35kV变电站线路工程建设防雷措施
浅析35kV变电站的防雷措施

式 中 S 一 一 气 中距离 () k 空 m: R h 一独立 避雷 针 的冲击 接地 电 阻 (j : e一 }) h … 避 雷针 校验 点 的高度 () 在任 何情 况下 s m: k不得 小于 5 。 m 为 防止避 雷针 的接 地装 置与 最近 的被保 护 设备 和构架 的接地 网之间在 土 壤 中的间 隙被 击穿 造成 反击 事 故, 其地 中距离应 符 合 下式要 求 :
1引言
ቤተ መጻሕፍቲ ባይዱ
变 电站 是 电力系 统的枢 纽, 一旦 遭受 雷击 , 生事 故, 发 将造成 大 面积停 电, 影 响严 重, 因此 要 求 变 电站 要有 可 靠 的 防雷 措施 。 2■ 电 的形 成 雷电是 带 电荷 的雷 云引 起 的放 电现 象 。在雷 雨季 节里 , 阳使 地 面的水 太 分部 分化 为蒸气 , 同时地 面 空气 受 到热 地面 的作 用变 热 而上 升, 成为热 气 流 。 由于 太阳不 能直 接使 空气 变热 , 以每上 升 lm 空气 温度 约 下降 1 ℃ 。上 述 所 k, O 的热气 流遇 到 高空 的冷 空气 , 蒸气 凝结 成 小水滴 , 成 雷云 。雷 云 中, 水 形 距地 面 51k — Om的高度 主要 是正 电荷 , 卜5 m的 高度 主要 是负 电荷 。 因此, 云 在 k 雷 和 大地 之间 就形 成 了强大 的 电场 , 随着 雷云 的发展 和运 动, 当空间 电场强 度超 过 大气 游离 放 电的临 界 电场强度 时 , 会发 生雷 云之 间或 雷云对 地 的放 电, 就 形 成 雷 电。最 常见 的 雷 电是 自雷云 向下开 始先 导放 电的, 这种 雷 叫下行 雷 。当 地 面有 高耸 的突 出物 时, 不论 正负雷 云都 有可 能 出现 由突 出物上 行 的先导 , 这 种 雷叫上行雷 。 由于雷 云 中存在 几个 电荷 中心, 以在第 一个 电荷 中心 放 电完成 后, 能 所 可 引起 第 二个 、第 三个 电荷 中心 向第 一 个 电荷 中心放 电,因此 雷 电可能 是多 重 性 的 。落雷 时, 在被 直接击 中的导 线上 会有过 电压 形成 ( 直击 雷) 在 其附 近但 , 未被 直 接击 中的导 线 上也 会有 过 电压 形 成 ( 感应 雷 ) 。 3变 电站 遭受 ■ 击的 来源 和防 ■措 施 3 1 雷击 的来 源 变 电站 遭 受的雷 击 是下 行雷 , 雷击来 源 有两 个 方面 。一 是雷直 击 于变 其 电站 的电气设 备上 : 二是架空 线路 的感应雷 过 电压和直 击雷过 电压形成 的雷 电 波 沿 线路 侵 入 变 电站 。 3 2 变 电站的 防雷 措施 . l 、变 电站直 击 雷 的 保护 变 电站 防止直 击雷 最常用 的 措旌 是装 设避 雷针 。避 雷针 是保 护 电气 设 备 不受直 接雷 击 的雷 电接 受 器。它将 雷 吸引 到 自己的身 上, 安全 导入 地 中, 并 从 而 保 护 了 电气 设 备 免 遭损 坏 。 () 1 装设 避雷 针的 原则
35kV输电线路防雷措施

35kV输电线路防雷措施发布时间:2022-08-17T06:53:08.324Z 来源:《福光技术》2022年17期作者:郭晓东[导读] 雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。
因此,输电线路的雷击过电压及其防护问题不容忽视。
加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。
长庆油田分公司清洁电力开发项目部陕西省西安市 717600摘要:雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。
