七年级数学整式的乘法3
《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受
C. − 或0
D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读
1.4 整式的乘法(第3课时)(课件)七年级数学下册堂(北师大版)

单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,再把所得的积相加.
3.进行单项式与多项式乘法运算时,要注意什么?
① 不能漏乘:即单项式要乘遍多项式的每一项
② 去括号时注意符号的确定.
情景引入
如图是一个长和宽分别为 m, n 的长方形纸片, 如果它的长和宽分别增加 a, b, 所得长方形的面积可以怎样表示?
探索&交流
典例精析
例3.若(x+2)(x-3)=x2+ax+b,求a2+ab的值.解:因为(x+2)(x-3)=x2-3x+2x-6=x2-x-6,所以x2-x-6=x2+ax+b.因此a=-1,b=-6.所以a2+ab=(-1)2+(-1)×(-6)=7.
随堂练习
练习&巩固
B
1.下列多项式相乘,结果为x2-4x-12的是 ( )A.(x-4)(x+3) B.(x-6)(x+2)C.(x-4)(x-3) D.(x+6)(x-2)
(1)原式=a·a2+a·ab+a·b2+(-b)·a2+(-b)·ab+(-b)·b2 =a3+a2b+ab2-a2b-ab2-b3 =a3-b3;(2)原式=x2·x2+x2·(-x)+x2·1+x·x2+x·(-x)+x·1 +x2-x+1 =x4-x3+x2+x3-x2+x+x2-x+1 =x4+x2+1.
把(m+a)或者(n+b)看成一个整体,利用乘法分配律,用单项式乘多项项式理解公式展开
探索&交流
你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?
多项式与多项式项,再把所得的积相加.
多项式乘以多项式
(a+b)(m+n)
北师大版七年级下册数学说课稿:1.4.3《整式的乘法》

北师大版七年级下册数学说课稿:1.4.3《整式的乘法》一. 教材分析《整式的乘法》是北师大版七年级下册数学的一节重要内容。
本节课的主要内容是让学生掌握整式乘法的基本运算法则,并能够熟练地进行整式的乘法运算。
在教材中,通过具体的例子和逐步的引导,让学生理解和掌握整式乘法的方法和技巧。
教材还通过练习题和应用题,帮助学生巩固和应用所学的知识。
二. 学情分析在七年级下册的学生已经学习了整式的基本概念和运算法则,对整式的加减法有一定的掌握。
但是,学生可能对整式的乘法运算法则理解和运用还不够清晰,需要通过本节课的学习来进一步巩固和提高。
此外,学生可能对整式的乘法运算中的符号表示和运算顺序还不够熟悉,需要通过具体的例子和练习来进行引导和巩固。
三. 说教学目标本节课的教学目标是让学生掌握整式乘法的基本运算法则,并能够熟练地进行整式的乘法运算。
具体来说,学生需要能够理解整式乘法的概念和意义,掌握整式乘法的基本运算法则,能够正确地进行整式的乘法运算,并能够解决一些实际问题。
四. 说教学重难点本节课的重难点是整式乘法的基本运算法则的理解和运用。
学生需要理解整式乘法的概念和意义,能够正确地运用整式乘法的基本运算法则进行计算。
此外,学生还需要能够解决一些实际问题,如通过整式乘法计算图形的面积等。
五. 说教学方法与手段本节课的教学方法主要是通过讲解和示范,让学生理解和掌握整式乘法的基本运算法则。
通过具体的例子和练习题,让学生进行实际操作和练习,巩固和应用所学的知识。
此外,通过多媒体教学手段,如PPT和教学软件,展示整式乘法的运算过程和结果,帮助学生更好地理解和掌握所学的知识。
六. 说教学过程1.导入:通过一个实际问题,如计算一个长方形的面积,引入整式乘法的学习。
2.讲解:讲解整式乘法的概念和意义,通过具体的例子和示范,引导学生理解和掌握整式乘法的基本运算法则。
3.练习:让学生进行实际的整式乘法运算练习,通过练习题和应用题,巩固和应用所学的知识。
整式的乘法(三)

解:(1)原式=6x2-18xy 2 1 2 (2) 2a ( ab b ) 2 解:(2)原式=-a3b-2a2b2
(3)( x 2 y 1)(2xy )
2 2 2
解:(3)原式=2x3 y2-4xy4-2xy2
多项式与多项式相乘的法则 多项式与多项式相乘,先用一个多 项式的每一项分别乘以另一个多项式的 每一项,再把所得的积相加 。
(m+b)(n+a)= mn + ma+ bn + ba
在进行多项式乘法运算的过程中运用 了哪些数学思想方法?与同伴交流。 运用了整体、转化和数形结合的数学思想。
例1 计算:(1)(1 x)(0.6 x)
2.计算:(a+b+c)(c+d+e)
1.若
(mx y)(x y) 2x nxy y ,
2 2
求m,n的值. 2.已知
( x mx n)(x 1)
2
的结果中不含
x项和 x 项,求m,n的值.
