【Word版解析】上海市杨浦区2013届高三上学期学业质量调研数学文试题
上海市杨浦区2013届高三上学期学业质量调研数学文试题

上海市杨浦区2013届高三上学期学业质量调研数学文试题2013.1.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 若函数()x x f 3=的反函数为()x f 1-,则()=-11f.2.若复数iiz -=1 (i 为虚数单位) ,则=z . 3.抛物线x y 42=的焦点到准线的距离为 . 4. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211321,则该线性方程组的解是 . 5.若直线l :012=--x y ,则该直线l 的倾斜角是 . 6. 若7)(a x +的二项展开式中,5x 的系数为7,则实数=a . 7. 若圆椎的母线cm 10=l ,母线与旋转轴的夹角030=α,则该圆椎的侧面积为 2cm .8. 设数列}{n a (n ∈*N )是等差数列.若2a 和2012a 是方程03842=+-x x 的两根,则数列}{n a 的前2013 项的和=2013S ______________.9. 若直线l 过点()1,1-,且与圆221x y +=相切,则直线l 的方程为 .10.将一颗质地均匀的骰子连续投掷两次,朝上的点数依次为b 和c , 则2≤b 且3≥c 的概率是____ ___ .11.若函数1)23(log )(+-=x a x f (1,0≠>a a )的图像过定点P ,点Q 在曲线 022=--y x 上运动,则线段PQ 中点M 轨迹方程是 . 12.如图,已知边长为8米的正方形钢板有一个角锈蚀, 其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边 形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为____ 平方米 .A MEPDCBNF13.设ABC ∆的内角C B A 、、的对边长分别为c b a 、、,且 c A b B a 53cos cos =- ,则B A cot tan 的值是___________.14.已知函数()()⎩⎨⎧≤-->+=.0,2,0,1log 22x x x x x x f 若函数()()m x f x g -=有3个零点, 则实数m 的取值范围是___________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15. “3=a ”是“函数22)(2+-=ax x x f 在区间[)+∞,3内单调递增”的………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件.16.若无穷等比数列{}n a 的前n 项和为n S ,首项为1,公比为23-a ,且a S n n =∞→lim ,(n ∈*N ),则复数ia z +=1在复平面上对应的点位于 ………( ))(A 第一象限. )(B 第二象限. )(C 第三象限. )(D 第四象限.)(A. )(B )(C . )(D . 18. 已知数列{}n a 是各项均为正数且公比不等于1的等比数列(n ∈*N ). 对于函数()y f x =,若数列{}ln ()n f a 为等差数列,则称函数()f x 为“保比差数列函数”. 现有定义在(0,)+∞上的如下函数:①1()f x x=, ②2()f x x =, ③()e x f x =,④()f x =“保比差数列函数”的所有序号为 ………( ))(A ①②. )(B ③④. )(C ①②④. )(D ②③④ .三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 .如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC , E D 、分别是AP BC 、的中点,(1)求三棱锥ABC P -的体积;(2)若异面直线AB 与ED 所成角的大小为θ,求θtan 的值.20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分 . (文) 已知函数π()cos()4f x x =-,(1)若()10f α=,求sin 2α的值; (2)设()()2g x f x f x π⎛⎫=⋅+ ⎪⎝⎭,求()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .PABCDE已知椭圆:C 22221(0)x y a b a b+=>>的两个焦点分别是()0,11-F 、()0,12F ,且焦距是椭圆C 上一点P 到两焦点21F F 、距离的等差中项. (1)求椭圆C 的方程;(2)设经过点2F 的直线交椭圆C 于N M 、两点,线段MN 的垂直平分线交y 轴于点 ),0(0y Q ,求0y 的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数)0(121)(>-=x x x x f 的值域为集合A ,(1)若全集R U =,求A C U ; (2)对任意⎥⎦⎤⎝⎛∈21,0x ,不等式()0≥+a x f 恒成立,求实数a 的范围; (3)设P 是函数()x f 的图像上任意一点,过点P 分别向直线x y =和y 轴作垂线,垂足分别为A 、B ,求⋅的值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设数列{}n x 满足0>n x 且1≠n x (n ∈*N ),前n 项和为n S .已知点),(111S x P , ),(222S x P ,()n n n S x P ,,⋅⋅⋅都在直线b kx y +=上(其中常数k b 、且0≠k ,1≠k ,0≠b ),又n n x y 21log =.(1)求证:数列{}n x 是等比数列; (2)若n y n 318-=,求实数k ,b 的值;(3)如果存在t 、∈s n ∈*N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上.问是否存在正整数M ,当M n >时,1>n x 恒成立?若存在,求出M 的最小值,若不存在,请说明理由.杨浦区2012学年度第一学期高三年级学业质量调研 2013.1.5一.填空题:1. 0;2.2;3.2;4. ⎩⎨⎧==11y x (向量表示也可);5.2arctan ;6.33±;7. π50 8. 2013;9.1=x 或1=y ; 10. 92;11.x x y 222-= 12. 48;13.1-;14.)1,0( 二、选择题:15.)(A ;16.)(D ;17.)(B ;18. )(C .三、解答题19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 . (1)由已知得,,32,2==AB AC ………2分所以 ,体积33831==∆--PA S V ABC ABC P ………5分 (2)取AC 中点F ,连接EF DF ,,则DF AB //,所以EDF ∠就是异面直线AB 与ED 所成的角θ. ………7分 由已知,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, . ………10分在EFD Rt ∆中,5,3==EF DF ,所以,315tan =θ. ………12分(其他解法,可参照给分) 20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分 .解:(1)因为π()cos()410f αα=-=, 则sin )210αα+=, 所以 7cos sin 5αα+=. ………3分 平方得,22sin 2sin cos cos αααα++=4925, ………5分所以24sin 225α=. ………7分(2)因为()π()2g x f x f x ⎛⎫=⋅+ ⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )sin )22x x x x +⋅- ………9分=221(cos sin )2x x -=1cos 22x . ………11分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. ………12分 所以,当0x =时,()g x 的最大值为12; ………13分当π3x =时,()g x 的最小值为14-. ………14分21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 . (1)解:设椭圆C 的半焦距是c .依题意,得 1c =. ………1分 由题意得 a c 24=,2=a2223b a c =-=. ………4分故椭圆C 的方程为 22143x y +=. ………6分(2)解:当MN x ⊥轴时,显然00y =. ………7分当MN 与x 轴不垂直时,可设直线MN 的方程为(1)(0)y k x k =-≠.由 22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得0)3(48)43(2222=-+-+k x k x k . ………9分 设1122(,),(,)M x y N x y ,线段MN 的中点为33(,)Q x y ,则2122834k x x k +=+. ………10分所以212324234x x k x k +==+,3323(1)34k y k x k -=-=+. 线段MN 的垂直平分线方程为)434(1433222k k x k k k y +--=++. 在上述方程中令0=x ,得k k k k y 4314320+=+=. ………12分当0k <时,34k k +≤-0k >时,34k k +≥.