ECON6003_Mathematical Methods of Economic Analysis_2009 Semester 1_Final Practice

合集下载

大学各专业对应英文名称

大学各专业对应英文名称

大学各专业对应英文名称^*>4M>>M^M舔蜘 Umiistdepaltmen-蚪&u r m m dep再 Itmen-噌驱p E o s o p h y阻渺te tt K ^^p E o s o p h y ofMarxmm -*H噌驱chsesep E o s o p h y季皿呻犊Fore_gn p E o s o p E e s梅»驱 Logn'由®摩E-E C S*瓠 Aesth&cs>馨琳scs'nceof R »一g o'n举^排^瑙^p Eos o p h y o f scs'nceand Technoogy附革嘿Econonl_cs»$ 险苇瓠 TheoreUca一 Econom_csM芯险%^p o E c a一Economy险苇朝滋冷Estolyof EconomoThough-®% 冷 HmtoryofEcollolnnS &海事常 westernEconom_cs阵判®%worsm 83o3~8A口,m a Jrr ^藻海^^p o p E a a o n、Resourcesand Emdronmenta-Econom-csM a险事常 App=edEconomksH 3n ®%^N a d:o n £.Econonl-cs冈域海事^Rego'na- Economks殍爆驱(盼^^驱)p u z ozlnance G n c c d s gTaxatkrn) 命野犊(盼痢萍犊)Fsance (sc cd s g Insurance)避寿险苇驱 I n d u s sr s1一Econom_csH S 4浏犊 Intema-kma-Trade 涝»险苇驱 Labor Economks 漆斗犊s t a £*s £*c s数量经济学Quantitative Economics中文学科、专业名称英文学科、专业名称国防经济学National Defense Economics法学Law法学Science of Law法学理论Jurisprudence法律史Legal History宪法学与行政法学Constitutional Law and Administrative Law刑法学Criminal Jurisprudence民商法学(含劳动法学、社会保障法学)Civil Law and Commercial Law (including Science of Labour Law and Science of Social Security Law ) 诉讼法学Science of Procedure Laws经济法学Science of Economic Law环境与资源保护法学Science of Environment and Natural Resources Protection Law国际法学(含国际公法学、国际私法学、国际经济法学、)International law (including International Public law, International Private Law and International Economic Law)军事法学Science of Military Law政治学Political Science政治学理论Political Theory中外政治制度Chinese and Foreign Political Institution科学社会主义与国际共产主义运动Scientific Socialism and International Communist Movement中共党史(含党的学说与党的建设)History of the Communist Party of China(including the Doctrine of China Party and Party Building)马克思主义理论与思想政治教育Education of Marxist Theory and Education in Ideology and Politics国际政治学International Politics国际关系学International Relations外交学Diplomacy社会学Sociology社会学Sociology人口学Demography人类学Anthropology民俗学(含中国民间文学)Folklore (including Chinese Folk Literature) 民族学Ethnology民族学Ethnology马克思主义民族理论与政策Marxist Ethnic Theory and Policy中国少数民族经济Chinese Ethnic Economics 中国少数民族史Chinese Ethnic History中国少数民族艺术Chinese Ethnic Art教育学Education教育学Education Science教育学原理Educational Principle课程与教学论Curriculum and Teaching Methodology教育史History of Education比较教育学Comparative Education学前教育学Pre-school Education高等教育学Higher Education成人教育学Adult Education职业技术教育学Vocational and Technical Education特殊教育学Special Education教育技术学Educational Technology心理学Psychology基础心理学Basic Psychology发展与心理学Developmental and Educational Psychology应用心理学Applied Psychology体育学Science of Physical Culture and Sports体育人文社会学Humane and Sociological Science of Sports 运动人体科学Human Movement Science体育教育训练学Theory of Sports Pedagogy and Training民族传统体育学Science of Ethnic Traditional Sports 文学Literature中国语言文学Chinese Literature 文艺学Theory of Literature and Art 语言学及应用语言学Linguistics and Applied Linguistics 汉语言文字学Chinese Philology中国古典文献学Study of Chinese Classical Text 中国古代文学Ancient Chinese Literature 中国现当代文学Modern and Contemporary Chinese Literature 中国少数民族语言文学Chinese Ethnic Language and Literature比较文学与世界文学Comparative Literature and World Literature 外国语言文学Foreign Languages and Literatures 英语语言文学English Language and Literature 俄语语言文学Russian Language and Literature 法语语言文学French Language and Literature 德语语言文学German Language and Literature 日语语言文学Japanese Language and Literature 印度语言文学Indian Language and Literature 西班牙语语言文学Spanish Language and Literature 阿拉伯语语言文学Arabic Language and Literature 欧洲语言文学European Language and Literature 亚非语言文学Asian-African Language and Literature 外国语言学及应用语言学Linguistics and Applied Linguistics in Foreign Languages新闻传播学Journalism and Communication 新闻学Journalism 传播学Communication 艺术学Art艺术学Art Theory 音乐学Music 美术学Fine Arts炜4[4^驱ArusalcDesign 涝®^®^Theater and chseseTradEcma一Opera曲秘^3!