2
以下不同形状的长方形卡片各有若干 张,请你选取其中的两张,用它们拼成 更大的长方形,尽可能采用多种拼法。
a n m n b
m
a
b
n a
n a b
m
m (a+n )= ma+mn
n m n
b (a+n) = ba+bn
a
m
a b
b
n (m+b) = mn+bn
用乘法分配律 完成(m+b)(n+a)的计算
把 m(n+a) 与 b(n+a) 看成 两个单项式与多项式相乘的运算, 应用单项式乘多项式的法则,
京改版七年级数学下册6.3《整式的乘法(3)多项式与多项式相乘》说课稿

(三)教学重难点
1.教学重点:
(1)多项式与多项式相乘的定义和法则;
(2)运用多项式与多项式相乘的法则进行运算;
(3)多项式与多项式相乘的运算规律。
2.教学难点:
(1)多项式与多项式相乘过程中,如何将乘法运算转化为加法运算;
(2)多项式与多项式相乘的运算规律的理解和运用;
(二)教学反思
在教学过程中,可能预见的问题或挑战包括:
1.学生对抽象概念的理解困难;
2.学生在运算过程中出现错误;
3.学生参与度不高,互动效果不佳。
应对策略包括:
1.使用直观的教具和多媒体资源帮助学生理解抽象概念;
2.提供详细的解题步骤和反馈,帮助学生纠正运算错误;
3.设计有趣的问题和活动,激发学生的参与兴趣。
2.问题悬念导入:我会提出一个看似简单却富有挑战性的问题:“同学们,你们知道两个多项式相乘的结果是什么样子吗?”通过制造悬念,激发学生的好奇心和求知欲。
3.游戏导入:设计一个简单的数学游戏,让学生在游戏中自然过渡到多项式与多项式相乘的学习内容。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点,引导学生深入理解:
2.过程与方法:
(1)通过实例引导学生发现多项式与多项式相乘的规律;
(2)运用探究、讨论等方式,让学生在实际操作中掌握多项式与多项式相乘的方法;
(3)培养学生运用数学思想解决问题的能力,提高数学素养。
3.情感态度与价值观:
(1)激发学生对数学学习的兴趣,培养良好的学习习惯;
(2)通过解决实际问题,让学生体会数学在生活中的应用价值;
板书内容主要包括:
1.多项式与多项式相乘的定义和法则;
北师大版七年级数学下册《整式的乘法》(第三课时)

3.计算求值:(4x+3y)(4x-3y)+(2x+y)(3x-5y),其中 x=1,y=-2. 解:原式= 16x2 12xy 12xy 9 y2 6x2 10xy
3xy 5y2 22x2 7xy 14 y2.
当x=1,y=-2时,原式=22×12-7×1×(-2)
-14×(-2)2=22+14-56=-20.