所以0012y -≤<,或0012y <≤. ………13分综上,0y的取值范围是[. ………14分22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. (1)由已知得,0>x,则222)(≥+=x x x f ………1分当且仅当x x 2=时,即2=x 等号成立,[)∞+=∴,22M ………3分所以,()22,∞-=M C U ………4分(2)由题得⎪⎭⎫ ⎝⎛+-≥x x a 2 ………5分 函数⎪⎭⎫ ⎝⎛+-=x x y 2在⎥⎦⎤ ⎝⎛∈21,0x 的最大值为29- ………9分 29-≥∴a (10)分(3)设⎪⎪⎭⎫ ⎝⎛+0002,x x x P ,则直线PA 的方程为()0002x x x x y --=⎪⎪⎭⎫⎝⎛+-,即0022x x x y ++-=,………11分由⎪⎩⎪⎨⎧++-==0022x x x y x y 得)1,1(0000x x x x A ++ ………13分又⎪⎪⎭⎫⎝⎛+002,0x x B , ………14分所以)1,1(00x x PA -=,)0,(0x -=,故1)(100-=-=⋅x x PB PA (16)分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. (1)因为点1,+n n P P 都在直线b kx y +=上,所以kx x S S nn nn =--++11,得n n kx x k =-+1)1(, ………2分 其中0111≠-=k x . ………3分因为常数0≠k ,且1≠k ,所以11-=+k kx x nn 为非零常数.所以数列{}n x 是等比数列. ………4分(2)由n n x y 21log =,得6821-=⎪⎭⎫ ⎝⎛=n y n nx , ………7分所以81=-k k ,得78=k . ………8分 由n P 在直线上,得b kx S n n +=, ………9分令1=n 得7871785111--=-=-=x x S b . ………10分(3)由nn x y 21log =知1>n x 恒成立等价于0<n y .因为存在t 、∈s n ∈*N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上.由12+=t y s 与12+=s y t 做差得:)(2s t y y t s -=-. (12)分 易证{}n y 是等差数列,设其公差为d ,则有d t s y y ts )(-=-,因为t s ≠,所以02<-=d ,又由2)(2++=+s t y y t s,而4)(22)2)(1()2)(1(111++-=--++--+=+t s y t y s y y y t s得2)(24)(221++=++-s t t s y 得 01)(21>-+=t s y 即:数列是首项为正,公差为负的等差数列,所以一定存在一个最小自然数M , ………16分使,⎩⎨⎧<≥+001M M y y , 即⎩⎨⎧<-+-+≥--+-+0)2(1)(20)2)(1(1)(2M t s M t s 解得2121++≤<-+t s M t s 因为*∈N M ,所以t s M +=,即存在自然数M ,其最小值为t s +,使得当M n > 时,1>nx 恒成立. ………18分 (其它解法可参考给分)。
上海市高三考前调研数学试题 Word版含答案

上海市2013—2014学年度高三年级学业质量调研数学试卷考生注意: 本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,每个空格填对得4分,否则一律得零分. 1.函数)2(log 1)(2-=x x f 的定义域为2.若直线052=+-y x 与直线062=-+my x 互相垂直,则实数=m3.复数z 满足iiz 1=i +1,则i z 31-+= 4.一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 5.在ABC ∆中,若5=b ,4π=∠B ,2tan =A ,则=a6.已知圆O :522=+y x ,直线l :)20(1sin cos πθθθ<<=+y x ,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =7.设等差数列{}n a 的公差2=d ,前n 项的和为n S ,则nn n S n a 22lim-∞→= 8.已知F 是抛物线42y x =的焦点,B A ,是抛物线上两点,线段AB 的中点为)2,2(M ,则ABF ∆的面积为9.某工厂生产10个产品,其中有2个次品,从中任取3个产品进行检测,则3个产品中至多有1个次品的概率为10.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.如果一个六边形点阵共有169个点,那么它一共有___________层11.函数)6sin()(πω+=x A x f ()0>ω的图象与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数x A x g ωsin )(=的图象,只要..将)(x f 的图象向右平移 个单位12.设))(2()(,1R x x k x f k ∈-=>,在平面直角坐标系中,函数)(x f y =的图象与x 轴交于点A ,它的反函数)(1x fy -=的图象与y 轴交于点B ,并且两函数图象相交于点P ,已知四边形OAPB 面积为6,则k 的值为13.设函数()f x 的定义域为D ,如果对于任意的1x D ∈,存在唯一的2x D ∈,使()()122f x f x C +=(C 为常数)成立,则称函数()f x 在D 上的均值为C.下列五个函数:①x y sin 4= ②3x y = ③x y lg = ④xy 2= ⑤12-=x y ,则满足在其定义域上均值为2的所有函数的序号14.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则 数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}nb 的首项为1b ,公比为q ,前n 项 的积为n T ,则数列为等比数列,通项为_____________二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.下列有关命题的说法正确的是A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“存在,R x ∈使得210x x ++<”的否定是:“对任意,R x ∈ 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.16.已知函数f (x )=sin (2x πϕ+)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD BE +)·BC 的值为A .14 B .12C .1D .2 17.如图,偶函数)(x f 的图象形如字母M ,奇函数)(x g 的图象形如字母N ,若方程:(())0,f f x =(())0,f g x =0))((,0))((==x f g x g g 的实数根的个数分别为a 、b 、c 、d ,则d c b a +++=A .27B .30C .33D .3618.已知[)x 表示大于x 的最小整数,例如[)[)34, 1.31=-=-.下列命题:①函数[)()f x x x =-的值域是(]0,1;②若{}n a 是等差数列,则[){}n a 也是等差数列;③若{}na 是等比数列,则[){}na 也是等比数列;④若()1,2014x ∈,则方程[)12x x -=有2013个根. 其中正确的是A.②④B.③④C.①③D.①④三、解答题(本大题满分74分)本大题共5题,解答下列各题必须写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 . (1)将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积 (2)在ABC ∆中,满足:AB AC ⊥,||AB 夹角的余弦值20.(本题满分14分)本题共有2已知A B 、分别在射线CM CN 、运动,23MCN ∠=π,在ABC ∆中,角所对的边分别是a 、b 、c .(1)若a 、b 、c c 的值;(2)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.)21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 . 已知函数2||)(+=x x x f (1)判断函数f (x )在区间(0, +∞)上的单调性,并加以证明;(2)如果关于x 的方程f (x ) = kx 2有四个不同的实数解,求实数k 的取值范围.22. (本题满分16分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分6分在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1, 0), 动点C 满足条件:△ABC 的周长为 2+2 2.记动点C 的轨迹为曲线W . (1)求W 的方程;(2)经过点(0, 2)且斜率为k 的直线l 与曲线W 有两个不同的交点P 和Q ,求k 的取值范围(3)已知点M (2,0),N (0, 1),在(2)的条件下,是否存在常数k ,使得向量OP OQ +与MN 共线?如果存在,求出k 的值;如果不存在,请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分6分,第(3)小题满分7分设各项均为非负数的数列{}n a 的为前n 项和n n S na λ=(1a ≠2a ,λ∈R ). (1)求实数λ的值;(2)求数列{}n a 的通项公式(用2n a ,表示). (3)证明:当2m l p +=(m l p ∈*N ,, )时,2m l p S S S ⋅≤一.填空题(本大题满分56分)本大题共有14题,每个空格填对得4分,否则一律得零分.1.()),3(3,2+∞⋃2. 13. 54. π145. 