因此,输电线路的雷击过电压及其防护问题不容忽视。
加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。
关键词:输电线路;防雷;感应雷电压一、35kV输电线路雷击问题形成的原因1.1雷击地面问题形成原因雷击地面造成电网跳闸的主要原因是因为产生雷击感应的电压,针对35kV以及以下输电线路来说是很大的,在此基础之上自然也就会引发线路跳闸的问题。
之所以会产生感应电压是因为雷击大地问题发生的基础上会使线路相互之间产生感应过电压,但是笔者提及的这种感应过电压对高压输电线路并不会造成很大的影响。
1.2雷击电线杆雷击电线杆一般情况之下是在荒野当中发生的,电线杆的高度是要比周围的地势高出一些的,在此基础之上更为容易受到雷击放电问题的影响,自然也就会引发雷击问题;雷击电线杆的情况之下是会产生过大的电流,除去一小部分经由电线杆之上的避雷针进行倒流之外,其余的就是在对杆塔以及附属接地电阻具体构成结构加以一定程度的应用的基础上进入到大地当中,从而也就会在接地电阻领域中产生巨大的电压降,引发超出杆塔绝缘子串50%的放电电压的基础上是会引发绝缘子闪络问题以及反击过电压问题,在此基础之上自然也就会引发跳闸这样一种问题。
35kV架空输电线路与防雷措施

35kV架空输电线路与防雷措施XueshuJiaoliu◆学术交流l35kV架空输电线路与防雷措施叶开芳(福建省尤溪县供电有限公司,福建尤溪365100)摘要:结合35kV架空输电线路与防雷的实践经验,分析,总结多种防雷措施;在雷电活动频繁的"易击段,易击点及易击相"以及山区和高土壤电阻率地区,采用综合防雷措施,能使线路投资省,改造快,效果好,是值得推广的技术.关键词:35kV;架空输电线路;防雷措施我国电力工业的高速发展对电网输电线路运行的安全可靠性要求也越来越高.停电不仅影响人们的正常工作和生活,还会造成巨大的经济损失和社会影响.据统计,由雷电引起的跳闸事故占总跳闸次数的70%~80%,尤其是在多雷,土壤电阻率高,地形复杂的区域,架空输电线路遭受雷击的概率更高,严重威胁着电网安全和可靠运行.目前,我国电力行业的常规做法:66kV及以上的架空输电线路,沿全线架设避雷线;220kV及以上的架空输电线路,设置双避雷线.然而,对于35kV的架空输电线路,由于历史,经济等方面的原因,没有采用沿全线架设避雷线的方法,一般只在变电站和发电厂的进出线段架设1--2km的避雷线.35kV单回输电线路,途经高山多雷地带,年雷电日55天以上,雷击故障频繁.为了提高电网运行的安全可靠性,我们采取在变电站进出线段架设1~2km架空避雷线和安装线路型避雷器等综合防雷措施,取得了良好效果.1架设避雷线架空避雷线是高压输电线路最基本的防雷措施,其主要作用:(1)接闪作用,防止雷直击导线.(2)雷击塔顶时,分流雷电流,降低塔顶电位.(3)对导线的耦合作用,降低雷击杆塔时塔头绝缘(绝缘子串和空气间隙)上的电压.(4)对导线的屏蔽作用,降低导线上的感应过电压.35kv架空避雷线的技术要求:(1)杆塔上避雷线对边导线的保护角越小,其遮蔽效果也越好,一般采用2O.左右,山区单避雷线线路采用25.左右. (2)杆塔上两根避雷线之间的距离,不应超过避雷线与导线间垂直距离的5倍.(3)线路档距中央导线与避雷线间的最小距离,按雷击档距中央避雷线时不使二者问的问隙击穿来确定.一般档距按规程SDJ一79推荐的经验公式计算:S≥0.012L+1式中,S为导线与避雷线间的距离(m);L为档距(m).2安装避雷针用避雷针来保护架空输电线路是不经济的,一般较少采用.当遇有下列情况时,可考虑使用避雷针.(1)在雷害情况特别严重而又不能架设避雷线的线路段上,像杆塔机械强度不够等情况下.(2)变电站进出线段未设置避雷保护线,而该段线路经过地区的土壤电阻率又不高时.