解: (1) 原式=1×0.6-1×x-x·0.6+x·x =0.6-x-0.6x+x2 =0.6-1.6x+x2;
(2) 原式=2x·x-2x·y+y·x-y·y
=2x2-2xy+xy-y2 =2x2-xy-y2;
(3) (x+y)(x2-xy+y2). 解:原式=x·x2-x·xy+xy2+x2y-xy2+y·y2
第3课时 多项式与多项式相乘
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
做一做
利用如下长方形卡片拼成更大的长方形
n m
a m
n b
a b
探究一、任选两张长方形卡片拼成 一个大的长方形,看谁的方法多,并用两种 方法求出你拼出的大长方形的面积?
(x a)(x b) x2 _(a___b_) x __a_b__ .
口答:(x-7)(x+5) x2 (__-_2_)x (_-_3_5_) .
5.小东找来一张挂历画包数学课本.已知课本长a厘
米,宽b厘米,厚c厘米,小东想将课本封面与封底
的每一边都包进去m厘米,问小东应在挂历画上裁
下一块多大面积的长方形?
新北师大版七年级数学下册第一章《 整式的乘法(第3课时)》优课件

You made my day!
我们,还在路上……
(C)(a-5)(a+8)
Байду номын сангаас
(D)(a+5)(a-8)
【解析】选D.(a+4)(a-10)=a2-6a-40;(a-4)(a+10)=a2+6a-
40; (a-5)(a+8)=a2+3a-40;(a+5)(a-8)=a2-3a-40.
2.长方形一边长3m+2n,另一边比它长m-n,则这个长方形面积
是( )
(A)12m2+11mn+2n2
(B)12m2+5mn+2n2
(C)12m2-5mn+2n2
(D)12m2+11mn+n2
【解析】选A.由题意知,另一边的长为3m+2n+m-n=4m+n,
所以这个长方形的面积是
(3m+2n)(4m+n)=12m2+11mn+2n2.
3.若(x+m)(x+3)整理后结果中不含x的一次项,则m的值为_____. 【解析】因为(x+m)(x+3)=x2+(m+3)x+3m,又因为结果中 不含x的一次项,所以m+3=0,解得m=-3. 答案:-3
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月4日星期一2022/4/42022/4/42022/4/4 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/42022/4/42022/4/44/4/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/42022/4/4April 4, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
专题1.6整式的乘法(3)多项式乘多项式

2020-2021学年七年级数学下册尖子生同步培优题典【北师大版】专题1.6整式的乘法(3)多项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•南关区校级期中)计算(a+3)(﹣a+1)的结果是()A.﹣a2﹣2a+3B.﹣a2+4a+3C.﹣a2+4a﹣3D.a2﹣2a﹣3【分析】运用多项式乘以多项式法则,直接计算即可.解析(a+3)(﹣a+1)=﹣a2﹣3a+a+3=﹣a2﹣2a+3.故选:A.2.(2020秋•朝阳区期中)若(x﹣3)(2x+1)=2x2+ax﹣3,则a的值为()A.﹣7B.﹣5C.5D.7【分析】将题中所给等式左边利用多项式乘多项式的运算法则进行计算,再与等式右边比较即可得出答案.解析(x﹣3)(2x+1)=2x2+x﹣6x﹣3=2x2﹣5x﹣3,∵(x﹣3)(2x+1)=2x2+ax﹣3,∴a=﹣5.