交流各自的想法,或许你会有新的发现.(教师鼓励学生充分交流,并引导学生认真倾听他人的想法) Ⅲ.例题讲解 [例1]计算:(1)(3a 2b +41ab 2)-(43ab 2+a 2b ) (2)7(p 3+p 2-p -1)-2(p 3+p ) (3)-(31+m 2n +m 3)-(32-m 2n -m 3)[师]该例题是整式加减的运算,我们该如何进行整式的加减呢? [生]如果遇到有括号,应先去括号,然后再合并同类项.[师]下面我们就请三位同学到黑板上解答.其余同学来对他们的解答作出评价. [生]解:(1)(3a 2b +41ab 2)-(43ab 2+a 2b ) =3a 2b +41ab 2-43ab 2-a 2b =2a 2b -21ab 2;(2)7(p 3+p 2-p -1)-2(p 3+p ) =7p 3+7p 2-7p -7-2p 3-2p =5p 3+7p 2-9p -7;(3)-(31+m 2n +m 3)-(32-m 2n -m 3) =-31-m 2n -m 3-32+m 2n +m 3 =-1[生]这三个同学做得都很好.特别是括号前是“-”号,容易出现变号问题.但这三个同学步骤清楚,符号处理准确无误.[师]祝贺他们!大家知道我们学习数的加法运算,除可列算式外,还可以列竖式.整式的加减法可不可以列竖式.Ⅳ.试一试(课本P 11)求多项式2a +3b -5c 与-4a -11b +8c 的和时,可以利用竖式的方法:cb ac b a cb a 382532 8114)+---+--++ 利用这种方法计算下列各题.计算过程中需要注意什么? (1)(5x 2+2x -7)-(6x 2-5x -23) (2)(a 3-b 3)+(2a 3-b 2+b 3)[师]同学们先阅读用竖式求两个整式的和的方法,然后试着回答在计算过程中需要注意什么?[生]列竖式时要注意每个整式中的同类项要对齐. [师]下面我们就用竖式的方法求出上面两个小题. [生]解:(1)列成竖式为: (2)列成竖式为:Ⅴ.练一练(P10、随堂练习) 1.火车站和飞机场都为旅客提供“打包”服务.如果长、宽、高分别为x 、y 、z 米的箱子按如图1-11所示的方式“打包”,至少需要多少米的“打包”带?(其中灰色线为“打包”带)图1-112.某花店一枝黄色康乃馨的价格是x 元,一枝红色玫瑰的价格是y 元,一枝白色百合的价格是z 元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?图1-12解:1.由图可知:至少需要(2x +4y +6z )米的打包带. 2.第(1)束鲜花的价格为(3x +2y +z )元; 第(2)束鲜花的价格为(2x +2y +3z )元; 第(3)束鲜花的价格为(4x +3y +2z )元. 这三束花的总价钱为:(3x +2y +z )+(2x +2y +3z )+(4x +3y +2z )=3x +2y +z +2x +2y +3z +4x +3y +2z =9x +7y +6z (元) Ⅵ.课时小结[师生共同总结]这节课我们主要学习了如下内容:(1)在探索规律的问题中进一步体会符号表示的意义,发展符号感;(2)经历了“由特例进行归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程,发展了推理能力;(3)体会整式加减运算的必要性,并运用整式加减比较不同的算法.Ⅶ.课后作业课本习题1.3,第1、2题 ●板书设计§1.2.2 整式的加减(二)一、数字游戏解:设百位数字为a +2,十位数字为b ,个位数字为a ,根据图示程序,得: [100(a +2)+10b +a ]-[100a +10b +(a +2)] =100a +200+10b +a -100a -10b -a -2 =200-2=198最后两步程序,得198+891=1089因此满足条件的三位数按图示程序最后总能得到1089. 二、探索规律(投影片§1.2.2 B) 方法一:第1个共5个棋子; 第2个共(5+6)个棋子; 第3个共(5+2×6)个棋子; ……第n 个共5+6(n -1)个棋子,即(6n -1)个棋子.方法二:由5、11、17……可归纳出第n 个共有(6n -1)个棋子.方法三:将“小屋子”分成两部分,也可推出第n 个“小屋子”共有(2n -1)+4n =(6n -1)个棋子.三、例题(§1.2.2 C) (学生板演)四、练一练(§1.2.2 D) 五、课时小结 ●备课资料 一、参考练习1.a 2b -(-3ab 2)+(-4a 2b )-2ab 2= ;2.(23a 3-32ab 2)+(32ab 2-23a 3)= ;3.2x 3-3x 2+5x -1+ =-x 2+6x +3;4. -(2x 2+3x -5)=3x 2-2x +1;5.当x =-2时,代数式ax 3+bx -7的值是+5;则当x =2时,代数式ax 3+bx -7的值是 .6.