(3)旋转电机的直配线路.3降低杆塔接地电阻对于一般的杆塔,改善其接地方式,降低其接地电阻,是架空输电线路抗击雷电,防止跳闸事故最经济而有效的措施.因接地不良而形成的较高接地电阻,会使雷电流泄放通道受阻,提升了杆塔的电位.因此,必须加强接地网的改造工作,认真处理好接地系统的薄弱环节,使避雷线与接地体有可靠的电气连接.有避雷线的线路杆塔不接避雷线时的工频接地电阻,在雷季干燥时,不宜超过表1所列数值.表1土壤电阻率及接地电阻如果土壤电阻率很高,接地电阻难以达N30Q时,可采用6~8根总长不超过500m的放射形接地体或连续伸长接地体,这时其接地电阻可不受限制.当土壤电阻率(p)过高,为了达到规定的接地电阻,降低土壤电阻率比增加接地体数量或面积而更有利时,可用人工处理方法来降低土壤电阻率.该方法是使用价廉,腐蚀性弱的盐类或电阻率较低的物质与土壤相混合,或将其埋于接地体附近.也可因地制宜,安装引外接地体,把接地体敷设在土壤电阻率较低的地区,或采用井式或深钻式接地体.4加强线路外绝缘增加绝缘子串片数,可提高架空输电线路的防雷性能.绝缘子片数越多,其耐雷击的能力也越强.但是,绝缘子片数的增加受杆塔塔头结构及投资的限制,一般杆塔只可增加2~3片.另外,增加绝缘子片数对改善线路整体的防雷效果不是十分明显.5安装线路型避雷器各地实践表明,避雷线的防雷效果在平原地区很好,而在山区,因地形,地貌的影响,经常出现绕击,侧击等现象,使得避雷线屏蔽作用失效.而35kV及以下线路,按规程一般只在发电厂,变电站的进出线段架设1~2km(下转第159页)机电信息2009年第36期总第246期1575RB试验及其参数5.1送风机RB试验5.1.1送风机R_B试验时的机组条件机组负荷稳定在245MW以上;所有辅机运行状态良好,备用可靠;锅炉燃油系统备用良好;最少4台以上磨煤机运行:风烟系统两侧均运行;锅炉MFT各项保护投入;汽机ETS各项保护投入;所有辅机的保护根据实际运行状态投入:CCS方式投入,磨煤机,给煤机在自动调节状态,风量在自动调节状态,过热汽温,再热汽温在自动调节投入,除氧器水位,炉膛负压,氧量,一次风压等主要自动投入.5.1.2送风机Pd3试验需进行的操作及要求关注的问题热控人员检查Pd3逻辑状态,参数设置情况是否正确;确认DCS系统R.B功能投入;确认DEH系统1LB功能投入;运行人员需根据辅机运行状态选择一台送风机手动跳闸;然后,检查1t13报警状态;检查跳闸送风机的动叶应联锁关闭;检查跳闸送风机的出口挡板应联锁关闭;检查运行送风机的动叶以较快速度开启;检查磨煤机自动停止动作情况,应保留3台磨煤机运行;检查对应给煤机自动停止情况;检查对应磨煤机进出口风门挡板情况;检查运行磨煤机的给煤量应为23.33t/h,并保持60s内不能操作;检查总燃料量应在79.6t/h左右;检查给水流量应有较快的下降趋势;检查油枪自动投入动作情况;CCS控制方式应为TF状态;检查压力控制方式应为滑压状态:观察主汽压力,机组负荷下降趋势;分屏观察给水,汽温,风烟,负荷中心画面上参数控制情况;观察其他辅机运行情况;待机组负荷下降N2ooMw左右,机组进入稳定运行后,运行人员启动跳闸的送风机.之后,在CCS画面上调出Pd3复位按钮,复位RB状态,重新投入RB功能.5.1.3送风机P.J3试验安全注意事项发生油枪未正常投入时,运行人员手动启动相应的油层程序,投入油枪:除非剩余磨煤机不足3台,否则不得投入其他油枪;如果负压自动设定与测量值偏差大于等于正负800Pa并XueshuJiaoliu◆学术交流无回头迹象时,运行人员切除负压自动,采用手动控制:若风量自动设定与测量值偏差大于等于正负250t/h并无回头迹象时,运行人员切除风量自动,采用手动控制;如果一次风压自动设定与测量值偏差大于等于正负5kPa并无回头迹象时,运行人员切除一次风压自动,采用手动控制;如果给水流量水煤比低于5或大于12并无回头迹象时,运行人员切除给水调节自动,采用手动控制;发生汽机ETSt~闸时,按照运行规程处理等程序进行操作;发生锅炉MFT跳闸时,按照运行规程处理程序进行操作;本R_13试验重点关注风烟系统自动,汽温自动. 5.2一次风机及l风机RB试验一次风机Pd3试验时机组条件与送风机试验条件基础上,将一次风量保护增加15s延时,尽量维持机组运行,以观察各项参数变化情况.