1026. 47. 38. 2 911.12π12.3 13. (2)(3)(5) 14.211-=n n q a T二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分. 15.D 16.C 17. B 18D. 三、解答题(本大题满分74分)本大题共5题,解答下列各题必须写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 . (1)设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ⨯==; 24,S S S rl r πππ=+=+=侧面表面积底面2111333V S h π==⨯⨯⨯= (2)设向量2AB AC +与向量2AB AC +的夹角为θ(2)(2)cos |2||2|AB AC AB AC AB AC AB AC θ+⋅+=+⋅+,令||||AB AC a ==,224cos 5θ==20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分 . (1)a 、b 、c 成等差,且公差为2,∴4a c =-、2b c =-. 又23MCN ∠=π,1cos 2C =-, ∴222122a b c ab +-=-, ∴()()()()2224212422c c c c c -+--=---, 恒等变形得 29140c c -+=,解得7c =或2c =.又4c >,∴7c =.(2)在ABC∆中,s i n s i n si nA CBC A B A BC B ACA C==∠∠∠,∴22sin sin sin 33ACBC ===ππθ⎛⎫-θ ⎪⎝⎭,2sin AC =θ,2sin 3BC π⎛⎫=-θ ⎪⎝⎭.∴ABC ∆的周长()f θAC BC AB =++2sin 2sin 3π⎛⎫=θ+-θ+ ⎪⎝⎭12sin cos 22⎡⎤=θ+θ+⎢⎥⎣⎦2sin 3π⎛⎫=θ+ ⎪⎝⎭又0,3π⎛⎫θ∈ ⎪⎝⎭,∴2333πππθ<+<,∴当32ππθ+=即6πθ=时,()f θ取得最大值2. 21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .(1) 2||)(+=x x x f ,2)(,0+=>∴x xx f x 时当221+-=x()+∞+=,022在x y 上是减函数 ),0()(+∞∴在x f 上是增函数(2)原方程即:22||kx x x =+ )(* ①0=x 恒为方程)(*的一个解.②当20-≠<x x 且时方程)(*有解,则012,222=++=+-kx kx kx x x当0=k 时,方程0122=++kx kx 无解;当0≠k 时,时或即10,0442≥<≥-=∆k k k k ,方程0122=++kx kx 有解.设方程0122=++kx kx 的两个根分别是,,21x x 则kx x x x 1,22121=⋅-=+. 当1>k 时,方程0122=++kx kx 有两个不等的负根; 当1=k 时,方程0122=++kx kx 有两个相等的负根; 当0<k 时,方程0122=++kx kx 有一个负根③当0>x 时,方程)(*有解,则012,222=-+=+kx kx kx x x当0=k 时,方程0122=++kx kx 无解;当0≠k 时,时或即01,0442>-≤≥+=∆k k k k ,方程0122=-+kx kx 有解.设方程0122=-+kx kx 的两个根分别是43,x x243-=+∴x x ,kx x 143-= ∴当0>k 时,方程0122=-+kx kx 有一个正根,当1-≤k 时,方程0122=-+kx kx 没有正根综上可得,当),1(+∞∈k 时,方程2)(kx x f =有四个不同的实数解22. (本题满分16分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分6分 (1) 设C (x , y ),∵ 2AC BC AB +=++2AB =, ∴ 2AC BC +=>,∴ 由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为22的椭圆除去与x 轴的两个交点.∴ =1a c . ∴ 2221b a c =-=∴ W : 2212x y += (0)y ≠.(2) 设直线l 的方程为y kx =22(12x kx +=.整理,得221()102k x +++=. ①因为直线l 与椭圆有两个不同的交点P 和Q 等价于222184()4202k k k ∆=-+=->,解得k <k >∴ 满足条件的k 的取值范围为 2,(,)22k ∈-∞-+∞( (3)设P (x 1,y 1),Q (x 2,y 2),则OP OQ +=(x 1+x 2,y 1+y 2),由①得12x x += ②又1212()y y k x x +=++ ③因为M ,(0, 1)N , 所以(MN =.所以OP OQ +与MN 共线等价于1212)x x y y ++.将②③代入上式,解得k = 所以不存在常数k ,使得向量OP OQ +与MN 共线.23.(本题满分18分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分6分,第(3)小题满分7分(1)当1n =时,11a a λ=,所以1λ=或10a =,若1λ=,则n n S na =,取2n =得1222a a a +=,即12a a =,这与1a ≠2a 矛盾; 所以10a =,取2n =得1222a a a λ+=,又1a ≠2a ,故20a ≠,所以12λ=,(2)记12n n S na =①,则111(1)2n n S n a --=- ()2n ≥②,①-②得111(1)22n n n a na n a -=-- ()2n ≥,又数列{}n a 各项均为非负数,且10a =, 所以112nn a n a n --=-()3n ≥, 则354234123411222n n a a aa n a a a a n --⋅⋅⋅=⨯⨯⋅⋅⋅⨯-,即()21n a a n =-()3n ≥,当1n =或2n =时,()21n a a n =-也适合, 所以()21n a a n =-;(3)因为()21n a a n =-,所以2(1)2n n n S a -=()20a ≠, 又2m l p +=(m l p ∈*N ,, ) 则[]{}2222(1)(1)(1)4pm n a S S S p p m m l l -=----[]{}222(1)(1)(1)4a p p m m l l =----()2222(1)(1)422a m l m l ml m l ⎧⎫⎡⎤⎪⎪++=----⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(222(1)(1)4a ml ml m l ⎡⎤---⎢⎥⎣⎦≥(当且仅当m l =时等号成立)(222(1)(1)4a ml ml m l ⎡⎤---⎢⎥⎣⎦= )2221(1)(1)4a mlm l ⎡⎤---⎢⎥⎣⎦=()224a ml m l ⎡+-⎣= 0≥(当且仅当m l =时等号成立)所以2m l p S S S ⋅≤.。
2013高三文科二模数学试卷(杨浦等地有答案)

2013高三文科二模数学试卷(杨浦等地有答案)2012学年静安、杨浦、青浦宝山区高三年级高考模拟考试数学试卷(文科)2013.04.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知全集,集合,则.2.若复数满足(是虚数单位),则.3.已知直线的倾斜角大小是,则.4.若关于的二元一次方程组有唯一一组解,则实数的取值范围是. 5.已知函数和函数的图像关于直线对称,则函数的解析式为.到渐近线的距离为.7.函数的最小正周期.8.若,则目标函数的最小值为.9.执行如图所示的程序框图,若输入的值是,则输出的值是. 10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,那么这个圆锥的母线长为.11.某中学在高一年级开设了门选修课,每名学生必须参加这门选修课中的一门,对于该年级的甲乙名学生,这名学生选择的选修课相同的概率是(结果用最简分数表示).12.各项为正数的无穷等比数列的前项和为,若,则其公比的取值范围是.13.已知函数.当时,不等式恒成立,则实数的取值范围是.14.函数的定义域为,其图像上任一点满足.①函数一定是偶函数;②函数可能既不是偶函数,也不是奇函数;③函数可以是奇函数;④函数如果是偶函数,则值域是或;⑤函数值域是,则一定是奇函数.其中正确命题的序号是(填上所有正确的序号).二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.已知,,则的值等于………………………()(A).(B).(C).(D).16.一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于…()(A).(B).(C).(D).17.若直线通过点,则………………………………()(A).(B).(C).(D).18.某同学为了研究函数的性质,构造了如图所示的两个边长为的正方形和,点是边上的一个动点,设,则.那么,可推知方程解的个数是………………………………………………………()(A).(B).(C).(D).三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2小题,第1小题满分5分,第2小题满分7分.如图,设计一个正四棱锥形冷水塔,高是米,底面的边长是米.(1)求这个正四棱锥形冷水塔的容积;(2)制造这个水塔的侧面需要多少平方米钢板?(精确到米2) 20.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是的中点,求;(2)设,求△周长的最大值及此时的值.21.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.