求下列各式的值(1)求当a =-1,b =-3,c =1时,代数式21a 2b -[23a 2b -(3abc -a 2c )-4a 2c ]-3abc 的值; (2)如果|y -3|+(2x -4)2=0,求2x -y 的值. 7.已知A =x 3+x 2+x +1,B =x +x 2,计算 (1)A +B (2)B +A (3)A -B (4)B -A8.长方形的一边等于2a +3b ,另一边比它小b -a ,计算长方形的周长.答案:1.ab 2-3a 2b 2.03.-2x 3+2x 2+x +44.5x 2+x -45.-196.(1)6 (2)17.(1)x 3+2x 2+2x +1 (2)x 3+2x 2+2x +1(3)x 3+1 (4)-x 3-1 8.10a +10b第四课时●课 题§1.3 同底数幂的乘法●教学目标 (一)教学知识点1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题. (二)能力训练要求1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.学习同底幂乘法的运算性质,提高解决问题的能力. (三)情感与价值观要求在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心.●教学重点同底数幂的乘法运算法则及其应用. ●教学难点同底数幂的乘法运算法则的灵活运用. ●教学方法 引导启发法 教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.●教具准备 小黑板 ●教学过程Ⅰ.创设问题情景,引入新课[师]同学们还记得“a n”的意义吗?[生]a n表示n 个a 相乘,我们把这种运算叫做乘方.乘方的结果叫幂,a 叫做底数,n 是指数.[师]我们回忆了幂的意义后,下面看这一章最开始提出的问题(出示投影片§1.3 A):问题1:光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?问题2:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?[生]根据距离=速度×时间,可得:地球距离太阳的距离为:3×105×5×102=3×5×(105×102)(千米)比邻星与地球的距离约为:3×105×3×107×4.22=37.98×(105×107)(千米)[师]105×102,105×107如何计算呢? [生]根据幂的意义:105×102= 105)1010101010(个⨯⨯⨯⨯×102)1010(个⨯ =10710101010个⨯⋅⋅⋅⨯⨯⨯。
七年级数学(北师大版)下册整式的运算教案

教案:七年级数学(北师大版)下册整式的运算教案第一章:整式的加减法1.1 教学目标1. 理解整式的加减法的概念;2. 掌握整式的加减法的运算方法;3. 能够正确进行整式的加减法运算。
1.2 教学内容1. 整式的加减法的定义;2. 整式的加减法的运算规则;3. 整式的加减法的运算方法。
1.3 教学步骤1. 引入整式的加减法概念,通过实际例子让学生理解整式的加减法的含义;2. 讲解整式的加减法的运算规则,引导学生掌握运算方法;3. 进行适量的练习,让学生巩固整式的加减法运算。
1.4 教学评价1. 判断学生对整式的加减法的概念的理解程度;2. 检查学生对整式的加减法的运算方法的掌握情况;3. 评估学生进行整式的加减法运算的准确性。
第二章:整式的乘法2.1 教学目标1. 理解整式的乘法的概念;2. 掌握整式的乘法的运算方法;3. 能够正确进行整式的乘法运算。
2.2 教学内容1. 整式的乘法的定义;2. 整式的乘法的运算规则;3. 整式的乘法的运算方法。
2.3 教学步骤1. 引入整式的乘法概念,通过实际例子让学生理解整式的乘法的含义;2. 讲解整式的乘法的运算规则,引导学生掌握运算方法;3. 进行适量的练习,让学生巩固整式的乘法运算。
2.4 教学评价1. 判断学生对整式的乘法的概念的理解程度;2. 检查学生对整式的乘法的运算方法的掌握情况;3. 评估学生进行整式的乘法运算的准确性。
第三章:整式的除法3.1 教学目标1. 理解整式的除法的概念;2. 掌握整式的除法的运算方法;3. 能够正确进行整式的除法运算。
3.2 教学内容1. 整式的除法的定义;2. 整式的除法的运算规则;3. 整式的除法的运算方法。
3.3 教学步骤1. 引入整式的除法概念,通过实际例子让学生理解整式的除法的含义;2. 讲解整式的除法的运算规则,引导学生掌握运算方法;3. 进行适量的练习,让学生巩固整式的除法运算。
3.4 教学评价1. 判断学生对整式的除法的概念的理解程度;2. 检查学生对整式的除法的运算方法的掌握情况;3. 评估学生进行整式的除法运算的准确性。
北师大版七年级数学下册《第一章整式》教案