一次风机RB试验需进行的操作及要求关注的问题也与上个试验基本相同,只是复位时,要待负荷降至175MW以下.安全注意事项,同送风机试验时一样.引风机R_B试验与上述辅机跳闸试验步骤及关注事项基本一样, 不再重述.6结语(1)350Mw超临界直流炉发生RB时,其共性关键点在于控制合适的水煤比,以避免机组出现水冷壁超温或汽温下降过快,幅度过大等现象.这就要求机组燃料,给水控制回路的设计应充分考虑不同工况下机组对燃料,给水扰动的动态响应特性差异,以实现合理解耦.(2)通过对350MW超临界机组Pd3控制策略优化,完善,现场各工况下的Pd3动态试验证明只要机组相关设计合理,严谨,350MW超临界机组就能够成功投运Pd3功能,并将有利于机组及电网的安全运行.窭收稿日期:2009—12—03作者简介:文兵(1976一),男,本科,助工,从事火电厂热力过程自动化专业维护工作,主要负责机组MCS控制系统.(上接第157页)避雷线,并不沿全线架设.因此,35kV及以下线路因雷击而跳闸的事故非常频繁,电网的运行安全受到很大威胁.我们通过多年实践证明在线路上安装线路型复合外套金属氧化物避雷器,可极大地提高架空输电线路的抗雷击性能,降低线路雷击跳闸率.我公司从2007年开始,安排大量大修资金,对所有35kV架空输电线路进行防雷改造,在各杆塔增补接地的同时,在每条线路地处高山,多雷区,易击段等安装使用6~12组不等避雷器,运行情况良好,有力地保障了线路运行的安全与可靠性.6结语总之,架设避雷线,对提高反击耐雷有重要作用,但存在绕击或侧击现象;加强外绝缘,受杆塔尺寸及投资的限制,无法有效地降低雷击的跳闸率;装设避雷针,投资较大,一般极少采用;降低杆塔接地电阻,对减少雷击反击跳闸率有决定性作用,但高土壤电阻率地区难以降阻,并且超过耐雷水平的雷电流仍将引起线路跳闸.所以,高山多雷区地带没有全线架设避雷线的35kV及以下架空输电线路,安装线路型避雷器是较合适的选择,它具有安装方便,性能可靠,维护简单,体积小,重量轻等优点. 安装线路型避雷器与全线架设避雷线的杆塔比较,能降低杆塔的高度及机械强度,降低施工难度,具有加快工程施工速度,节约投资,避免绝缘子闪络,减少跳闸停电等优点.35kV 架空输电线路的防雷实践表明,在雷电活动严重的"易击段, 易击点及易击相"以及山区或高土壤电阻率地区,采用综合防雷措施,投资省,改造快,效果好,很有推广价值.圜收稿日期:2009—1卜10机电信息2009年第36期总第246期159。
35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施本文介绍了35kV线路遭受雷击后的危害。
采用典型的防雷保护接线;在35kV线路变电所进出线段架设避雷线;降低杆塔接地电阻;在无避雷线杆塔上装设金属性消雷器,这些防雷技术措施,可以使35kV线路免受雷击的危害。
标签:大气过电压;避雷线;不平衡绝缘;金属性消雷器;避雷器;自动重合闸一、前言35kV线路一般分布很广,雷雨季节遭受雷击机会很多。
线路遭受雷击有三种情况:一是雷击于线路导线上,产生直击雷过电压;二是雷击避雷线后,反击到输电线上;三是雷击于线路附近或杆塔上,在输电线上产生感应过电压。
雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、主变压器绝缘损坏等事故,直接影响了变电站的安全运行。
为了提高供电的可靠性,减少因大气过电压造成的危害,对35kV架空线路应采取必要的防雷保护措施。
