201x版七年级数学下册第一章整式的乘除1.4整式的乘法1教案新版北师大版

合集下载

北师大七年级数学下册教案:1.4整式的乘法

北师大七年级数学下册教案:1.4整式的乘法
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式乘法的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
北师大七年级数学下册教案:1.4整式的乘法
一、教学内容
北师大七年级数学下册教案:1.4整式的乘法
1.单项式乘单项式
-乘法法则
-举例说明
2.单项式乘多项式
-乘法法则
-举例说明
3.多项式乘多项式
-乘法法则
-举例说明
4.乘法法则的用
-代数式的简化
-解决实际问题
5.乘法与加法的混合运算
-混合运算顺序
-举例说明
-举例:3x^2 * 4x = 12x^3
-单项式乘多项式的运算法则:了解单项式分别与多项式中的每一项相乘,并将结果相加。
-举例:3x * (2x^2 + 5x - 1) = 6x^3 + 15x^2 - 3x
-多项式乘多项式的运算法则:理解多项式相乘时,每一项都要与另一个多项式的每一项相乘,并将所有结果相加。
其次,在案例分析和实践活动环节,我发现学生们在解决实际问题时,往往不知道如何将问题转化为整式乘法运算。针对这个问题,我计划在今后的教学中加入更多实际应用场景的例子,让学生们学会从实际问题中提取数学信息,提高他们解决问题的能力。
此外,学生小组讨论的环节中,部分学生在讨论中较为被动,可能是因为他们对整式乘法的掌握还不够熟练,导致在讨论中缺乏自信。为了提高学生的参与度,我打算在下次课中提前给出一些讨论话题,让学生们有更多的时间进行思考和准备。

七年级数学下册 第一章 整式的乘除 1.4 整式的乘法 1.4.1 整式的乘法教案 北师大版

七年级数学下册 第一章 整式的乘除 1.4 整式的乘法 1.4.1 整式的乘法教案 北师大版
1.4.1整式的乘法
年级
七年级
学科
数学
主题
整式
主备教师
课型
新授课
课时
1
时间
教学目标
1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;
2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.
教学
重、难点
重点:复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;
难点:能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.
7.计算:(1)xy2·(-4x3y)·(-6y3);
(2)(-x2y)3·(-2xy2)2·4xz.
8.已知9an-6b-2-n与-2a3m+1b2n的积与5a4b是同类项,求(m-n)xx的值.
检验学生学习效果,学生独立完成相应的练习,教师批阅部分学生,让优秀生帮助批阅并为学困生讲解.
总结提升
总结本节课的主要内容:
本课作业
教材P4练习1、2
本课教育评注(实际教学效果及改进设想)
(本资料素材和资料部分来自网络,供参考。请预览后才下载,期待您的好评与关注!)
导学方法
启发式教学、小组合作学习
导学步骤
导学行为(师生活动)
设计意图
回顾旧知,
引出新课
根据乘法的运算律计算:
(1)2x·3y;(2)5a2b·(-2ab2).
解:(1)2x·3y=(2×3)·(x·y)=6xy;
(2)5a2b·(-2ab2)=5×(-2)·(a2·a)·(b·b2)=-10a3b3.
1.单项式乘以单项式的运算法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.

北师大版七年级数学下册教案:1.4整式的乘法

北师大版七年级数学下册教案:1.4整式的乘法
最后,课堂总结环节,学生们对整式乘法的掌握程度令我满意。但我也意识到,仅仅依靠课堂上的讲解和练习是远远不够的,还需要学生在课后进行充分的复习和巩固。我会在课后及时了解学生的学习情况,针对他们的薄弱环节提供有针对性的辅导。
二、核心素养目标
本章节的核心素养目标主要包括:
1.培养学生的逻辑思维能力:通过整式乘法的学习,使学生能够理解和掌握数学运算的内在规律,提高逻辑推理和分析问题的能力。
2.提升解决问题的策略能力:设计多样化的问题情境,引导学生运用整式乘法解决实际问题,培养学生选择恰当方法解决问题的策略。
3.增强数学运算与数据处理能力:让学生熟练掌握整式乘法的运算规则,提高数学运算速度和准确性,以及数据处理和结果分析的能力。
北师大版七年级数学下册教案:1.4整式的乘法
一、教学内容
本节课选自北师大版七年级数学下册第一单元“整式的乘法”中的1.4节。教学内容主要包括:
1.单项式乘以单项式:介绍单项式乘法的法则,通过具体例题演示如何将两个单项式相乘,并强调系数与系数相乘、变量与变量相乘的规律。
2.单项式乘以多项式:教授如何将一个单项式乘以一个多项式,包括分配律的应用,并通过实例巩固这一概念。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