第一章整式的运算主备:复备:七年级备课组审阅:1.1 同底数幂的乘法教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:一、复习回顾活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:二、情境引入活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课1.利用乘方的意义,提问学生,引出法则:计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则:将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a 5, 即a 3·a 2=a 5=a 3+2.用字母m ,n 表示正整数,则有即a m ·a n =a m+n .3.引导学生剖析法则(1)等号左边是什么运算? (2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.三、应用提高活动内容:1.完成课本“想一想”:pn m a a a ⋅⋅等于什么?2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
北师大版七年级下册数学教学设计:第一章《整式的乘除》复习

北师大版七年级下册数学教学设计:第一章《整式的乘除》复习一. 教材分析《整式的乘除》是北师大版七年级下册数学的重要内容,主要介绍了整式的乘法、除法及其应用。
本章内容是学生学习代数的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
通过对整式乘除的复习,使学生能够熟练掌握运算法则,提高解决问题的能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,具备了一定的数学基础。
但部分学生在运算过程中,对于乘除法则的应用还不够熟练,容易出错。
此外,学生在解决实际问题时,往往不能灵活运用整式乘除的知识。
因此,在复习过程中,需要注重巩固基础知识,提高学生的运算能力,以及将知识应用于解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握整式的乘法、除法运算法则,提高运算速度和准确性。
2.过程与方法:通过复习,培养学生运用整式乘除解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:整式的乘法、除法运算法则。
2.教学难点:整式乘除在实际问题中的应用。
五. 教学方法采用讲解法、练习法、讨论法等,以学生为主体,教师为主导,充分发挥学生的积极性和主动性。
六. 教学准备1.教师准备:教材、教案、PPT、练习题。
2.学生准备:课本、练习本、文具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾整式的乘法、除法运算法则,激发学生的学习兴趣。
2.呈现(10分钟)教师利用PPT展示整式乘除的典型例题,引导学生进行分析、讨论,总结运算法则。
3.操练(15分钟)学生独立完成PPT上的练习题,教师巡回指导,及时纠正错误,巩固所学知识。
4.巩固(10分钟)学生分组进行讨论,运用整式乘除的知识解决实际问题,分享解题过程和心得。
5.拓展(10分钟)教师提出一些富有挑战性的问题,引导学生进行思考,提高学生的逻辑思维和抽象思维能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,强调整式乘除在实际问题中的应用。
北师大版七年级下册第一章整式的乘除:整式复习与同底数幂的乘法教案

-使用具体的数值代入,如2^3 * 2^2,让学生观察并总结指数相加的规律。
-引导学生通过画图或使用实物模型,如面积的计算,来直观理解整式乘法的含义。
-设计实际问题的例子,如计算一个长方形的长和宽各增加一倍后的面积变化,让学生将同底数幂乘法应用于问题解决中,从而突破难点。
4.乘法分配律在整式乘法中的应用。
5.举例说明同底数幂乘法在实际问题中的应用。
二、核心素养目标
1.培养学生运用数学语言进行有效表达的能力,通过整式的复习与同底数幂的乘法运算,加强学生对数学概念和运算规则的理解与描述。
2.提升学生逻辑推理和数学思维能力,让学生在整式乘除运算中掌握分析问题、解决问题的方法,形成严密的逻辑思维。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘除:整式复习与同底数幂的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过相同底数的幂相乘的情况?”比如,我们计算面积的时会遇到边长为2的正方形,其面积可以表示为2^2,如果有两个这样的正方形,面积就是2^2 * 2^2。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂乘法的奥秘。
2.教学难点
-难点内容:整式的乘法运算,尤其是同底数幂乘法的理解和应用。