已知椭圆.(1)直线过椭圆的中心交椭圆于两点,是它的右顶点,当直线的斜率为时,求△的面积;(2)设直线与椭圆交于两点,且线段的垂直平分线过椭圆与轴负半轴的交点,求实数的值.22.(本题满分16分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数.(1)若函数的图像过原点,求的解析式;(2)若是偶函数,在定义域上恒成立,求实数的取值范围;(3)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.23.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列的前项和为,且,.从中抽出部分项,组成的数列是等比数列,设该等比数列的公比为,其中.(1)求的值;(2)当取最小时,求的通项公式;(3)求的值.四区联考2012学年度第二学期高三数学一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.;2.;3.;4.;5.;6.;7.;8.4;9.;10.;11.;12.;13.;14.②③⑤二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.D;16.B;17.B;18.C三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2小题,第1小题满分5分,第2小题满分7分.解:(1)如图正四棱锥底面的边长是米,高是米所以这个四棱锥冷水塔的容积是.(2)如图,取底面边长的中点,连接,答:制造这个水塔的侧面需要3.40平方米钢板.20.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.解:(1)在△中,,由得,解得.(2)∵∥,∴,在△中,由正弦定理得,即∴,又.记△的周长为,则=∴时,取得最大值为.21.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.解:(1)依题意,,,由,得,设,∴;(2)如图,由得,依题意,,设,线段的中点,则,,,由,得,∴22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.解:(1)过原点,得或(2)是偶函数,即,又恒成立即当时当时,,当时,,综上:(3)是偶函数,要使在上是减函数在上是增函数,即只要满足在区间上是增函数在上是减函数.令,当时;时,由于时,是增函数记,故与在区间上有相同的增减性,当二次函数在区间上是增函数在上是减函数,其对称轴方程为.23.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(1)令得,即;又(2)由和,所以数列是以2为首项,为公差的等差数列,所以.解法一:数列是正项递增等差数列,故数列的公比,若,则由得,此时,由解得,所以,同理;若,则由得,此时组成等比数列,所以,,对任何正整数,只要取,即是数列的第项.最小的公比.所以.………(10分)解法二:数列是正项递增等差数列,故数列的公比,设存在组成的数列是等比数列,则,即因为所以必有因数,即可设,当数列的公比最小时,即,最小的公比.所以.(3)由(2)可得从中抽出部分项组成的数列是等比数列,其中,那么的公比是,其中由解法二可得.,所以。
上海市2013届高三数学上学期联合调研考试试题 文 新人教A版

同济大学、第二附属中学2012—2013学年高三联合调研考试数学试题(文科)一、填空题:本大题有14小题,每小题4分,共56分1、不等式112x <的解集是 (,0)-∞⋃(2,)+∞ 2、若3sin()25πθ+=,则cos 2θ=_________.725-3、已知圆锥的底面半径为2,母线长为6,则圆锥的侧面展开图的圆心角度数为23π4、已知向量()1,1=a ,()2,m =b ,若+=⋅a b a b ,则实数m = 35、函数y =2,0,0x x x x <⎧⎨≥⎩ 的反函数是y =,0,0x x x x <⎧⎪≥6、方程||1222xx -=的解为 2log (21) 7、若由命题A: “22031x x ”能推出命题B: “x a >”,则a 的取值范围是________2a ≤-8、已知z ∈C ,且i =z 23i z -++(i 为虚数单位),则2iz+= 2i + 9、已知A B 、依次是双曲线22:13y E x -=的左、右焦点,C 是双曲线E 右支上的一 点,则在ABC ∆中,sin sin sin A B C-= .12-10、某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的世博宣传广告,则最后播放的是世博宣传广告,且2个世博宣传广告不连续播放的方法有 种.(用数字作答) 3611、顶点在同一球面上的正四棱柱ABCD A B C D ''''-中,12AB AA '==,A 、C 两点间的球面距离为____________.2π 12、执行如图的程序框图,若0.8p =,则输出的n = .4密封线内不要题答13、已知不相等的实数m 、n 分别满足:2201020110m m -+=和2201020110n n -+=,则11m n +=2010201114、已知集合{}23225|5|,A x x x x ax x R =++-≤∈,{}213120B x x x =-+≤,若A B φ≠.则实数a 的取值范围为 10a ≥二、选择题:本大题共4小题,每小题4分,共16分 15、“41=a ”是“对任意的正数,x 均有1≥+xa x ”的 ( A ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件16、设0>x ,若10)1(x -展开式的第三项为20,则()nn xx x +++∞→ 2lim 的值是…( B )A .21 B .2 C .1 D .32 17、若椭圆12222=+by a x 与双曲线122=-y x 有相同的焦点,且过抛物线x y 82=的焦点,则该椭圆的方程是 ( A )A .12422=+y x B .1322=+y x C .14222=+y x D .1322=+y x 18、设)(x f 是定义在R 上的奇函数,且当0≥x 时,)(x f 单调递增,若021<+x x ,,则)()(21x f x f +的值 ( C )A .恒为正值 C .恒等于零 C .恒为负值 D .无法确定正负 三、解答题:(本大题共有5道题,满分78分),解答下列各题必须写出必要的步骤. 19、(本题满分12分)在ΔABC 中,a 、b 、c 分别为角A 、B 、C 的对边,已知tan c =c =ABC的面积为ABC S ∆=,求a+b 的值。
上海市杨浦区高三数学上学期学业质量调研试题 文(含解析)新人教A版

上海市杨浦区高三数学上学期学业质量调研试题 文(含解析)新人教A 版数学试卷(文)考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 若函数()xx f 3=的反函数为()x f1-,则()=-11f .【答案】0【解析】由31x=得,0x =,即1(1)0f-=。
2.若复数iiz -=1 (i 为虚数单位) ,则=z .【解析】因为1111i z i i i-==-=--,则z = 3.抛物线x y 42=的焦点到准线的距离为. 【答案】2【解析】由抛物线的方程可知24p =,所以2p =,即抛物线的焦点到准线的距离为2.4.若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211321,则该线性方程组的解是. 【答案】11x y =⎧⎨=⎩【解析】由题意可知对应的线性方程组为232x y x y +=⎧⎨+=⎩,解得11x y =⎧⎨=⎩。
所以该线性方程组的解是11x y =⎧⎨=⎩。
5.若直线l :012=--x y ,则该直线l 的倾斜角是. 【答案】tan 2arc【解析】由210y x --=得21y x =+,所以直线的斜率为tan 2k α==,所以tan 2arc α=,即直线的倾斜角为tan 2arc 。
6. 若7)(a x +的二项展开式中,5x 的系数为7,则实数=a .【答案】【解析】二项展开式的通项公式为717k k kk T C x a -+=,由75k -=得2k =,所以25237T C x a =,即5x 的系数为2227217C a a ==,所以213a =,所以a =±。
7. 若圆椎的母线cm 10=l ,母线与旋转轴的夹角030=α,则该圆椎的侧面积为2cm .【答案】50π【解析】因为线与旋转轴的夹角030=α,设底面圆的半径为r ,则010sin 305r ==。
2013十三校联考3月文上海高考二模数学试题及详解

.
(B) a 的值可以是 3 (D) a 的值可以是
1 2
16.已知正六棱柱的底面边长和侧棱长均为 2cm ,其三视图 中的俯视图如图所示,则其左2
(B) 2 3 cm 2 (C) 4 3 cm 2 (D) 4 cm
17.已知光线沿向量 a md pn( mp 0, m R, p R ) 照射,遇到直线后反射,其中
3. 3, 0,1 6. 9.
4. 1 7. 10 10. 30 13. (8,12)
36 703
2 2
12.
二、选择题:(每小题 5 分,满分 20 分) 15.D 16.C 17.B 18.A
三、解答题:(本题满分 74 分,解答本题必须写出必要步骤,且在规定处答题) 19.(本题满分 12 分) 解:(1) AB // CD ,所以 PBA 是异面直线 PB 与 CD 所成角…………2 分 又因为 PBA 4分 (2)VB PCD VP BCD ………………6 分 而 VP BCD
最小值是 .
y
13.已知△ FAB ,点 F 的坐标为 (2, 0) ,点 A 、 B 分别在图中抛物 线 y 8 x 及圆 ( x 2) y 16 的实线部分上运动,且 AB 总是
2 2 2
A
B F
O
x
平行于 x 轴,那么△ FAB 的周长的取值范围为
.