七年级数学下册第一章整式的乘除14整式的乘法(1)教案(新版)北师大版.docx

七年级数学下册第一章整式的乘除14整式的乘法(1)教案(新版)北师大版.docx

第一章:整式的乘除
1. 经历探索单项式与单项式相乘的运算法则的过程,
2. 会进行单项式与单项式相乘的运算.
教学难点 熟练地进行单项式与单项式相乘的运算.
教学方法 引导一一发现法
投影片四张
第一张:问题情景,记作(§1.4.1 A) 第二张:想一想,
记作(§1.4. 1 B) 第三■张:例题,记作(§1.4.1 C).
第四张:练习,记作(§1.4.1 D)
教学过程
京京用两张同样大小的纸,精心制作了两幅画,如图1 — 1所示,第一 幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各 丄 留有8 X 米的空白.
(1) 第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?
(2) 若把图屮的1.2x 改为mx,其他不变,则两幅画的面积又该怎样表1.4整式的乘法(1) 课程标准28页~
课时安排 共(3 )课时 课程标准
课前作业 预习课本并尝试完成随堂练习
学习目标 教学重点 单项式与单项式相乘的运算法则及其应用.
教学准备 教学
环节 课堂合作交流
二次备课 -(修改人:
课屮作业
1.计算:
(1) (5x3)・(2x2y);
⑶(一3甜)・(一4b");
(3)(2x2y)3・(―4xy2).。

北师大版七年级下册数学教学设计:1.4.1《整式的乘法》

北师大版七年级下册数学教学设计:1.4.1《整式的乘法》

北师大版七年级下册数学教学设计:1.4.1《整式的乘法》一. 教材分析《整式的乘法》是北师大版七年级下册数学的一节重要内容,主要介绍了单项式乘单项式、单项式乘多项式和多项式乘多项式的运算法则。

本节课的内容是学生学习整式乘法的基础,对于学生理解整式的运算法则和提高解决问题的能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、乘方的概念以及整式的加减法。

但学生在解决实际问题时,对于整式的乘法应用还不够熟练,需要通过本节课的学习来提高。

三. 教学目标1.知识与技能目标:使学生掌握整式的乘法运算法则,能够熟练地进行整式的乘法运算。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心。

四. 教学重难点1.教学重点:整式的乘法运算法则。

2.教学难点:整式乘法在实际问题中的应用。

五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主学习、合作交流,解决实际问题。

同时,运用案例分析、对比教学等方法,帮助学生深入理解整式的乘法运算法则。

六. 教学准备1.教师准备:备好相关教学案例,制作PPT,准备黑板。

2.学生准备:预习相关内容,了解整式的乘法运算法则。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的乘法、乘方的概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT展示整式的乘法运算法则,引导学生自主学习,理解并掌握运算法则。

3.操练(10分钟)教师提出一些整式的乘法问题,引导学生分组讨论,共同解决问题。

教师适时给予提示和指导,帮助学生掌握整式的乘法运算。

4.巩固(10分钟)教师挑选一些典型的例题,让学生独立解答,巩固所学知识。

教师对学生的解答进行点评,指出优点和不足,并给予指导。

5.拓展(10分钟)教师提出一些实际问题,引导学生运用整式的乘法运算法则解决问题。

学生分组讨论,共同寻找解决方案。

北师大版七年级数学下册第一章 整式的乘除4 第1课时 单项式与单项式相乘

北师大版七年级数学下册第一章  整式的乘除4 第1课时 单项式与单项式相乘
解:因为 -2x3m+1y2n 与 7x5m-3y5n-4 的积与 x4y 是同类项,
所以 2n+5n-4=1,3m+1+5m-3=4.
解得 m 3,n 5 .
4
7
所以 m2+n= 143 .
112
例3 已知 -2x3m+1y2n 与 7x5m-3y5n-4 的积与 x4y 是同类 项,求 m2+n 的值.
面积是 1 a 1 a
1
a
2
3
.
23 6
拓展探究: 若 (am+1 bn+2 )·(a2n-1 b) = a5b3,求 m + n 的值. 解:因为 am+1+2n-1 bn+2+1 = a5b3, 所以 m + 1 + 2n -1 = 5,n + 2 + 1 = 3. 解得 m = 5,n = 0. 所以 m+n=5.
(3) 7xy2z • (2xyz)2.
(2) -2a2b3 • (-3a);
解:(1)
原式
=
(2×
1 3
)

(
x

x
)

(
y2

y
)
=
2 3
x2 y3.
(2) 原式 = [(-2)×(-3)] • ( a2 • a) • b3 = 6a3b3.
(3) 原式 = 7xy2z • 4x2y2z2 = (7×4) • (x • x2) • (y2 • y2) • (z • z2) = 28x3y4z3.
整式的 乘除
新知一览
同底数幂的乘法 幂的乘方与积的乘方
同底数幂的除法 整式的乘法 平方差公式 完全平方公式 整式的除法