故选:B.3.(2020秋•偃师市期中)若(x2+px+8)(x2﹣3x+1)乘积中不含x2项,则p的值为() A.p=0B.p=3C.p=﹣3D.p=﹣1【分析】先利用多项式乘多项式法则,把(x2+px+8)(x2﹣3x+1)展开合并,根据积不含x2的项,得关于p 的方程,求解即可.解析(x2+px+8)(x2﹣3x+1)=x4+px3+8x2﹣3x3﹣3px2﹣24x+x2+px+8=x4+(p﹣3)x3+(9﹣3p)x2+(p﹣24)x+8.∵(x2+px+8)(x2﹣3x+1)乘积中不含x2项,∴9﹣3p=0.∴p=3.故选:B.4.(2020秋•射洪市期中)如果(x﹣3)(3x+m)的积中不含x的一次项,则m的值为() A.7B.8C.9D.10【分析】先根据多项式乘以多项式法则展开,再合并同类项,根据已知得出m﹣9=0,求出即可.解析(x﹣3)(3x+m)=3x2+mx﹣9x﹣3m=3x2+(m﹣9)x﹣3m,∵(x﹣3)(3x+m)的积中不含x的一次项,∴m﹣9=0,解得:m=9,故选:C.5.(2020秋•房县期中)若x+y=1且xy=﹣2,则代数式(1﹣x)(1﹣y)的值等于() A.﹣2B.0C.1D.2【分析】先根据多项式乘以多项式法则进行计算,再变形,最后求出答案即可.解析∵x+y=1,xy=﹣2,∴(1﹣x)(1﹣y)=1﹣y﹣x+xy=1﹣(x+y)+xy=1﹣1+(﹣2)=﹣2,故选:A.6.(2020秋•西陵区校级期中)以下表示图中阴影部分面积的式子,不正确的是()A.x(x+5)+15B.x2+5(x+3)C.(x+3)(x+5)﹣3x D.x2+8x【分析】根据长方形和正方形的面积公式得出各个部分的面积,再逐个判断即可.解析阴影部分的面积为x(x+5)+3×5=x(x+5)+15或x2+5(x+3)或(x+3)(x+5)﹣3x,即选项A、B、C不符合题意,选项D符合题意,故选:D.7.(2020秋•路南区期中)若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值() A.5B.﹣5C.3D.﹣3【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.解析(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.8.(2020秋•思明区校级期中)如图是一所楼房的平面图,下列式子中不能表示它的面积的是()A.x2+3x+6B.(x+3)(x+2)﹣2xC.x(x+3)+6D.x(x+2)+x2【分析】把楼房的平面图转化为三个矩形,求出三个矩形的面积和即可.解析S楼房的面积=S矩形ABCD+S矩形DEFC+S矩形CFHG=AD•AB+DC•DE+CF•FH.∵AB=DC=AD=x,DE=CF=3,FH=2,∴S楼房的面积=x2+3x+6.故选:D.9.(2021•宁波模拟)已知a、b、c三个数中有两个奇数,一个偶数,n是整数,如果S=(a+n+1)+(b+2n+2)+(c+3n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶不能确定【分析】弄清a+n+1,b+2n+2,c+3n+3的奇偶性即可.可将3数相加,可知和为偶数,再根据三数和为偶数必有一数为偶数的性质可得积也为偶数.解析(a+n+1)+(b+2n+2)+(c+3n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴S是偶数.故选:A.10.(2020秋•沙河口区期末)若(x+a)(x+b)=x2+4x+3,则a+b的值为()A.3B.﹣3C.4D.﹣4【分析】直接利用多项式乘以多项式运算法则去括号,进而得出a+b的值.