-难点突破:
-对于整式乘法中的同底数幂运算,学生可能会对指数的加法规则混淆,需要通过具体例题和图示进行解释。
-学生可能在面对含有多个变量的整式乘法时感到困惑,需要引导学生通过分解因式和逐步应用乘法法则来简化计算。
-在实际问题中应用同底数幂乘法时,学生可能难以将问题抽象为数学模型,需要通过案例分析和引导提问来帮助学生建立数学模型。
2024北师大版数学七年级下册第一章《整式的乘除》复习课教案

2024北师大版数学七年级下册第一章《整式的乘除》复习课教案一. 教材分析《整式的乘除》是北师大版数学七年级下册第一章的内容,本章主要让学生掌握整式的乘法和除法运算。
通过本章的学习,学生能够理解整式乘除的概念,掌握整式乘除的法则,并能熟练进行整式的乘除运算。
二. 学情分析学生在学习本章之前,已经掌握了整数和分数的运算,对运算有一定的基础。
但是,对于整式的乘除运算,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.让学生理解整式乘除的概念,掌握整式乘除的法则。
2.培养学生进行整式乘除运算的能力,提高运算速度和准确性。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.整式乘除的概念和法则。
2.整式乘除运算的技巧和策略。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过实例和练习,让学生在实践中学习和掌握整式的乘除运算。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)通过复习整数和分数的运算,引导学生进入整式的乘除运算。
2.呈现(10分钟)讲解整式乘除的概念和法则,通过PPT课件和实例,让学生直观地理解和掌握。
3.操练(10分钟)让学生进行整式乘除的运算练习,教师进行指导和讲解,解答学生的疑问。
4.巩固(10分钟)通过一些具有代表性的练习题,让学生进一步巩固整式乘除的运算。
5.拓展(5分钟)引导学生思考整式乘除运算的技巧和策略,提高运算速度和准确性。
6.小结(5分钟)对本节课的内容进行小结,让学生明确学习的目标和重点。
7.家庭作业(5分钟)布置一些整式乘除的练习题,让学生课后进行巩固和提高。
8.板书(5分钟)板书本节课的重点内容和运算法则,方便学生复习和记忆。
教学过程每个环节所用的时间:导入:5分钟呈现:10分钟操练:10分钟巩固:10分钟拓展:5分钟小结:5分钟家庭作业:5分钟板书:5分钟总共:50分钟七年级下册第一章《整式的乘除》复习课教案一. 教材分析本章主要让学生掌握整式的乘法和除法运算。
整式的运算(北师大版七年级下第一章 教案)
第 一 章第 5 节 平方差公式一、教学目标1、知识与能力:会推导平方差公式,并能运用公式进行简单的计算2、过程与方法:在探索平方差公式的过程中,培养符号感和推理能力3、情感与态度:在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美 二、教学重点:掌握平方差公式的特点,能熟练运用公式三、教学难点:理解平方差公式的结构特征,灵活应用平方差公式 四、教学过程 1、课前预习预习书P20-P21,思考:能运用平方差公式的多项式相乘有什么特点? 预习作业:(1)()()22-+x x (2)(m+3)(m-3) (3)(-x+y )(-x-y ) (4)()()a a 3131-+ (5)()()y x y x 55-+ (6)(2x+1)(2x-1)2、师生研习以上习题都是求两数和与两数差的积,大家应该不难发现它们的规律.用公式可以表示为:()()=-+b a b a ( )-( )我们称它为平方差公式平方差公式的推导 (a +b )(a -b )= (多项式乘法法则)= (合并同类项) 即:两个数的和与这两个数的差的积等于这两个数的平方差 平方差公式结构特征:① 左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数; ② 右边是乘式中两项的平方差。
即用相同项的平方减去相反项的平方 例1计算:(1)(23)(32)x x -++ (2)(32)(23)b a a b +- (3)(41)(41)a a ---+ 变式训练:1、用平方差公式计算:(1)1111()()2323x y x y -+; (2)22(27)(72)m m ---; 注意:(1)公式的字母a b 、可以表示数,也可以表示单项式、多项式;(2)要符合公式的结构特征才能运用平方差公式 例2.下列各式都能用平方差公式吗? (1)()()c a b a -+(2)()()x y y x +-+ (3)()()n m n m +-- (4)(3)(3)a a -+--(5)(3)(3)a a +--(6)(3)(3)a a ---(7))32)(32(b a b a -+ (8))32)(32(b a b a -+-(9))32)(32(b a b a +-+- (10))32)(32(b a b a ---(11)()()ab x x ab ---33能否用平方差公式,最好的判断方法是:两个多项式中:两项相等,两项互为相反数 在平方差这个结果中谁作被减数,谁作减数,你还有什么办法确定?