第 13 题
14.定义在 1, 上的函数 f ( x) 满足:① f (2 x) 2 f ( x) ;
B C A D
B ) sin x ( 0) 且 f ( x ) 的最小正周期为 ,求 f ( x ) 在区间 [0, ] 上的 2 2
上海市松江区2013届高三上学期期末质量监控数学试题

2012学年第一学期徐汇区高三年级数学学科学习能力诊断卷 (文理合卷)(考试时间:120分钟,满分150分) 2013.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.方程组2132x y x y -=⎧⎨+=-⎩的增广矩阵是__________________.2. 已知幂函数()f x 的图像过点18,2⎛⎫⎪⎝⎭,则此幂函数的解析式是()f x =_____________. 3.(理)若θ为第四象限角,且4sin 25πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=___________. (文)若4cos 5θ=,则=θ2cos ___________.4.若抛物线22(0)y px p =>的焦点与双曲线221610xy-=的右焦点重合,则实数p 的值是 .5.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如右图所示,则()f x = _________.6.(理)若(1,2)n =-是直线l 的一个法向量,则直线l 的倾斜角的大小为_________________.(文)若(1,2)n =是直线l 的一个方向向量,则直线l 的倾斜角的大小为_________________. (结果用反三角函数值表示)7.(理)不等式21200210321xx+-≥的解为 . (文)不等式210xx+≥ 1 2 2的解为 .8.高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是 .(结果用最简分数表示)9.如图所示的程序框图,输出b 的结果是_________.10.(理)已知等比数列}{n a 的首项11=a ,公比为(0)q q >,前n 项和为n S ,若1lim1=+∞→nn n S S ,则公比q 的取值范围是 .(文)数列{}n a 的通项公式*1 , 1()1, 2(1)n na n N n n n =⎧⎪=∈⎨≥⎪+⎩,前n 项和为n S ,则l i m n n S →∞=_____________.11. (理)若平面向量i a满足 1(1,2,3,4)i a i ==且10(1,2,3)i i a a i +⋅== ,则1234a a a a +++可能的值有____________个.(文)边长为1的正方形A B C D 中,M 为B C 的中点,E 在线段AB 上运动,则EC EM⋅的取值范围是____________.12.(理)在A B C ∆中,060A ∠= ,M 是AB的中点,若2,AB BC ==D 在线段A C 上运动,则DB DM ⋅的最小值为____________.(文)函数{}()m in 2f x x =-,其中{},m in ,,a a b a b b a b≤⎧=⎨>⎩,若动直线y m =与函数()y f x =的图像有三个不同的交点,则实数m 的取值范围是______________.13.(理)函数{}()m in 2f x x =-,其中{},m in ,,a a ba b b a b ≤⎧=⎨>⎩,若动直线y m =与函数()y f x =的图像有三个不同的交点,它们的横坐标分别为123,,x x x ,则123x x x ⋅⋅是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.(文)若平面向量i a满足1(1,2,3,4)i a i ==且10(1,2,3)i i a a i +⋅== ,则1234a a a a +++的最大值为 .14.已知线段010A A 的长度为10,点129,,,A A A 依次将线段010A A 十等分.在0A 处标0,往右数1点标1,再往右数2点标2,再往右数3点标3……(如图),遇到最右端或最左端返回,按照0A →10A →0A →10A → 的方向顺序,不断标下去,(理)那么标到2010这个数时,所在点上的最小数为_____________. (文)那么标到10这个数时,所在点上的最小数为_____________.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.下列排列数中,等于*(5)(6)(12)(13,)n n n n n N ---≥∈ 的是 ( ) (A)712n P - (B) 75n P - (C) 85n P - (D) 812n P -16.在A B C ∆中,“cos sin cos sin A A B B +=+”是“090C ∠=”的 ( )(A) 充分非必要条件(B) 必要非充分条件(C) 充要条件(D) 既不充分也不必要条件17.若函数21()ax f x x-=在()0,+∞上单调递增,那么实数a 的取值范围是( )(A)0a ≥(B)0a > (C)0a ≤ (D) 0a <18.(理)对于直角坐标平面xOy 内的点(,)A x y (不是原点),A 的“对偶点”B 是指:满足1O A O B =且在射线O A 上的那个点. 若,,,P Q R S 是在同一直线上的四个不同的点(都不是原点),则它们的“对偶点”'''',,,P Q R S( )(A) 一定共线 (B) 一定共圆(C) 要么共线,要么共圆 (D) 既不共线,也不共圆(文)对于直角坐标平面xOy 内的点(,)A x y (不是原点),A 的“对偶点”B 是指:满足1O A O B =且在射线O A 上的那个点. 则圆心在原点的圆的对偶图形( ) (A) 一定为圆 (B) 一定为椭圆 (C) 可能为圆,也可能为椭圆 (D) 既不是圆,也不是椭圆三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)已知集合3{|0}4x A x x -=<-,实数a 使得集合{}|()(5)0B x x a x =-->满足A B ⊆, 求a 的取值范围.20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数)(x f =21log 1x x +-.(1)判断函数)(x f 的奇偶性,并证明; (2)求)(x f 的反函数)(1x f-,并求使得函数12()()log g x f x k -=-有零点的实数k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. (理)某种型号汽车四个轮胎半径相同,均为40R cm =,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为280l cm = (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路ABC (如图(1)所示,其中A B C α∠=(34παπ<<)),且前轮E 已在B C 段上时,后轮中心在F 位置;若前轮中心到达G 处时,后轮中心在H 处(假定该汽车能顺利驶上该上坡路). 设前轮中心在E 和G 处时与地面的接触点分别为S 和T,且60B S cm =,100ST cm =. (其它因素忽略不计)(1)如图(2)所示,F H 和G E 的延长线交于点O ,求证:40cot 602O E α=+(cm);(2)当α=56π时,后轮中心从F 处移动到H 处实际移动了多少厘米? (精确到1cm)(文)某种型号汽车的四个轮胎半径相同,均为40R cm =,该车的底盘与轮胎中心在同一水平面上. 该车的涉水安全要求......是:水面不能超过它的底盘高度. 如图所示:某处有一“坑形”地面,其中坑ABC 形成顶角为0120的等腰三角形,且60AB BC cm ==,如果地面上有()h cm (40h <)高的积水(此时坑内全是水,其它因素忽略不计).31. 当轮胎与AB 、B C 同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为103d h =+;(2) 假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求......),求h 的最大值.(精确到1cm).22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.(理)已知椭圆2222:1(0)x y C a b ab+=>>的一个焦点为(1,0)F ,点(1,)2-在椭圆C 上,点T满足2O T O F =(其中O 为坐标原点),过点F 作一直线交椭圆于P 、Q 两点 .(1)求椭圆C 的方程; (2)求PQT ∆面积的最大值;(3)设点P '为点P 关于x 轴的对称点,判断P Q '与Q T的位置关系,并说明理由.(文)已知椭圆2222:1(0)x y C a b ab+=>>的一个焦点为(1,0)F ,点(1,)2-在椭圆C 上,点T满足2O T O F =(其中O 为坐标原点), 过点F 作一斜率为(0)k k >的直线交椭圆于P 、Q 两点(其中P 点在x 轴上方,Q 点在x 轴下方) .(1)求椭圆C 的方程;(2)若1k =,求PQT ∆的面积;(3)设点P '为点P 关于x 轴的对称点,判断P Q ' 与Q T的位置关系,并说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.(理)对于数列{}n x ,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数a ,公比为正整数(1)q q >的无穷等比数列{}n a 的子数列问题. 为此,他任取了其中三项,,()k m n a a a k m n <<.(1) 若,,()k m n a a a k m n <<成等比数列,求,,k m n 之间满足的等量关系;(2) 他猜想:“在上述数列{}n a 中存在一个子数列{}n b 是等差数列”,为此,他研究了k n a a +与2m a 的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;(3) 他又想:在首项为正整数a ,公差为正整数d 的无穷等差数列中是否存在成等比数列的无穷子数列?请你就此问题写出一个正确命题,并加以证明.(文)对于数列{}n x ,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为1a ,公差为d 的无穷等差数列{}n a 的子数列问题,为此,他取了其中第一项1a ,第三项3a 和第五项5a .(1) 若135,,a a a 成等比数列,求d 的值;(2) 在11a =, 3d =的无穷等差数列{}n a 中,是否存在无穷子数列{}n b ,使得数列{}n b 为等比数列?