二、35kV架空线路应采取的的防雷保护措施1、选择典型的防雷保护接线防止35kV线路直击雷和进行波最有效的方法是架设避雷线。
但因雷击避雷线时,避雷线上产生的电位相当高,35kV线路的绝缘水平承受不了这个高电压,容易造成反击,同样会引起线路跳闸,同时避雷线线路造价又高,因此,35kV 线路只在变电所進出线段,根据变压器容量,架设1~2公里避雷线,以限制流进避雷器的雷电流和限制入侵波的陡度。
为了降低侵入波的峰值和陡度,35kV 线路除架设避雷线外,限制侵入波峰值的办法是在避雷线两端杆塔上还加装管型避雷器或保护间隙。
为此,35kV线路和变电所要选择典型防雷保护接线,如图1所示:图中:HY5W2-52.7/134型氧化锌避雷器;GB1-2-GXS(35/2-10)型管型避雷器。
2、35kV线路防雷保护的设计要求2.1避雷线的选择2.1.1带避雷线杆塔的选择带地线的35kV线路,要选用定型的杆塔,以确定避雷线悬点高度和与导线间垂直距离h和避雷线的保护角α=tg-1S/h(度)。
一般水泥双杆h为3.25m-4m 为双根避雷线,铁塔h为5.7m为单根避雷线,以满足角α为20°~30°的要求。
探讨35kV输电线路防雷措施

探讨35kV输电线路防雷措施35kV输电线路是电力系统中较高电压的输电线路之一,需要特别注意防雷措施。
以下是对35kV输电线路防雷措施的探讨。
1. 地线防雷:地线是输电线路中的一部分,其主要作用是将感应到的雷电能量迅速引入大地,减少对其他设备的干扰。
对于35kV输电线路,地线的导体应采用符合规定标准的裸导线,以确保良好的接地效果。
还需注意地线的布设,尽量减少接地电阻,提高抗雷击能力。
2. 减少结构突出部分:为了减小35kV输电线路遭受雷击的风险,可尽量减少结构部件的突出部分,如减少绝缘子串数量,降低杆塔高度等。
这样可减少雷电击中的可能性,提高线路的抗雷击能力。
3. 良好的绝缘性能:35kV输电线路的绝缘设计需符合相关标准和规范要求,以确保绝缘性能良好。
绝缘子的选择应遵循正常工作电压和附加电压等要求,防止中间相间隙电晕放电和绝缘子表面电晕放电产生,从而提高绝缘系数和耐电气击穿性能。
4. 防雷接地装置:35kV输电线路应配备有效的防雷接地装置。
这些装置包括避雷针、防雷带、防雷网等,通过引雷和集流放电的作用,将雷电能量迅速引入大地,保护线路设备。
5. 防雷检测:定期进行防雷设备的检测和维护工作,对电力线路的防雷设备进行定期的巡检和测试,发现问题及时处理,确保防雷设备的有效性。
6. 防雷杆塔绝缘和绝缘子串绝缘:对于35kV输电线路的钢管杆塔,应对其表面进行绝缘处理,以防止雷击短路。
绝缘子串在安装时应满足规范要求,确保良好的绝缘性能。
35kV输电线路的防雷措施需要从多个方面综合考虑,包括地线防雷、减少突出部分、良好的绝缘性能、防雷接地装置、防雷检测以及杆塔绝缘和绝缘子串绝缘等。
通过合理的设计和配备有效的防雷设备,能够有效提高35kV输电线路的抗雷击能力,确保电力系统的稳定运行。
35kv变电站防雷接地保护方案

35kv变电站防雷接地保护方案一、背景与目标随着电力系统的不断发展,35kv变电站的数量逐渐增多,其运行安全问题也日益突出。
雷电是导致变电站故障的重要因素之一,因此,制定一套有效的防雷接地保护方案至关重要。
本方案旨在提高35kv变电站的防雷接地能力,确保其在雷雨天气下的正常运行。
二、方案设计1.避雷针安装在变电站的进出线架构、变压器和开关设备等重要设施上安装避雷针,以防止直击雷对设备造成的损害。
避雷针应选择具有优良导电性能的材料,并按照规范进行安装,以确保其保护效果。
2.接地网设计设计一个覆盖全站的接地网,确保所有设备均能通过低阻抗路径连接到地网。
接地网的设计应考虑以下几点:(1) 确定合理的接地电阻值,以确保地网与大地之间的导电性能良好;(2) 选择合适的接地体材料,如镀锌钢等;(3) 按照规范的施工方法进行接地体的埋设和连接。