相等数的平方减去相反数的平方3、达标练习1、判断(1)()()22422b a a b b a -=-+( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( ) (4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( ) 2、填空:(1)()()=-+y x y x 3232 (2)()()116142-=-aa(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab(4)()()229432y x y x-=-+4、课堂小结回顾小结:熟记平方差公式,会用平方差公式进行运算。
七年级数学下册第一章整式的乘除1.4整式的乘法2教学设计新版北师大版
七年级数学下册第一章整式的乘除1.4整式的乘法2教学设计新版北师大版一. 教材分析本节课的教学内容是北师大版七年级数学下册第一章整式的乘除1.4整式的乘法2。
这部分内容是在学习了整式的加减、乘法法则等知识的基础上进行进一步学习的。
教材通过实例和练习,使学生掌握整式乘法的基本方法和技巧,培养学生解决实际问题的能力。
二. 学情分析面对刚从小学升入初中的学生,他们对整式的概念和运算可能还不是很熟悉。
因此,在教学过程中,我需要从学生的实际出发,注重基础知识的教学,通过生动的例子和实际问题,激发学生的学习兴趣,引导学生主动探索,提高他们的数学素养。
三. 教学目标1.理解整式乘法的基本概念和方法。
2.能够运用整式乘法解决实际问题。
3.培养学生的数学思维能力和团队协作能力。
四. 教学重难点1.整式乘法的基本概念和方法。
2.运用整式乘法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过生动有趣的例子和实际问题,激发学生的学习兴趣,引导学生主动探索,培养学生的数学思维能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备多媒体教学资源,如PPT等。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“一块长方形的地,长是10米,宽是5米,求这块地的面积。
”引导学生思考如何解决这个问题。
2.呈现(10分钟)呈现整式乘法的定义和方法,通过PPT等教学资源,讲解整式乘法的概念和运算规则。
同时,给出一些例子,让学生跟随老师一起完成运算。
3.操练(10分钟)让学生分成小组,共同完成一些整式乘法的练习题。
教师在这个过程中,要引导学生运用所学的知识,解答问题。
4.巩固(10分钟)通过一些实际问题,让学生运用整式乘法进行解答。
教师在这个过程中,要引导学生将所学的知识运用到实际问题中,巩固所学的内容。
5.拓展(10分钟)让学生思考:整式乘法有哪些方法和技巧?如何提高整式乘法的运算速度?教师在这个过程中,引导学生进行思考和讨论,培养学生的数学思维能力。
七年级数学下册第一章整式的运算复习教案(北师大版)
第一章整式的运算回顾与思考一、学生起点分析:学生已经完成了整式运算有关的知识学习,并能初步应用这些知识解决一些简单的问题;在相关知识的学习过程中,学生经历了实际问题“符号化”的过程,具备了一定的符号感;同时经历了一系列的数学活动,并积累了一定的活动经验;对数形结合的数学思想和类比、转化、归纳等数学方法有了一定的了解;具备了一定的合情说理的能力。
但本章的内容较抽象,而且公式较多,易混淆,而学生的有条理的思考及观察、概括、表达能力还比较薄弱,不能很好地分析各种运算法则之间的异同,对知识之间的联系理解还比较肤浅,从而易造成概念模糊,理解不深透;同时,本章的学习还离不开各种符号以及符号之间的运算,在学生符号意识尚有欠缺的情况下,容易让学生感到枯燥,缺乏学习兴趣,造成学习中的畏难情绪。
二、教学任务分析教科书基于学生对本章知识的认识,提出了本课的具体学习任务:掌握整式及其运算的相关知识,梳理本章内容,建立一定的知识体系;并能够综合运用这些知识解决相关的问题。
但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。
数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课内容从属于“数与式”这一数学学习领域,因而必须服务于代数知识教学的远期目标:“让学生经历观察、操作、推理、想象等探索过程,发展学生的符号感和应用意识,提高应用代数意识及方法解决问题的能力”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:1.梳理本章内容,构建知识网络;重点加强对整式的概念,整式加减运算,幂的运算性质的复习,并能灵活运用知识解决问题。