解析∵(x+a)(x+b)=x2+4x+3,∴x2+(a+b)x+ab=x2+4x+3,∴a+b=4.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•浦东新区期中)计算:(3x+2)(2x﹣3)=6x2﹣5x﹣6.【分析】运用多项式乘多项式的法则计算即可.解析原式=6x2﹣9x+4x﹣6=6x2﹣5x﹣6.故答案为:6x2﹣5x﹣6.12.(2020秋•香坊区校级期中)已知a﹣b=6,ab=5,则(a+1)(b﹣1)=﹣2.【分析】原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.解析∵a﹣b=6,ab=5,∴(a+1)(b﹣1)=ab﹣a+b﹣1=ab﹣(a﹣b)﹣1=5﹣6﹣1=﹣2;故答案为:﹣2.13.(2020秋•浦东新区期中)将关于x的多项式x2+2x+3与2x+b相乘,若积中不出现一次项,则b=﹣3.【分析】根据题意,利用多项式乘多项式法则计算,确定出b的值即可.解析根据题意得:(x2+2x+3)(2x+b)=2x3+(4+b)x2+(6+2b)x+3b,由积中不出现一次项,得到6+2b=0,解得:b=﹣3.故答案为:﹣3.14.(2020秋•朝阳区期中)如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要7张C类卡片.【分析】用长乘以宽,列出算式,根据多项式乘以多项式的运算法则展开,然后根据A、B、C类卡片的形状可得答案.解析∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C类7张.故答案为:7.15.(2020秋•沙坪坝区校级期中)已知x﹣y=7,xy=5,则(2﹣x)(y+2)的值为﹣15.【分析】认真观察题目的特点,易发现(2﹣x)(y+2)化简后会出现,x﹣y,xy,可以进行整体代入即可求得答案.解析(2﹣x)(y+2)=2y+4﹣xy﹣2x=﹣xy﹣2(x﹣y)+4,把x﹣y=7,xy=5代入,原式=﹣5﹣2×7+4=﹣15.故答案为:﹣15.16.(2020秋•九龙坡区校级期中)已知(x﹣2)(x2+mx+n)的乘积项中不含x2和x项,则m+n=6.【分析】直接利用多项式乘多项式计算,再得出m,n的值,即可得出答案.解析(x﹣2)(x2+mx+n)=x3+mx2+nx﹣2x2﹣2mx﹣2n=x3+(m﹣2)x2+(n﹣2m)x﹣2n∵(x﹣2)(x2+mx+n)的乘积项中不含x2和x项,∴m﹣2=0,n﹣2m=0,解得:m=2,n=4,∴m+n=6.故答案为:6.17.(2020秋•崇川区校级期中)如果(m2+n2+1)与(m2+n2﹣1)的乘积为15,那么m2+n2的值为4.【分析】根据题意列出等式,再根据平方差公式进行计算,最后求出答案即可.解析解;∵(m2+n2+1)与(m2+n2﹣1)的乘积为15,∴(m2+n2+1)(m2+n2﹣1)=15,∴(m2+n2)2﹣1=15,即(m2+n2)2=16,解得:m2+n2=4(负数舍去),故答案为:4.18.(2020秋•西峰区期末)若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7.【分析】按照多项式的乘法法则展开运算后解析∵(x+m)(x+n)=x2+(m+n)x+mn=x2﹣7x+mn,∴m+n=﹣7,∴﹣m﹣n=7,故答案为:7.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2020秋•南岗区期末)化简:(1)(2x)3(﹣5xy2);(2)(3x+2)(x+2).【分析】(1)先算积的乘方,然后再利用单项式乘以单项式计算法则进行计算即可;(2)根据多项式乘以多项式的计算法则进行计算即可.