1.4整式的乘法教案北师大版数学七年级下册

1.4整式的乘法教案北师大版数学七年级下册

1.4整式的乘法京京用两张同样大小的纸,精心制作了两幅画,如图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有1x米的8空白.(1)第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?(2)若把图中的1.2x改为nx,其他不变,则两幅画的面积又该怎样表示呢?自学指导3.注意例题的思路、步骤和格式.如有问题,可小声与同桌讨论,或举手问老师.5分钟后,比比谁能正确的完成自我检测题. 合作探究继续引导学生分析实例中出现的算式,教师提出以下三个问题: 问题1:对于课堂导入实际问题的结果x ·nx ,(nx )·34x 可以表达得更简单些吗?说说你的理由?问题2:类似地,3a 2b ·2ab 3和(xyz )·y 2z 可以表达的更简单一些吗?问题3:如何进行单项式与单项式相乘的运算? 归纳结论:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.问题4:在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则?学生回答:运用了乘法的交换律、结合律和同底数幂乘法的运算性质. 【例1】计算:(1)(2xy 2)·13xy ; (2)(2a 2b 3)·(3a );(3)(4×10)5×(5×104);续表(4)(3a 2b 2)·(a 3b 2)5; (5)23a 2bc 3·34c 5·13ab 2c .探究:宁宁作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了18x m 的空白,这幅画的画面面积是多少?先让学生独立思考,之后全班交流.交流时引导学生呈现出自己的思考过程.同学之中主要有两种做法:法一:先表示出画面的长和宽,由此得到画面的面积为x mx 14x ; 法二:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为mx 214x 2.教师启发学生:两种方法得到的答案不一样,到底哪种方法对?短暂的思考之后,学生回答都对,由此引出x mx 14x =mx 214x 2这个等式.引导学生观察这个算式,并思考两个问题:式子的左边是什么运算?能不能用学过的法则说明这个等式成立的原因?学生不难总结出:式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得x mx 14x =x ·mxx ·14x ,再根据单项式乘单项式法则或同底数幂的乘法性质得到x ·mxx ·14x=mx 214x 2,即x mx 14x =mx 214x 2. 想一想:问题1:ab ·(abc+2x )及c 2(m+np )等于什么?你是怎样计算的? 问题2:如何进行单项式与多项式相乘的运算?【例2】 计算:(1)2ab (5a 2b+3ab 2); (2)23ab 22ab ·12ab ;(3)(2a )(2a 23a+1); (4)(12xy 210x 2y+21y 3)(6xy 3).2.计算:(1)(3mn)·(m+mnn);(2)2a a(2a5b)b(2ab).自学指导1.认真看课本第18页至19页随堂练习以上内容.2.注意多项式乘以多项式的运算思路.3.注意例题的思路、步骤和格式.合作探究如图1是一个长和宽分别为m,n的长方形纸片,如果它的长和宽分别增加a,b,所得长方形(图2)的面积可以怎样表示?学生独立思考后,全班交流,主要产生了四种解法:方法一:长方形的长为(m+a),宽为(n+b),所以面积可以表示为(m+a)(n+b);方法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为mn,mb,an,ab,所以长方形的面积可以表示为mn+mb+an+ab;方法三:长方形可以看做是由上下两个长方形组成的,上面的长方形面积为b(m+a),下面的长方形面积为n(m+a),这样长方形的面积就可以表示。

1.4整式的乘法课件数学北师大版七年级下册

1.4整式的乘法课件数学北师大版七年级下册
m+n=_______.
3
感悟新知
知1-练
1-2. 计算:




(1)(-3x2y)2·- · xz2;






解:原式=9x4y2· - · xz2=- x6y3z3;


(2)(-4ab3 ) ·- -
2 4
原式= a b -





2
4
ab=


2.
和,即ap+aq+bp+bq. 所以(a+b)(p+q)=ap+aq+bp+bq.
感悟新知
知3-讲
特别解读
1. 多项式乘多项式法则的实质是将多项式与多项式相乘
转化为几个单项式相乘的和的情势.
2. 多项式与多项式相乘的结果仍为多项式,在合并同类
项之前,积的项数应该是两个多项式的项数之积.
3. 计算结果一定要注意合并同类项.