-|11「鼬研^瓣丹^a ~oand t e -A v m o'nArt源圈驱£nce SR冷犊Estoly 涌冷驱Hmtoly 冷犊(»$ 演冷犊冷Estollca- Theors's andHmtolyofHmtolica-scs'nce皴卧琳用»替赛瓠 Archfileoogy and M u s eo o g y SR冷漆»摩Estolica-GeographySR冷冲舞琳《盼肄演琳,卧冲她琳)s m SI e s o f Estoldca 一 UteraUireandudsg pSLeographyand s m al e sofDlmhuans弗H冷 Hutoryof p a r t rt u fil rSubjects壬皿卧尤冷 Anden-chsese E s t o l y 丑H is s尤冷Modem andcontemporary chseseEstory 硅判冷 worEEstoly 磁牌 Nat§-scs'nce燃琳 Maulemfilacsw s燃^Fundamenta-Mathematks中w燃琳c o m p u t a a o n a -Maulemfilacs^嗣岁血燃»■牛probabEtyandM a9e m a £*c a -staasucsM a燃琳App=edmauwma£*cs®«^JIT m 3^o p e r fil £*o n £.R »s e a r c h and cybem&cs 替w ^p h y w c s »醪售»TheoreUca 一phys_csw *著(»由宛*瓣替i»paradephys-csandNudear phys-cs洞 *JIr M>*^»At o m n and M o e c E a rphys.cs«驷*奇替i»p-amnlaphys_cs漏»麟售»Condensed Matter phys.cs湖犊 A c o c s al c s光学Optics无线电物理Radio Physics化学Chemistry无机化学Inorganic Chemistry分析化学Analytical Chemistry有机化学Organic Chemistry物理化学(含化学物理)Physical Chemistry (including Chemical Physics)高分子化学与物理Chemistry and Physics of Polymers天文学Astronomy天体物理Astrophysics天体测量与天体力学Astrometry and Celestial Mechanics地理学Geography自然地理学Physical Geography人文地理学Human Geography地图学与地理信息系统Cartography and Geography Information System大气科学Atmospheric Sciences气象学Meteorology大气物理学与大气环境Atmospheric Physics and Atmospheric Environment海洋科学Marine Sciences物理海洋学Physical Oceanography海洋化学Marine Chemistry海洋生理学Marine Biology海洋地质学Marine Geology地球物理学Geophysics固体地球物理学Solid Earth Physics空间物理学Space Physics地质学Geology矿物学、岩石学、矿床学Mineralogy, Petrology, Mineral Deposit Geology地球化学Geochemistry古生物学与地层学(含古人类学)Paleontology and Stratigraphy《s d u d s gp SL e o a n -h r o p o o g s蔷睡旨渝犊structura一G e o o g y W旧^咨渝驱 QuaternaryGeoogy肝替犊E o o g y»售驱 Botany理替犊zooogy肝»驱p h y s o'o g y美 肝肝替^H l r o b o'o g y寿肝替喘M nr o b o'o g y#险府替^Neurobo'ogy 海流瓠Gen&cs滩珊府替犊Dffivoopmenta-E o o g y苗窗肝替瓠ce=E o og y府替^摩血冷*府替犊Bo'chem一%r yandM oe c u fil r B o'o g y 肝替替»琳 B o'p h y w c s 府辨嘿Ecoogy弁漆翠琳 systemsscs'nce渊^ffl ^s y a s m sTheory弁整牛M 4rr *aSystemsAnawsmandIntegrfilaon弟株»丹冷Estoryofscs'nceandTechnoogyEngseersg*株M *h a s.c s—漆*^血*琳融®GenerEandFimdamenta一 M*han_cs回皆*株S O -EMechaMcs盖寺*犊F c a Mechfi>n_csHM *4»E NGSEERSGM*HAN _CS$l M H ffiMechan-ca一 Engseeling ^M a j t ^M皿包^Mechanka- Manufacture and Au&ma£*<m^M t&f H ffi M e c h a rt>r o n n E n g 3$r 3g ^M ^¥JIr »^Mechan_ca- Designand Theory卅aH Mvehn布 Engseeling光学工程Optical Engineering仪器科学与技术Instrument Science and Technology 精密仪器及机械Precision Instrument and Machinery 测试计量技术及仪器Measuring and Testing Technologies and Instruments材料科学与工程Materials Science and Engineering 材料物理与化学Materials Physics and Chemistry 材料学Materialogy材料加工工程Materials Processing Engineering 冶金工程Metallurgical Engineering冶金物理化学Physical Chemistry of Metallurgy钢铁冶金Ferrous Metallurgy有色金属冶金Non-ferrous Metallurgy动力工程及工程热物理Power Engineering and Engineering Thermophysics工程热物理Engineering Thermophysics 热能工程Thermal Power Engineering 动力机械及工程Power Machinery and Engineering 流体机械及工程Fluid Machinery and Engineering 制冷及低温工程Refrigeration and Cryogenic Engineering 化工过程机械Chemical Process Equipment 电气工程Electrical Engineering电机与电器Electric Machines