3.浪涌保护器设置在变电站的电源、信号等关键部位设置浪涌保护器,以吸收雷电过电压和操作过电压等瞬时能量,保护设备免受雷电冲击。
浪涌保护器的选择应符合设备的额定电压、持续运行电压等参数。
4.合理布线对进出变电站的线路进行合理布线,避免线路交叉跨越或近距离平行排列,减少雷电感应过电压对设备的影响。
同时,对重要设备进行屏蔽措施,如采用屏蔽电缆等。
5.维护与监测定期对防雷接地系统进行检查和维护,确保其正常运行。
同时,安装接地电阻在线监测系统,实时监测地网的电阻值变化,及时发现并处理问题。
三、实施步骤1.调研与设计阶段:对变电站的地形地貌、建筑结构、设备布局等进行详细调研,确定避雷针安装位置、接地网设计方案等。
2.材料采购与施工准备阶段:根据设计方案采购必要的材料和设备,包括避雷针、接地体、浪涌保护器等。
同时,做好现场施工准备工作,如清理场地、准备施工工具等。
3.避雷针安装与接地网施工阶段:按照设计方案和施工规范进行避雷针的安装和接地网的施工。
注意确保避雷针与设备之间的安全距离,以及接地体的埋设深度和连接质量。
35kV电力线路的防雷措施分析

量和 深度 : ② 改换土壤率较低的土壤 ; ③ 在接地极 附近施
耐 雷性 能不 断提 高。 导 线上 , 产 生 雷击过 电压 : 雷 电袭击 避雷 线 , 反 击到 输 电线 线路防 雷 、 3 . 4 适 当加强 线路 绝缘 路 上 ;雷 电落 在杆 塔 或 者 附建 筑物 上 产 生 雷 击 感 应过 电
为提 高 配 电网防 雷 避雷 水平 , 保 证其 安 全运 行 , 应 该 压。 直 击 雷过 电压 , 轻 则 引起线 路绝缘 子 闪络 , 从 而 引起线 全面加 强 配 电网建 设 , 完善 配 电网结 构 , 消 除薄 弱环 节 , 提 路 单项 接地 或跳 闸。重则 引起绝 缘子破 裂 、 断线 等事 故 , 造 效 成 长 时间停 电。雷 电波入侵 到 变 电站 , 威胁 电气 设备 绝缘 , 升配 电网发展 水平 ,确 保 配 网防 雷任务 百 分之 百完 成 , 提 高线 路绝缘 性 能也是 防 雷避 雷的有 效 造 成 设备损 坏。所 以 , 为 了保证 线路及 设备 的正常运 行 , 减 力百 分之百 发挥 。
3 5 k V电力线路的防雷措施分析
韩 明学 ( 中 铁一 局集 团 电 务工 程 有 限 公司)
摘要 : 文章介绍 了雷 电产生 的原理 以及 雷电对 3 5 k V电路线路的 使 避 雷器 触 发 ,雷 电流通 过 避 雷器 提 供 一 个低 阻 抗 的通 危害 , 提 出避 雷 装 置 、 接 地 装 置 的安 装 , 以 及 线 路绝 缘 、 自动 重合 闸 等 路 泄 放 至 大 地 , 有 效抑 制 电压 升 高 , 从 而 防 止 电力 设 备 、
技术措施。这些防雷技术措施可使 3 5 k V 电力 线 路 受 雷击 的危 害 降
35kV输配电线路雷击故障及防雷措施

35kV输配电线路雷击故障及防雷措施摘要:35kV输配电线路是比较常用的配电线路,在我国电力系统中有着重要地位,但由于35kV输配电线路本身的特征,增加了输配电线遭受雷击闪络或跳闸事故的几率,所以加强35kV输配电线路的防雷措施就显得尤为重要。
这就要求相关技术人员能够排除配电线路防雷措施中的隐患,提升配电线路的安全性,从而保障区域供电的正常运行。
本文主要论述35kV输配电线路防雷措施的重要性、35kV输配电线路雷击故障类型与雷击故障判别类型,以及具体的防雷措施,希望提供读者有价值的信息。
关键词:35kV输配电线路防雷措施;雷击故障类型;故障判别1.35kV输配电线路防雷措施的重要性35kV输配电线路是我国电网系统中主要的配电线路,但由于其本身的性质,使得配电线路在防雷电方面表现的并不理想,增加了遭受雷击的几率。