若存在,请给出数列{}n b 的通项公式并证明;若不存在,说明理由;(3) 他在研究过程中猜想了一个命题:“对于首项为正整数a ,公比为正整数q (1q >)的无穷等比数 列{}n c ,总可以找到一个子数列{}n d ,使得{}n d 构成等差数列”. 于是,他在数列{}n c 中任取三项,,()k m n c c c k m n <<,由k n c c +与2m c 的大小关系去判断该命题是否正确. 他将得到什么结论?参考答案12.填空题:(每题4分)1. 2111-⎛⎫ ⎪⎝⎭ 3 -2 2. 13x - 3. (理)2425- (文)725 4. 8 5. 2sin 4x π6. (理)arctan12(文) arctan2 7. (理)x ≤0(文)x ≥08.31359. 1 10. (理)0<q ≤1(文)3211. (理) 3 (文)13,22⎡⎤⎢⎥⎣⎦12. (理) 2316(文)-2 13. (理) 1(文) 14. (理) 5(文)513.选择题:(每题5分)15. C 16. B 17.A 18. (理)C (文)A14.解答题19. 解:A=(3,4)………………………………………………………………………………..2分a ≥5时,B=(,)(,5)a +∞⋃-∞,满足A ⊆B ;…………………………………..6分 a<5时,B=(5,)(,)a +∞⋃-∞,由A ⊆B ,得a ≥4,故4≤a<5,……………..10分 综上,得实数a 的取值范围为a ≥4. ……………………………………………..12分20. 解:(1)f(x)的定义域为(,1)(1,)-∞-⋃+∞……………………………………………..2分 f(-x)=log 211x x -+--=log 211x x -+=-f(x),所以,f(x)为奇函数. ………………………………………..6分 (2)由y=21log 1x x +-,得x=2121yy+-,所以,f -1(x)=2121xx+-,x ≠0. ……………………………………..9分因为函数12()()log g x fx k -=-有零点,所以,2log k 应在)(1x f-的值域内. 所以,log 2k=2121xx +-=1+221x-(,1)(1,)∈-∞-⋃+∞, ………………….13分从而,k 1(2,)(0,)2∈+∞⋃. ……………………………………………..14分21.(理)解:(1) 由OE//BC ,OH//AB ,得∠EOH=α,………………………..2分过点B 作BM ⊥OE ,BN ⊥OH ,则Rt ∆OMB ≅Rt ∆ONB ,从而∠BOM=2α. ……………………………..4分在Rt ∆OMB 中,由BM=40得OM=40cot2α,从而,OE=OM+ME=OM+BS=40cot602α+. ………………………………..6分(2)由(1)结论得OE=4060tan 75+.设OH=x ,OF=y,在∆OHG 中,由余弦定理得, 2802=x 2+(4060tan 75++100)2-2x(4060tan 75++100)cos1500,解得x ≈118.8cm. ………………………………………………………………..9分 在∆OEF 中,由余弦定理得, 2802=y 2+(4060tan 75+)2-2y(4060tan 75+)cos1500,解得y ≈216.5cm. …………………………………………………………..12分 所以,FH=y-x ≈98cm ,即后轮中心从F 处移动到H 处实际移动了约98cm. ………………………14分(文)解:(1) 当轮胎与AB 、BC 同时接触时,设轮胎与AB 边的切点为T ,轮胎中心为O ,则|OT|=40,由∠ABC=1200,知∠OBT=600, …………………………………..2分 故|OB|=240⨯. .…………………………………………………………………..4分所以,从B+40, …………………………..6分此轮胎露在水面外的高度为d=60cos 60⋅+h)=10h +-,得证. (8)分(2)只要d ≥40, …………………………………………………………..12分 即10h -≥40,解得h ≤16cm.,所以h 的最大值为16cm. …..14分22.(理)解:(1)由222211112a b ab ⎧-=⎪⎨+=⎪⎩,得…………………………………..2分 a 2=2,b 2=1 所以,椭圆方程为2212xy +=. ………………………………………..4分(2)由 22112x m y x y =+⎧⎪⎨+=⎪⎩,得(m 2+2)y 2+2my-1=0,设P(x 1,y 1),Q(x 2,y 2),由条件可知,点(2,0)T .PQT S ∆=12|FT||y 1-y 2|=122m +…..6分令t=212m +,则t 1(0,]2∈,则P Q T S ∆2≤,当且仅当t=12,即m=0(此时PQ 垂直于x 轴)时等号成立,所以P Q T S ∆的最大值是2. …………..10分(3) P Q ' 与Q T 共线 ………………………………………………………………..11分P '(x 1,-y 1),P Q ' =(x 2-x 1,y 2+y 1),T Q=(x 2-2,y 2) ……………………………..12分由(x 2-x 1)y 2-(x 2-2)(y 1+y 2)=-x 1y 2-x 2y 1+2(y 1+y 2)=-(my 1+1)y 2-(my 2+1)y 1+2(y 1+y 2) =-2my 1y 2+(y 1+y 2) =-2m212m -++222mm -+=0,所以,P Q ' 与Q T共线…………………………………………………..16分(文)解:(1)由222211112a b ab ⎧-=⎪⎨+=⎪⎩,得 ……………………………………………………………..2分 a 2=2,b 2=1,所以,椭圆方程为2212xy +=. …………………………………………………..4分(2)设PQ:y=x-1,由22112x y x y =+⎧⎪⎨+=⎪⎩得3y 2+2y-1=0, …………………..6分解得: P(41,33),Q(0,-1),由条件可知点(2,0)T , PQ TS ∆=12|FT||y 1-y 2|=23. ….. ……………………………………10分(3) 判断:P Q ' 与Q T共线. ….. …….. …….. ………………………………………11分设1122(,),(,)P x y Q x y则P '(x 1,-y 1),P Q ' =(x 2-x 1,y 2+y 1),T Q=(x 2-2,y 2), ……………………………..12分由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4220k x k x k +-+-=. ………………………..13分(x 2-x 1)y 2-(x 2-2)(y 1+y 2)=(x 2-x 1)k(x 2-1)-(x 2-2)(kx 1-k+kx 2-k) =3k(x 1+x 2)-2kx 1x 2-4k=3k22412kk+-2k222212k k-+-4k=k(2222124441212kk kk---++)=0. …………………………..15分所以,P Q ' 与Q T共线. ………………………………………………………..16分23.(理)解:(1)由已知可得:111,,k m n k m n a aq a aq a aq ---===, ………..…..1分则2m k n a a a =⋅,即有()()()2111m k n aq aq aq ---=, ………….…………. …..3分2(1)(1)(1)m k n -=-+-,化简可得. 2m k n =+. …………………………..4分 (2)11k n k n a a aqaq--+=+,又122m m a aq -=,故 1111()22(12)k n m k n k m kk n m a a a aq aq aqaq q q ------+-=+-=+-,……………..6分 由于,,k m n 是正整数,且n m >,则1,1n m n k m k ≥+-≥-+,又q 是满足1q >的正整数,则2q ≥,112121212210n km km k m km km km km kqqqqqqqqq---+-----+-≥+-=+-≥+-=>,所以,k n a a +>2m a ,从而上述猜想不成立. …………………………………..10分 (3)命题:对于首项为正整数a ,公差为正整数d 的无穷等差数列{}n a ,总可以找到一个无穷子数列{}n b ,使得{}n b 是一个等比数列. ……….. …….. …………..13分 此命题是真命题,下面我们给出证明.证法一: 只要证明对任意正整数n,(1),1n n b a d n =+≥都在数列{a n }中.因为b n =a(1+d)n =a(1+1n C d+2n C d 2+…+n n C d n )=a(Md+1),这里M=1n C +2n C d+…+n n C d n-1为正整数,所以a(Md+1)=a+aMd 是{a n }中的第aM+1项,证毕. ……………..18分 证法二:首项为a ,公差为d ( *,a d N ∈)的等差数列为,,2,a a d a d ++ ,考虑数列{}n a 中的项: 2,(2),(33),a ad a a ad d a a ad d d ++++++依次取数列{}n b 中项1(1)b a ad a d =+=+,22(2)(1)b a a ad d a d =++=+,233(33)(1)b a a ad d d a d =+++=+,则由2233a a a d a a d d <+<++,可知3212b b b b =,并由数学归纳法可知,数列(1),1nn b a d n =+≥为{}n a 的无穷等比子数列. ...18分(文)解:(1)由a 32=a 1a 5, ………………………………………………………………………..2分即(a 1+2d)2=a 1(a 1+4d),得d=0. ……………………………………………..4分(2) 解:a n =1+3(n-1),如b n =4n-1便为符合条件的一个子数列. ……………………..7分因为b n =4n-1=(1+3)n-1=1+11n C -3+21n C -32+…+11n n C --3n-1=1+3M, …………………..9分这里M=11n C -+21n C -3+…+11n n C --3n-2为正整数,所以,b n =1+3M =1+3 [(M+1)-1]是{a n }中的第M+1项,得证. ……………….11分(注:b n 的通项公式不唯一)(3) 该命题为假命题. …………………………………………………….12分由已知可得111,,k m n k m n c aq c aq c aq ---===,因此,11k n k n c c aq aq --+=+,又122m m c aq -=,故 1111()22(12)k n m k n k m k k n m c c c aq aq aq aq q q ------+-=+-=+-, …………..15分 由于,,k m n 是正整数,且n m >,则1,1n m n k m k ≥+-≥-+, 又q 是满足1q >的正整数,则2q ≥,112121212210n km km k m km km km km kqqqqqqqqq---+-----+-≥+-=+-≥+-=>,所以,k n c c +>2m c ,从而原命题为假命题. …………………………………………..18分。