and Electric Apparatus 电力系统及其自动化Power System and its Automation 高电压与绝缘技术High Voltage and Insulation Technology 电力电子与电力传动Power Electronics and Power Drives 电工理论与新技术Theory and New Technology of Electrical Engineering电子科学与技术Electronics Science and Technology 物理电子学Physical Electronics电路与系统Circuits and Systems微电子学与固体电子学Microelectronics and Solid State Electronics 电磁场与微波技术Electromagnetic Field and Microwave Technology 信息与通信工程Information and Communication Engineering 通信与信息系统Communication and Information Systems 信号与信息处理Signal and Information Processing 控制科学与工程Control Science and Engineering 控制理论与控制工程Control Theory and ControlEngineering 检测技术与自动化装置Detection Technology and Automatic Equipment 系统工程Systems Engineering 模式识别与智能系统Pattern Recognition and Intelligent Systems 导航、制导与控制Navigation, Guidance and Control 计算机科学与技术Computer Science and Technology 计算机软件与理论Computer Software and Theory 计算机系统结构Computer Systems Organization 计算机应用技术Computer Applied Technology 建筑学Architecture建筑历史与理论Architectural History and Theory 建筑设计及其理论Architectural Design and Theory 城市规划与设计(含风景园林规划与设计)Urban Planning and Design (including Landscape Planning and Design) 建筑技术科学Building Technology Science 土木工程Civil Engineering岩土工程Geotechnical Engineering 结构工程Structural Engineering 市政工程Municipal Engineering 供热、供燃气、通风及空调工程Heating, Gas Supply, Ventilating and Air Conditioning Engineering防灾减灾工程及防护工程Disaster Prevention and Reduction Engineering and Protective Engineering桥梁与隧道工程Bridge and Tunnel Engineering 水利工程Hydraulic Engineering 水文学及水资源Hydrology and Water Resources 水力学及河流动力学Hydraulics and River DynamicsZ K H^S H M H YDRAU HCS-NLCTUREE NGSEERSG*槌*曲21淡HydraEn'and Hydro-PowerEngseersg 藤口,ar ft fel is ar H ffi Harbor 、Coasta 一and OffshoreEngseersg 首=B ^^JIr ^^s u rv ey s g andMappsg汁凄楚=*琳由楚=*H ffi Geodesy srnd Survey Engseeling»秘首=*JIr m a pho&gramlngly and Remote senssg凄围泄围^由凄磁^飘H ffi Cartography御nd GeographnInfomla£*QnEngseoling^^H ffi JIr 排丹 chem-ca 一 EngseelingandTechnoogy4t ^HMchem_ca 一EngseersgA^H I^chem 一ca-Technoogy肝替Bo'chem-ca一Engseersg M s 4h ^App=ed Chem 一stryH fee 4tI n d ussr s1一catawsm^Mm a JIr ^MHMGeoog一ca-Resources and G8o g _ca - Engseersg耳^<w Jrr »期MserEResocrceprospectsgandE X P o m £*Q n 凄«期肯=血赤*排丹Geodetecto'll and Infomla-o'nTechnoogy咨s H M G e o o g k a -Engse&ng ^i k H M Z »S 3-Engseersg米耳HMM s s gEngseersg理替&HH M Z »S 3-processsg Engse&ng舟H>$$^fei H M Safety Technoogy and Engseersg ^s JIr >H^Jr H M o =:andZ %C 3- GasE n g5$r5g 善Jr^HMoTGas W<L一Engseersg咨Jr 田q滩H ffi o l G a s F S'EDeveopmen-EngseelingspJr a a H Mo T G a s Storageand Tmnspoltafto'nEngseersg淳览澄琳JIr H ffi Text 一布 scs'nceand EngseersgS ^H M Text-布Engseersg淳览藻^由淳览即阵牛TexuoMateliaLandTexu-esDes-gn 净^^株由潜瞻 H M Text-布 Chem一sby andD y £.n gand zl n m h sg E n g 5$r 5g服装设计与工程Clothing Design and Engineering轻工技术与工程The Light Industry Technology and Engineering 制浆造纸工程Pulp and Paper Engineering制糖工程Sugar Engineering发酵工程Fermentation Engineering皮革化学与工程Leather Chemistry and Engineering交通运输工程Communication and Transportation Engineering 道路与铁道工程Highway and Railway Engineering交通信息工程及控制Traffic Information Engineering & Control 交通运输规划与管理Transportation Planning and Management 载运工具运用工程Vehicle Operation Engineering船舶与海洋工程Naval Architecture and Ocean Engineering 船舶与海洋结构物设计制造Design and Construction of Naval Architecture and Ocean Structure轮机工程Marine Engine Engineering水声工程Underwater Acoustics Engineering航空宇航科学与技术Aeronautical and Astronautical Science and Technology学习学习。