解析(1)原式=8x3•(﹣5xy2)=﹣8x3•5xy2=﹣40x4y2;(2)原式=3x2+6x+2x+4=3x2+8x+4.20.(2020秋•淅川县期末)已知(x2+mx+n)(x﹣1)的结果中不含x2项和x项,求m、n的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.解析(x2+mx+n)(x﹣1)=x3+(m﹣1)x2+(n﹣m)x﹣n.∵结果中不含x2的项和x项,∴m﹣1=0且n﹣m=0,解得:m=1,n=1.21.计算:(1)(2a﹣1)(a﹣4)﹣(a+3)(a﹣1);(2)t2﹣(t+1)(t﹣5);(3)(x+1)(x2+x+1);(4)(2x+3)(x2﹣x+1).【分析】(1)根据多项式的乘法和合并同类项解答即可;(2)根据多项式的乘法和合并同类项解答即可;(3)根据多项式的乘法和合并同类项解答即可;(4)根据多项式的乘法和合并同类项解答即可.解析(1)(2a﹣1)(a﹣4)﹣(a+3)(a﹣1)=2a2﹣8a﹣a+4﹣a2+a﹣3a+3=a2﹣11a+7;(2)t2﹣(t+1)(t﹣5)=t2﹣t2+5t﹣t+5=4t+5;(3)(x+1)(x2+x+1);=x3+x2+x+x2+x+1=x3+2x2+2x+1;(4)(2x+3)(x2﹣x+1)=2x3﹣2x2+2x+3x2﹣3x+3=2x3+x2﹣x+3.22.(2020秋•新宾县期末)如图,某市有一块长(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米.(2)当a=2,b=1时求绿化面积.【分析】(1)绿化面积=长方形的面积﹣正方形的面积;(2)把a=2,b=1代入(1)求出绿化面积.解析(1)S绿化面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab;答:绿化的面积是(5a2+3ab)平方米;(2)当a=2,b=1时,绿化面积=5×22+3×2×1=20+6=26.答:当a=2,b=1时,绿化面积为26平方米.23.如图1,长方形的两边分别是m+8,m+4.如图2的长方形的两边为m+13,m+3(其中m为正整数).(1)求出两个长方形的面积S1、S2,并比较S1、S2的大小;(2)现有一个正方形,它的周长与图1的长方形的周长相等,试证明该正方形的面积与图1的长方形的面积的差是一个常数,并求出这个常数.【分析】(1)利用长方形的面积=长×宽易得S1,S2的大小,并用作差的方法进行比较;(2)利用正方形的周长与图1中的长方形的周长相等易得正方形的边长,从而得正方形的面积,再作差去解决问题.解析(1)∵S1=(m+8)(m+4)=m2+12m+32,S2=(m+13)(m+3)=m2+16m+39,m为正整数,∴S1﹣S2=m2+12m+32﹣(m2+16m+39)=﹣4m﹣7<0,∴S1<S2;(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为2(m+8+m+4)÷4=m+6,正方形的面积为(m+6)2=m2+12m+36,∴m2+12m+36﹣(m2+12m+32)=m2+12m+36﹣m2﹣12m﹣32=4,∴该正方形的面积与图1的长方形的面积的差是一个常数4.24.(2020秋•岳麓区校级月考)定义:L(A)是多项式A化简后的项数.例如多项式A=x2+2x﹣3,则L(A)=3.一个多项式A乘以多项式B,化简得到多项式C(即C=A×B),如果L(A)≤L(C)≤L(A)+1,则称B是A的“郡园多项式”;如果L(A)=L(C),则称B是A的“郡园志勤多项式”.(1)若A=x﹣2,B=x+3;那么B是不是A的“郡园多项式”,说明理由;(2)若A=x﹣2,B=x2+ax+4是关于x的多项式且B是A的“郡园志勤多项式”,求a的值?