2013学年第一学期杨浦区高三期末试卷解析

杨浦区2013学年度第一学期高三年级学业质量调研地理学科试卷2014.1本试卷共10页。
满分150分。
考试时间120分钟。
全卷包括两大题:第一大题为选择题; 第二大题为综合分析题。
考生注意: 答卷前,务必用圆珠笔或钢笔在答题纸和答题卡上将姓名、学校和准考证号等填写清2•第一大题由机器阅卷,答案必须全部涂写在答题卡上。
考生应将代表正确答案的小方 2B 铅笔涂黑。
注意试题题号与答题卡编号一一对应,不能错位。
答案需要更改时,必须 将原选项用橡皮擦去,重新选择。
答案不能涂写在试卷上。
涂写在试卷上一律不给分。
3.第二大题综合分析题,考生应用钢笔或圆珠笔将答案直接写在答题纸上,用铅笔答题 或写在试卷上一律不给分。
本卷不设共同部分和选择部分,所有考生应完成本大题所有题目。
一、选择题(共60分,每小题2分。
每小题只有一个正确答案)(一)2013年12月2日(农历10月30 日),嫦娥三号月球探测器发射升空。
嫦娥三号探月 任务包括月表形态与地质构造调查; 月表物质成分和可利用资源调查; 地球等离子体层探测和天文观测。
1 •嫦娥三号发射的这一天的月相接近A.新月B.上弦月C.满月 D .下弦月2•“嫦娥三号”月球车将做大量实验,科学家称“月球是一个绝佳的天文观测场地”,其依 据主要是A .月球昼夜交替周期长,观测时间长B .月球引力小,便于探测器行走 C.月球上没有大气和对流天气的干扰D.月球上温度高,便于热成像3.月球表面昼夜温差巨大,不具有存在生命的条件,而地球具有存在生命的适宜温度,其主 要原因是①地球昼夜更替的周期适中 ②比较安全的宇宙环境③太阳光的稳定性 ④地球与太阳的距离比较适中⑤地球具有适当质量和体积A .①②B.①⑤C.③④D.②④1. 楚。
格用(二)地质剖面图表示地质剖面上的地质现象及其相互 关系的示意图。
右图为“某地地质剖面示意图” 。
4•图中砂岩属于A .岩浆岩 B.沉积岩 C.变质岩 D.玄武岩5.图中甲处岩石的特点是 A .矿物晶体颗粒细小,多气孔BC.颗粒定向排列,具有片理构造 6.该地地下洞穴形成的地质作用最有可能是(三)年日照时数是指太阳直接辐射地面时间的一年累计值,以小时为单位区域年日照时数分布图1IO°E7. 图中年日照时数的分布规律是A .大致从东南向西北递增B .大致从西北向东南递增 C.大致从西南向东北递增D.大致从东北向西南递增8. 图中甲区域年日照时数较周围地区低,原因是A .地处盆地,云雾多B .地处山地迎风坡,降水多 C.深居内陆,太阳辐射少D.位于城市附近,污染大9. 酒泉卫星发射中心是中国创建最早、规模最大的综合型导弹、卫星发射中心,该地优势条 件是.颗粒细小,有明显的层理构造D.矿物晶体颗粒较粗,色泽较浅A .火山喷发作用 B.地层沉陷作用 C.风力侵蚀作用 D.流水溶蚀作用100°E图例界市流零日照 时数线甲岩浆岩石灰岩洞穴 ;:■ TT :~ "7 ■- Q .砂岩 on t>c>djrA.地球自转线速度较大,节省燃料B.劳动力丰富,工农业基础好C.干燥少雨,雪电日少,容易满足发射条件D.森林覆盖率高,有助于保障发射安全(四)2013年11月,本年度最强热带气旋台风“海燕”重创菲律宾,造成了大量人员伤亡和 财产损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨浦区2012学年第一学期高三年级学业质量调研数学试卷(文) 2013.1.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 若函数()xx f 3=的反函数为()x f1-,则()=-11f.【答案】0【解析】由31x=得,0x =,即1(1)0f -=。
2.若复数iiz -=1 (i 为虚数单位) ,则=z .【解析】因为1111i z i i i-==-=--,则z = 3.抛物线x y 42=的焦点到准线的距离为 . 【答案】2【解析】由抛物线的方程可知24p =,所以2p =,即抛物线的焦点到准线的距离为2.4. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211321,则该线性方程组的解是 .【答案】11x y =⎧⎨=⎩ 【解析】由题意可知对应的线性方程组为232x y x y +=⎧⎨+=⎩,解得11x y =⎧⎨=⎩。
所以该线性方程组的解是11x y =⎧⎨=⎩。
5.若直线l :012=--x y ,则该直线l 的倾斜角是 . 【答案】tan 2arc【解析】由210y x --=得21y x =+,所以直线的斜率为tan 2k α==,所以t a n 2a r c α=,即直线的倾斜角为tan 2arc 。
6. 若7)(a x +的二项展开式中,5x 的系数为7,则实数=a .【答案】【解析】二项展开式的通项公式为717k k kk T C x a -+=,由75k -=得2k =,所以25237T C x a =,即5x 的系数为2227217C a a ==,所以213a =,所以a =±。
7. 若圆椎的母线cm 10=l ,母线与旋转轴的夹角030=α,则该圆椎的侧面积为 2cm . 【答案】50π【解析】因为线与旋转轴的夹角030=α,设底面圆的半径为r ,则010sin305r ==。
所以底面圆的周长210c r ππ==,所以该圆锥的侧面积1110105022lc ππ=⨯⨯=。
8. 设数列}{n a (n ∈*N )是等差数列.若2a 和2012a 是方程03842=+-x x 的两根,则数列}{n a 的前2013 项的和=2013S ______________.【答案】2013【解析】由题意知220122a a +=,又2201212013a a a a+=+,所以120132a a +=,所以1201320132013()20132a a S +==。
9. 若直线l 过点()1,1-,且与圆221x y +=相切,则直线l 的方程为 . 【答案】1x =或1y =-【解析】圆心为(0,0)O ,半径1r =,当直线l 的斜率不存在时,即:1l x =,此时l 与圆相切,满足条件。
若直线l 的斜率存在时,设直线斜率为k ,则直线l 的方程为(1)(1)y k x --=-,即10ky y k -+-=。
若l1=,解得0k =,此时直线方程为1y =-,所以直线l 的方程为1x =或1y =-。
10.将一颗质地均匀的骰子连续投掷两次,朝上的点数依次为b 和c , 则2≤b 且3≥c 的概率是____ ___ .【答案】92【解析】一颗质地均匀的骰子连续投掷两次有36种结果。
若2≤b 且3≥c ,则有,(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)共8种,所以2≤b 且3≥c 的概率是82369=。
11.若函数1)23(log )(+-=xa x f (1,0≠>a a )的图像过定点P ,点Q 在曲线022=--y x 上运动,则线段PQ 中点M 轨迹方程是 . 【答案】222y x x =-【解析】由321x -=,得33x =,解得1x =,此时1y =,所以函数()f x 过定点(1,1)P .设(,)M x y ,则(21,21)Q x y --,因为Q 在曲线022=--y x 上运动,,所以2(21)(21)20x y ----=,整理得222y x x =-,即M 的轨迹方程是222y x x =-。
12.如图,已知边长为8米的正方形钢板有一个角锈蚀, 其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为____ 平方米 .A MEPDCB N F【答案】48【解析】设,MP x PN y ==,作PQ AF ⊥于Q ,所以8,4PQ y EQ x =-=-,在EDF ∆中,EQ EF PQ FD =,所以4482x y -=-,即110,482y x x =-+≤≤。
设矩形BNPM 面积所以()S x ,则211()(10)(10)5022S x xy x x x ==-=--+,因为48x ≤≤,所以函数()S x 在48x ≤≤上单调递增,所以当8x =时,()S x 有最大值21(8)(810)50482S =--+=平方米。
13.设ABC ∆的内角C B A 、、的对边长分别为c b a 、、,且 c A b B a 53cos cos =- ,则B A cot tan 的值是___________.【答案】4【解析】由c A b B a 53cos cos =-得33sin cos sin cos sin sin()55A B B A C A B -==+ 33sin cos cos sin 55A B A B =+,即28sin cos cos sin 55A B A B =,所以s i n c o s 4c o s s i n A B A B =,即4c o t t a n =B A 。
14.已知函数()()⎩⎨⎧≤-->+=.0,2,0,1log 22x x x x x x f 若函数()()m x f x g -=有3个零点, 则实数m 的取值范围是___________. 【答案】01m <<【解析】画出函数)(x f 的图像如右,()()m x f x g -=有3个零点,即是直线m y =与函数)(x f 的图像有三个交点,由图可知:01m <<二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15. “3=a ”是“函数22)(2+-=ax x x f 在区间[)+∞,3内单调递增”的………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件.【答案】A【解析】若函数22)(2+-=ax x x f 在区间[)+∞,3内单调递增,则有232aa --=≤,所以“3=a ”是“函数22)(2+-=ax x x f 在区间[)+∞,3内单调递增”的充分非必要条件,所以选A.16.若无穷等比数列{}n a 的前n 项和为n S ,首项为1,公比为23-a ,且a S n n =∞→lim ,(n ∈*N ),则复数ia z +=1在复平面上对应的点位于 ………( ))(A 第一象限. )(B 第二象限. )(C 第三象限. )(D 第四象限. 【答案】D【解析】因为11lim 311()2n n a S a q a →∞===---,且3012a <-<,即3522a <<。