感悟新知
知2-练
2-2. 计算:
3ab(a2b-ab2-ab)-ab2(2a2-3ab+2a).
解:原式=3a3b2 -3a2b3 -3a2b2 -2a3b2 +3a2b3
-2a2b2= a3b2-5a2b2.
感悟新知
知识点 3 多项式与多项式相乘
知3-讲
1. 多项式乘多项式法则 多项式与多项式相乘,先用一个
多项式的每一项乘另一个多项式的每一项,再把所得的
积相加. 用字母表示为(a+b)·(m+n)=am+bm+an+bn(m,
n,a,b 都是单项式).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版七年级数学下册第一章整式的乘除1.4整式的乘法
1教案新版北师大版
课题 1.4.1整式的乘法课型讲授
教学目标1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.
2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.
重点单项式与单项式相乘的运算法则及其应用.
难点灵活地进行单项式与单项式相乘的运算.
教学
用具
多媒体、PPT
教学
环节
说明二次备课
课程讲授
Ⅰ.创设问题情景,引入新课
[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?
[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.
[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片中的问题:京京用两张同样大小的纸,精心制作了两幅画,如图1-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白.
(1)第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?
(2)若把图中的1.2x改为mx,其他不变,则两幅画的面积又该怎样表示呢?
[生](1)从图形我们可以读出条件,第一个画面的长、宽分别为x米,1.2x米;第二个画面的长为1.2x米,宽为(x-x-x)即x 米;因此第一幅画的面积是x·(1.2x)=1.2x2平方米,第二幅画的面积为(1.2x)·(x)=0.9 x2 平方米.
(2)若把图中的1.2x改为mx,则有第一个画面的长、宽分别为x 米,mx米;第二个画面的长、宽分别为mx米、(x-x-x)即x米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(x)米2.
[师]我们一起来看这两个运算:x·(mx),(mx)·(x).这是什么样的运算.
[生]x,mx,x都是单项式,它们相乘是单项式与单项式相乘.
[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.
出示学习目标:
1).在具体情境中了解单项式乘法的意义,理解单项式乘法法则,会利用法则进行单项式的乘法运算.
2).经历探索单项式乘法法则的过程,理解单项式乘法运算的算理,
.
3).体验探求数学问题的过程,体验转化的思想方法,获得成功的体验.
Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则
出示投影片
想一想:
(1)对于上面的问题小明也得到如下的结果:
第一幅画的画面面积是x·(mx)米2;
第二幅画的画面面积是(mx)·(x)米2.
可以表达的更简单些吗?说说你的理由.
(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?
(3)如何进行单项式与单项式相乘的运算?
[师]我们来看“想一想”中的三个问题.
[生]我认为这两幅画的画面面积可以表达的更简单些.
x·(mx)
=m·(x·x)——乘法交换律、结合律
=mx2——同底数幂乘法运算性质
(mx)·(x)
=(m)(x·x)——乘法交换律、结合律
=mx2——同底数幂乘法运算性质
[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.
3a2b·2ab3
=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律
=6a3b4——同底数幂乘法运算性质
(xyz)·y2z
=x·(y·y2)·(z·z)——乘法交换律、结合律
=xy3z2——同底数幂乘法的运算性质
[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.
[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
[师]我们接下来就用这个法则去做几个题,出示投影片
[例1]计算:
(1)(2xy2)·(xy);
(2)(-2a2b3)·(-3a);
(3)(4×105)·(5×104);
(4)(-3a2b3)2·(-a3b2)5;
(5)(-a2bc3)·(-c5)·(ab2c).
解:(1)(2xy2)·(xy)=(2×)·(x·x)(y2·y)=x2y3;
(2)(-2a2b3)·(-3a)=[(-2)·(-3)](a2a)·b3=6a3b3;
(3)(4×105)·(5×104)=(4×5)·(105×104)=20×109=2×1010;
(4)(-3a2b3)2·(-a3b2)5
=[(-3)2(a2)2(b3)2]·[(-1)5(a3)5(b2)5]
=(9a4b6)·(a15b10)
=9·(a4·a15)·(b6·b10)
=9a19b16;
(5)(-a2bc3)·(-c5)·(ab2c)
=[(-)×(-)×()]·(a2·a)(b·b2)(c3·c5·c)
=a3b3c9
[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下

1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a3·3a2=6a5,而不要认为是6a6或5a5.
2.相同字母的幂相乘,运用同底数幂的乘法运算性质.
3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
4.单项式乘法法则对于三个以上的单项式相乘同样适用.
5.单项式乘以单项式,结果仍是一个单项式.
Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理
出示投影片
1.计算:
(1)(5x3)·(2x2y);
(3)(-3ab)·(-4b2);
(3)(2x2y)3·(-4xy2).
2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?
(由几位同学板演,最后师生共同讲评)
1.解:(1)(5x3)·(2x2y)
=(5×2)(x3·x2)·y=10x3+2y=10x5y;
(2)(-3ab)·(-4b2)
=[(-3)×(-4)]a·(b·b2)=12ab3;
(3)(2x2y)3·(-4xy2)
=[23(x2)3·y3]·(-4xy2)
=(8x6y3)·(-4xy2)
=[8×(-4)]·(x6·x)(y3·y2)=-32x7y5
2.解:(4×109)×(5×102)
=(4×5)×(109×102)
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档