(3)若A=x2﹣x+3m,B=x2+x+m是关于x的多项式且B是A的“郡园志勤多项式”,求m的值?【分析】(1)根据多项式乘多项式的法则计算,根据“郡园多项式”的定义判断;(2)根据多项式乘多项式的法则计算,根据“郡园志勤多项式”,得到关于a的方程,解方程即可求解;(3)根据多项式乘多项式的法则计算,根据“郡园志勤多项式”,得到关于m的方程,解方程即可求解.解析(1)B是A的“郡园多项式”,理由如下:(x﹣2)(x+3)=x2﹣2x+3x﹣6=x2+x﹣6,x2+x﹣6的项数比A的项数多1项,则B是A的“郡园多项式”;(2)(x﹣2)(x2+ax+4)=x3+ax2+4x﹣2x2﹣2ax﹣8=x3+(a﹣2)x2+(4﹣2a)x﹣8,∵B是A的“郡园志勤多项式”,∴a﹣2=0且4﹣2a=0,解得a=2.∴a的值是2;(3)(x2﹣x+3m)(x2+x+m)=x4+x3+mx2﹣x3﹣2x2﹣mx+3mx2+3mx+3m2=x4+(4m+1)x2+2mx+3m2,∵B是A的“郡园志勤多项式”,∴4m+1=0或m=0,解得m=−14或0.∴m的值是−14或0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]下列不属于原发性脑损伤者为()A.脑震荡B.脑挫伤C.原发性脑干损伤D.脑裂伤E.脑内血肿 [单选]流脑发病季节高峰是()A.11~12月份B.1~2月份C.3~4月份D.5~6月份E.7~9月份 [单选]由于遇到了与愿望相违背或愿望不能达到,并一再受到妨碍后,在逐渐累积了紧张的情况下产生的情绪体验为()A.快乐B.悲哀C.愤怒D.恐惧 [单选,A型题]主要用于片剂的粘合剂是()A、羧甲基淀粉钠B、羧甲基纤维素钠C、干淀粉D、低取代羟丙基纤维素E、交联聚维酮 [单选]干线货物运输不是()货物运输。A.大运量B.快速C.短距离D.大范围 [单选]下列是建设单位与施工单位经平等协商签订的保修期限条款,其中具有法律效力的是()。A.屋面防水工程的防渗漏为3年B.电气管线工程为3年C.有防水要求的卫生间的防渗漏为2年D.设备安装工程为l年 [单选]以下招聘方法中不属于外部招聘的是()。A.员工推荐B.猎头公司C.职位转换D.就业机构介绍 [单选]癫痫病灶部位在γCBF显像的阳性表现为()A.发作期和发作间期均见局部放射性增高B.发作期和发作间期均见局部放射性减低C.发作期局部放射性减低,发作间期局部放射性增高D.发作期局部放射性增高,发作间期放射性减低E.发作期和发作间期均无放射性改变 [单选,A1型题]以下关于前列腺电切(TURP)综合征的说法中,不恰当的是()A.发生高血容量B.低压冲洗可减少发生C.多发生于手术时间较长时D.高钠血症E.造成水中毒 [多选]使用IC卡进行劳务实名制管理可实现的管理功能有()。A.人员信息管理B.门禁管理C.工资管理D.实时跟踪E.考勤管理 [单选]某石油库,储存油品闪点为58℃,4个地上立式储罐,每个3000立方米,储油量共12000平方米,油罐直径为20米,均为固定顶储罐。该石油库内储罐之间的距离最小应为()米。A.10B.12C.14D.16 [单选,A2型题,A1/A2型题]确定慢性粒细胞白血病最有意义的依据是().A.白细胞明显增高B.中性粒细胞碱性磷酸酶活性降低C.骨髓增生极度活跃D.Ph'染色体阳性E.贫血、脾肿大 [单选]下列()属于渠道常见病害。A、漫顶B、渗漏C、管涌D、流土 [单选]某施工项目,工程合同价300万元,建设工期6个月。则开工前,建设单位到位资金不得少于()万元。A.90B.100C.150D.300 [单选]下列关于类风湿关节炎药物治疗正确的是()。A.早期应用快作用抗风湿病药B.大部分患者用一种慢作用药就可以阻止关节破坏C.可以常规应用糖皮质激素D.非甾体抗炎药是改善关节症状的一线药物E.