所以解得2a =或12a =(舍去)。
所以2a =。
所以1121255z i a i i ===-++,即对应坐标为21(,)55-,所以点在第四象限,所以选D.)(A. )(B )(C . )(D . 【答案】B18. 已知数列{}n a 是各项均为正数且公比不等于1的等比数列(n ∈*N ). 对于函数()y f x =,若数列{}ln ()n f a 为等差数列,则称函数()f x 为“保比差数列函数”. 现有定义在(0,)+∞上的如下函数:①1()f x x=, ②2()f x x =, ③()e x f x =,④()f x =“保比差数列函数”的所有序号为 ………( ))(A ①②. )(B ③④. )(C ①②④. )(D ②③④ . 【答案】C【解析】对于①,ln f (a n )= ln n a 1=-ln a n =-ln(a 1q n -1)=-ln a 1-(n -1)ln q 为等差数列,故①是,(B)、(D)均错;对于④,ln f (a n )= ln n a =21ln(a 1q n -1)=21ln a 1+21(n -1)ln q 为等差数列,故④是,(A)错,故选(C).三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 . 如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC , E D 、分别是AP BC 、的中点, (1)求三棱锥ABC P -的体积;(2)若异面直线AB 与ED 所成角的大小为θ,求θtan 的值.20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分 . (文) 已知函数π()cos()4f x x =-,(1)若()10f α=,求sin 2α的值; (2)设()()2g x f x f x π⎛⎫=⋅+ ⎪⎝⎭,求()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .PABCDE已知椭圆:C 22221(0)x y a b a b+=>>的两个焦点分别是()0,11-F 、()0,12F ,且焦距是椭圆C 上一点P 到两焦点21F F 、距离的等差中项. (1)求椭圆C 的方程;(2)设经过点2F 的直线交椭圆C 于N M 、两点,线段MN 的垂直平分线交y 轴于点),0(0y Q ,求0y 的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数)0(121)(>-=x x x x f 的值域为集合A ,(1)若全集R U =,求A C U ; (2)对任意⎥⎦⎤⎝⎛∈21,0x ,不等式()0≥+a x f 恒成立,求实数a 的范围; (3)设P 是函数()x f 的图像上任意一点,过点P 分别向直线x y =和y 轴作垂线,垂足分别为A 、B ,求PB PA ⋅的值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设数列{}n x 满足0>n x 且1≠n x (n ∈*N ),前n 项和为n S .已知点),(111S x P , ),(222S x P ,()n n n S x P ,,⋅⋅⋅都在直线b kx y +=上(其中常数k b 、且0≠k ,1≠k ,0≠b ),又n n x y 21log =.(1)求证:数列{}n x 是等比数列; (2)若n y n 318-=,求实数k ,b 的值;(3)如果存在t 、∈s n *N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上.问是否存在正整数M ,当M n >时,1>n x 恒成立?若存在,求出M 的最小值,若不存在,请说明理由.杨浦区2012学年度第一学期高三年级学业质量调研 2013.1.5一.填空题:1. 0;2.2;3.2;4. ⎩⎨⎧==11y x (向量表示也可);5.2arctan ;6.33±;7. π50 8. 2013;9.1=x 或1=y ; 10. 92;11.x x y 222-= 12. 48;13.1-;14.)1,0( 二、选择题:15.)(A ;16.)(D ;17.)(B ;18. )(C .三、解答题19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 . (1)由已知得,,32,2==AB AC ………2分所以 ,体积33831==∆--PA S V ABC ABC P ………5分(2)取AC 中点F ,连接EF DF ,,则DF AB //,所以EDF ∠就是异面直线AB 与ED 所成的角θ. ………7分 由已知,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, . ………10分在EFD Rt ∆中,5,3==EF DF ,所以,315tan =θ. ………12分(其他解法,可参照给分) 20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分 .解:(1)因为π()cos()410f αα=-=, 则sin )210αα+=, 所以 7cos sin 5αα+=. ………3分 平方得,22sin 2sin cos cos αααα++=4925, ………5分所以24sin 225α=. ………7分(2)因为()π()2g x f x f x ⎛⎫=⋅+ ⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )(cos sin )22x x x x +⋅- ………9分=221(cos sin )2x x -=1cos 22x . ………11分 当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. ………12分 所以,当0x =时,()g x 的最大值为12; ………13分当π3x =时,()g x 的最小值为14-. ………14分21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 . (1)解:设椭圆C 的半焦距是c .依题意,得 1c =. ………1分 由题意得 a c 24=,2=a2223b a c =-=. ………4分 故椭圆C 的方程为 22143x y +=. ………6分 (2)解:当MN x ⊥轴时,显然00y =. ………7分当MN 与x 轴不垂直时,可设直线MN 的方程为(1)(0)y k x k =-≠.由 22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得0)3(48)43(2222=-+-+k x k x k . ………9分 设1122(,),(,)M x y N x y ,线段MN 的中点为33(,)Q x y ,则2122834k x x k +=+. ………10分所以212324234x x k x k +==+,3323(1)34k y k x k -=-=+. 线段MN 的垂直平分线方程为)434(1433222k k x k k k y +--=++. 在上述方程中令0=x ,得k k k k y 4314320+=+=. ………12分当0k <时,34k k +≤-0k >时,34k k +≥所以0012y -≤<,或0012y <≤. ………13分综上,0y的取值范围是[. ………14分22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)由已知得,0>x ,则222)(≥+=x x x f ………1分 当且仅当x x 2=时,即2=x 等号成立,[)∞+=∴,22M ………3分 所以,()22,∞-=M C U ………4分(2)由题得⎪⎭⎫ ⎝⎛+-≥x x a 2 ………5分 函数⎪⎭⎫ ⎝⎛+-=x x y 2在⎥⎦⎤ ⎝⎛∈21,0x 的最大值为29- ………9分 29-≥∴a ………10分(3)设⎪⎪⎭⎫ ⎝⎛+0002,x x x P ,则直线PA 的方程为()0002x x x x y --=⎪⎪⎭⎫ ⎝⎛+-, 即0022x x x y ++-=, ………11分 由⎪⎩⎪⎨⎧++-==0022x x x y x y 得)1,1(0000x x x x A ++ ………13分 又⎪⎪⎭⎫ ⎝⎛+002,0x x B , ………14分 所以)1,1(00x x PA -=,)0,(0x -=,故1)(100-=-=⋅x x PB PA ………16分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)因为点1,+n n P P 都在直线b kx y +=上, 所以k x x S S n n n n =--++11,得n n kx x k =-+1)1(, ………2分 其中0111≠-=k x . ………3分因为常数0≠k ,且1≠k ,所以11-=+k k x x nn 为非零常数. 所以数列{}n x 是等比数列. ………4分(2)由n n x y 21log =,得6821-=⎪⎭⎫ ⎝⎛=n y n n x , ………7分 所以81=-k k ,得78=k . ………8分 由n P 在直线上,得b kx S n n +=, ………9分令1=n 得7871785111--=-=-=x x S b . ………10分(3)由nn x y 21log =知1>n x 恒成立等价于0<n y . 因为存在t 、∈sn *N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上. 由12+=t y s 与12+=s y t 做差得:)(2s t y y t s -=-. ………12分易证{}n y 是等差数列,设其公差为d ,则有d t s y y t s )(-=-,因为t s ≠,所以02<-=d ,又由2)(2++=+s t y y t s ,而4)(22)2)(1()2)(1(111++-=--++--+=+t s y t y s y y y t s得2)(24)(221++=++-s t t s y 得 01)(21>-+=t s y 即:数列是首项为正,公差为负的等差数列,所以一定存在一个最小自然数M , ………16分使,⎩⎨⎧<≥+001M M y y , 即⎩⎨⎧<-+-+≥--+-+0)2(1)(20)2)(1(1)(2M t s M t s 解得2121++≤<-+t s M t s 因为*∈N M ,所以t s M +=,即存在自然数M ,其最小值为t s +,使得当M n > 时,1>n x 恒成立. ………18分 (其它解法可参考给分)。