在我国沿海地区,输配电线出现故障的事情时有发生,其中由雷电引起的配电事故更是占了很大的比重,严重威胁了区域供电的稳定和安全,也影响了居民的用电需要。
因此,相关人员必须加强配电线路的防雷措施,用自身的专业能力去维护配电线路的稳定和安全,保障区域配电的供电需要,为社会的稳定发展作出贡献。
2.35kV输配电线路雷击故障类型与雷击故障判别类型2.1雷电过电压的故障类型与跳闸率问题在配电线路的雷击故障中,雷击的过电压一般分为三种,分别是直击雷过电压、反击雷过电压、感应雷过电压。
专业人员可以通过杆塔位置、闪络位置等进行雷击事故的判别,其中直接雷过电压是指天空的雷云在放电的过程中导致线路产生一定的抗阻,随着电流电压的逐渐升高,线路内产生极强的冲击力,使线路内出现极大的直击雷过电压。
同样,天空的雷云放电的过程中,杆塔中的阻抗与其他线路的阻抗共同作用产生了电压降,由于杆塔顶端高电位的影响,导致线路的电流电压快速升高,绝缘子被击穿的过程就产生了反击雷过电压。
而感应雷过电压也是因为天空中雷云的关系,使线路内产生束缚电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35kV变电站线路工程建设防雷措施
1、雷电的形成
雷电形成的主要原因是云之间的摩擦而引起的放电。
首先地表的水在高温下蒸发形成水蒸气并且不断上升,当大量的蒸气汇聚时就成了热气流。
众所周所,离地表越高,空气就越稀薄,空气的温度也随之下降,根据相关数据统计,从地表往上每上升1km,空气的温度会随之下降10°左右。
在高空中,当热气流遇到冷空气时,水蒸气就再次凝结成较小的水滴,这就是云。
云并不是静止不动的,它随着风的运动而运动,从地面到空中5kmX围内,云主要带正电荷,而空中5~10kmX围内,云主要带负电荷,这样使得云和地面之间形成了很大的电场,当云与云之间发生碰撞和摩擦时,如果所带电荷不同,就会发生放电现象,这也就是雷电。
一般来说雷电向下放电,这样地面较高的建筑物就有了被雷击的危险。
另外,雷云还存在不同的电荷放射区,当一个电荷区在放电完成以后还可能会引发其它电荷区的放电。
2、变电站遭受雷击的来源和防X措施
2.1雷击的来源
变电站遭受雷击一般是下行雷,其承受对象主要包括两个方面,第一个方面是雷击对变电站的电气设备损坏,另外一个是变电站电线在雷击后雷电进入变电站对站内的设备造成破坏,为此,要采取避雷的防X措施。
2.2变电站的防雷措施
为了防止雷击,最常见的方法是安装避雷针,避雷针是具有很强的导电性,当发生雷击时就可以将雷电吸引到自己身上,从而避免其它建筑物或者建筑设施遭受雷击。
下面介绍一下变电站避雷针的安装要点。
2.2.1安装避雷针的原则
避雷针安装的首要原则是能保护其它建筑设施不受雷击,从而起到很好的保护作用。
雷电在碰到避雷针时,对于地面来说,避雷针的电位比较高,如果它和其它电气设备的距离太近,那么也有可能出现避雷针对这些设备放电的现象,这也会使这些电气设备受损,或者使其不能正常工作,这也叫做反击。
为了防止反击,避雷针要与这些电气设备保持一定的距离,还要使避雷针的地下引线远离被保护的对象。
一般来说,把避雷针和电气设备不会发生反击的距离叫做最小安全距离。
最小安全距离要符合一定的原则:s≥
o.3rch+0.1h,其中s代表最小安全距离,rch代表避雷针的接地电阻,h表示避雷针校验点的高度,s的最小距离都不能低于3m,而避雷针和被保护对象间的高度不能少于5m,但在一般情况下,s 应尽可能大些,这样才能保护电气设备的安全。
2.2.2避雷针及其接地装置装设的有关规定
(1)避雷针在接地时要有单独的接地装置,一般来说它的工频接地电阻不能超过10,但在特殊情况下,如果电阻超过10,那么就应该使避雷针和被保护对象的水平距离加大,另外,避雷针可能
会反击35 kv变电站的设备,为了防止这一现象的发生,可以将避雷针和35 kv的设备的地线进行连接,并且避雷针的接地体的地中距离不能小于20m。