2.以“问题情境----数学模型----求解模型”为主要线索,发展学生的符号感以及合情说理的能力,渗透转化、类比的思想。
3.让学生在数学活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力。
北师大版七年级数学下第一章整式的乘除复习课教案
在课堂教学过程中,我也注意到了一些学生在解题过程中容易出现的错误,如指数运算混淆、漏项或重复项等。针对这些问题,我将在课后辅导中加强对学生的个别指导,帮助他们找出错误的原因,并及时纠正。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾整式的乘除的基本概念。整式的乘除是指如何将单项式与单项式、单项式与多项式、多项式与多项式相乘或相除。这些运算是解决许多数学问题的基础,也是我们进一步学习代数的关键。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用整式的乘除解决实际问题,以及它如何帮助我们简化计算过程。
-综合运用乘除法则解决实际问题:学生可能难以将问题转化为数学表达式。
-突破方法:提供实际情境问题,引导学生学会提取关键信息,建立数学模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《整式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将一个物品按照一定的规律进行分配或组合的情况?”比如,我们在超市购物时,可能会遇到买一箱饮料,里面有多种口味,我们需要计算出每种口味的数量。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾整式的乘除的奥秘。
最后,我觉得自己在教学难点和重点的把握上还有待提高。在今后的备课中,我要更加深入地研究教材,准确把握教学难点和重点,以便在课堂上进行有针对性的讲解和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《整式的运算》复习教案(2)
复习目标:
1、掌握幂的运算法则,并会逆向运用;熟练运用乘法公式。
2、掌握整式的运算在实际问题中的应用。
一、知识应用练习
1、计算
①0)3(-π ②2)21(- ③2
)2()2(a a a ---
④[])4()25)(2()23)(23(x y x y x y x y x ÷-+--+
二、例题选讲:
例1、已知9,4==b a x x ,求b a x 2-的值。
例2、已知10=+b a ,24=ab ,求(1)2)(b a -;(2)22b a +.
三、巩固练习:
1.已知9,4==b a x x ,求b a x +的值。
2.已知的值。
求n m n m a a a
432,7,5-==
3.已知16)(2=+y x ,4)(2=-y x ,求xy 的值。
四、课堂练习:
1、计算:
(1)()()3223
332a a a a -+-+⋅ (2)()()()1122+--+x x x
(3)()()2234232
-+--x x x x (4)()()2222b a b a ---+
(5)[]
)(42)2)(2(22xy y x xy xy ÷+--+
2、A 与1242++x x 的差为142-x ,求A.
3、若32=+y x ,求y x 24⋅的值。
4.常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x) 二、根据知识结构框架图,复习相应概念法则:
1、幂的运算法则:
①=⋅n m a a (m 、n 都是正整数)
②=n
m a )( (m 、n 都是正整数)
③=n ab )( (n 是正整数)
④=÷n m a a (a ≠0,m 、n 都是正整数,且m>n )
⑤=0a (a ≠0)
⑥=-p a (a ≠0,p 是正整数)
练习3、计算,并指出运用什么运算法则
①345x x x ⋅⋅ ②n m )5.0()21(⨯ ③232)2(c b a -
④333)32()31()9(-⋅⋅- ⑤225)(--+-⋅÷b b b
n n
2、整式的乘法:
单项式乘以单项式、单项式乘以多项式、多项式乘以多项式
平方差公式:()()=-+b a b a
完全平方公式:()=+2b a , ()=-2b a 练习4:计算 ①)15()31(2232b a b a -⋅ ②xy y xy y x 3)22
1(22⋅+-
③)86)(93(++x x ④)72)(73(y x y x -+ ⑤2)3(y x -
3、整式的除法
单项式除以单项式,多项式除以单项式
练习5:①)()(222c ab bc a ÷ ②)2()1264(2223ab ab b a b a ÷+-。