不能使用中枢性镇痛药 [单选]月经周期为32天的妇女,其排卵日应在月经来潮后的()A.第10天B.第12天C.第15天D.第18天E.第21天 [单选]铁路平面无线调车A型号调车长台,调车长按下绿键松开再按下红键,信令显示绿、红灯交替后绿灯长亮,其显示意义是()A.连结B.溜放C.三车D.解锁紧急停车 [单选,A2型题,A1/A2型题]下列不是判断糖尿病治疗效果指标的是()。A.空腹血糖B.餐后血糖C.糖基化血浆白蛋白D.糖基化血红蛋白E.IA2、GAD-Ab [单选,A1型题]下列各项中,与糖皮质激素治疗脓毒症休克的作用无关的是()。A.抑制细胞因子,并减少致炎物质的合成与释放B.抑制血小板聚集C.解除血管痉挛D.增加心肌收缩力E.增强食欲,增加抵抗力 [多选]对于露点温度如下说法正确的是:().A、温度升高,露点温度也升高B、相对湿度达到100%时的温度是露点温度C、露点温度下降,绝对湿度下降D、露点温度下降,绝对湿度升高 [多选]小儿气管异物发生呼吸困难一般表现为()A.呼气性呼吸困难B.吸气性呼吸困难C.可出现喉鸣音D.有三凹症表现E.可出现潮式呼吸 [多选]艾宾浩斯第一个运用无意义音节对记忆进行实验研究,绘制了艾宾浩斯遗忘曲线,证明了()A.遗忘的进程先快后慢B.时间因素影响遗忘C.材料性质影响遗忘D.材料数量影响遗忘 [单选]进行图书编校质量检查时,对每种书至少应检查内容(或页码)连续的()万字,而对全书总字数不足该数量的图书应检查全书。A.2B.5C.8D.10 [单选]根据《合同法》规定,依法成立的合同,自()生效。A.成立时B.成立6个月后C.审核合格后D.法定代理人追认后 [单选]“春伤于风,邪气留连”而发生的病证是()。A.疟疾B.洞泄C.温病D.咳嗽E.濡泻 [单选]以下所列各项中,除哪一项外,均是乳痈的成因()A.产后冲任失调B.产后饮食不节、阳明蕴热C.产后乳头破碎D.情志内伤、肝气郁结E.乳汗淤积 [名词解释]无菌罐装 [单选]门静脉高压症病人最凶险的并发症是()A.感染B.贫血C.大出血D.肝昏迷E.低蛋白血症 [单选,A2型题,A1/A2型题]下列是协调活动的重要手段和依据准则的为()A.规章制度B.行政法规C.基本法D.刑法E.民法 [单选,A2型题,A1/A2型题]下列哪项用当归四逆汤主治?()A.手足厥,脉微细B.手足厥,脉洪大C.手足厥,脉细欲绝D.手足厥,脉沉紧E.手足厥,脉弦细 [问答题,简答题]什么叫混凝土配合比设计的恒定用水量法则? [单选]根据局部服从总体的原则,地方规划应当服从国家规划,首先保证国家规划的实现,维护国家规划的权威性与()。A.统一性B.宏观性C.远景性D.前瞻性 [单选]()未经县级以上建设行政主管部门审查批准,不得使用。A.施工安全技术措施B.施工组织设计C.勘察文件D.施工图设计文件 [单选,A1型题]医疗用毒性药品处方,每次处方极量()A.不得超过1日极量B.不得超过2日极量C.不得超过3日极量D.不得超过5日极量E.不得超过7日极量 [判断题]钻孔孔壁粗糙,主要是由于冷却不好,进给量太小,后角太大。()A.正确B.错误 [单选]借贷方向、科目正确,但是入账金额少记的,采用()。A.注明"此行空白"、"此页空白"字样B.划线更正法C.红字更正法D."补充登记法" [单选,A1型题]患者男,35岁。运动后突发右下腹阵发性剧痛伴恶心、呕吐及镜下血尿,应考虑是()A.急性阑尾炎B.膀胱结石C.右输尿管结石D.急性胆囊炎E.肠套叠 [单选]以下哪种行为可以称为项目?()A.开班会B.给新计算机安装操作系统及相关软件C.设计一种新型的自行车D.生产一批新型的自行车 [多选]目前我行柜员级别分为()。A.B级柜员B.A级柜员C.现金柜员D.一般柜员 [单选,A2型题,A1/A2型题]症见"吐涎沫""多涎唾""遗尿,小便数"者,治宜用()。A.甘草干姜汤B.小青龙加石膏汤C.射干麻