这样当发生雷击时,就可以使雷击的反击强度减弱,对于35 kv变电站的相关设备也不会造成太大的影响。
除此之外,避雷针的地下装置不应设在人群通行之处,在避雷针地下装置的地表铺洒碎石,以保证人群的绝对安全。
(2)35kv变电站的其它配置或者建筑的房顶最好不要设避雷针,否则,可能会引发多次反击而使变电站的基础设施受到损害,而对于63 kv或者以上的变电站一般来说不会发生反击现象,但在特殊条件下,如土壤的电阻率超过1000.m时,也应安装独立的避雷针,避雷针一般安装在房屋的构架上,并且和接地网相连,在避雷针的附近还需要进行接地装备的集中安装。
(3)由于变电站进线的终端杆塔至变电站的配电装置进线构架之间的距离可能比较远,如果允许将终端杆塔上的避雷线引至变电站的构架上,这段导线将受到保护,比用避雷针经济。
由于避雷线有两端分流的特点,当雷击时要比避雷针引起的电位升高4。
110kv 及以上配电装置,可将线路的避雷线引到进线构架上,土壤电阻率p≥1000q.m的地区,应装设集中接地装置。
35~63kv配电装置,在土壤电阻率p5000.m时,避雷线应终止在线路终端杆塔,此时从线路终端杆塔到变电站配电装置进线构架的一档线路的保护,可采用独立避雷针,也可在线路终端杆塔上装设避雷针(应装设集中接地装置,接地电阻小于4)进行保护。
(4)变电站侵入波过电压的保护。
因为雷击线路的机会远比雷直击变电站多,所以架空线路的雷电感应过电压和直击雷过电压形成的雷电波过电压沿线路侵入变电站,是导致变电站雷害的主要原因。
如不采取措施,势必造成变电站电气设备绝缘损坏,引发事故。
侵入雷电波过电压保护的主要措施是在变电站内装设避雷器,其主要作用是限制雷电波过电压的幅值,使电气设备的过电压不至于超过其冲击耐压值。
2.2.3变电站的进线保护
运行经验证明,变电站侵入波过电压引起的雷害事故约50%是由离变电站ikm以内的雷击线路引起的,约71%是3km以内雷击线路引起的。
因此,加强进线段的防雷对变电站十分重要。
我们一般把变电站附近1—2km的一段线路叫进线段。
为防止或减少近区雷击闪络,对未全线架设避雷线的35~110kv架空线路,应在变电站1~2 km的进线段架设避雷线,避雷线的保护角不宜超过20°,最大不超过30°。
变电站进线段的作用,是限制雷电流的幅值和降低侵入雷电波的陡度。
变电站35kv及以上电缆进线段,在电缆与架空线的连接处应装设避雷器,其接地端应与电缆的金属外皮连接。
对三芯电缆,末端的金属外皮应两端同时直接接地。
对单芯电缆,为防止电缆外皮中产生环流,只允许将电缆一端的外皮直接接地,另一端经过电压保护间隙接地。
2.2.4变压器的保护
变压器的基本保护措施是靠近变压器安装避雷器,避雷器至变压
器的距离愈近则保护作用愈大,可以有效防止侵入雷电波过电压损坏变压器绝缘。
装设避雷器时,要尽量靠近变压器,并尽量减少连线的长度,以便减少雷电流在连接线上的压降。
当避雷器与变压器的电气距离超过允许值时,应在变压器附近增设一组避雷器。
同时,避雷器的接线应与变压器的金属外壳及低压侧中性点连接在一起,这样,当侵入波使避雷器动作时,作用在高压侧主绝缘上的电压就只剩下避雷器的残压了(包括接地电阻上的电压压降),就减少了雷电对变压器破坏的机会。
2.2.510kv配电装置的防雷
在每路架空出线上安装—组避雷器。
对为电缆出线的架空线路,应在电缆两头装设避雷器。
在每组母线上安装一组避雷器。
2.2.6接地网
当变电站的防雷保护满足要求以后,还应根据规程有关接地的要求敷设一个统一的接地网,然后将避雷器、构架避雷针等防雷装置与主接地网连接,独立避雷针则单独敷设接地网。
3、结语
综上所述,35kv变电站的防雷对于变电站的正常运转来说至关重要,不仅要提高防雷的安全意识,还要从技术上提高防雷的措施,在安装避雷针时要对安装进行全面地考虑,从而杜绝安全隐患,总而言之,必须按照相关的标准进行防雷。