2019美国商科留学:杜克大学经济学项目介绍

2019美国商科留学:杜克大学经济学项目介绍

2019美国商科留学:杜克大学经济学项目介绍杜克大学经济学属于美国商科留学大类,相信不少童靴想了解,今天,小编就为大家揭开杜克大学经济学项目的面纱。

杜克大学位于美国北卡罗来纳州的杜伦市,是美国南部最好的私立大学,在2018年US News美国大学排名中位列第9。

虽然比起哈佛耶鲁这类常春藤名校来说,杜克大学不到二百年的校史略显“年轻”,但无论是学术水平还是其他方面都不逊于常春藤名校。

从杜克大学走出的名人遍布于各个行业,比如美国第37任总统理查德·尼克松,苹果公司现任CEO蒂姆·库克,以及2011年NBA状元秀凯里·欧文。

如果各位有意学商科的小僧想跟这些名人做校友的话,不妨跟小编一起来了解一下杜克大学的经济学项目。

项目简介杜克大学经济学项目的全称是MA degree in economics,由圣三一学院的艺术与科学学院下的经济学部开设【注意:该项目并不属于那个著名的“浮夸”(Fuqua)商学院】,学生可以通过该项目的学习对经济学的各个分支,包括计算经济学,经济分析和金融经济都有所掌握,进而提升在金融行业中找工作或者申请PhD的竞争力,项目鼓励学生去选择博士级别的相关课程。

也有很多学生跨部门选择一些诸如政治学,公共政策,金融,统计以及数学此类的课程。

课程设置此项目需修够至少30学分经济学或其相关领域的课程,其中至少15学分(5门课程)经济学部开设的课程(ECON打头)。

核心课程包括宏微观经济学课程,学生可从以下课程中任意选择,修满9学分即可。

Macroeconomic Theory微观经济学Advanced Microeconomic Analysis宏观经济学理论Advanced Macroeconomics II高级微观经济学分析Applied Econometrics in Microeconomics (Cannot double count to fulfill econometrics requirement.)微观应用计量经济学Game Theory with Applications of Economics and Other Social Sciences博弈论Economic Growth经济增长International Monetary Economics国际货币经济学Industrial Organization产业经济学Special Topics in Economics: General Equilibrium Theory and Financial Markets.专题:经济学中的一般均衡理论和金融市场Microeconomic Analysis I&II微观经济学分析Ⅰ和ⅡMacroeconomic Analysis I&II宏观经济学分析Ⅰ和Ⅱ和三门经导师许可后可选的专题课程:Special Topics in Applied Microeconomics应用微观经济学Special Topics in Macro International Finance宏观国际金融Special Topics in Economic Theory经济理论核心课程还包括9学分的计量经济学,计算方法,计算机科学,数学和/或统计学相关课程,学生须从以下课程中任选一门:Introduction to Econometrics计量经济学简介Time Series Econometrics时间序列计量经济学Applied Econometrics in Microeconomics应用计量经济学(微观)Empirical Methods in Financial Econometrics金融计量经济学实证方法Econometrics I&II计量经济学Ⅰ和ⅡSpecial Topics in Economics: Microeconometrics Tools专题:计量经济学工具Special Topics in Econometrics, with approval计量经济学专题(需经导师许可)接下来再从计量经济学,计算方法,计算机科学,数学和/或统计学课程中任选两门。

云南怒江水电开发中经济发展与生态保护的悖论及破解

云南怒江水电开发中经济发展与生态保护的悖论及破解

云南怒江水电开发中经济发展与生态保护的悖论及破解冯芸(昆明理工大学社会科学学院,云南昆明650224)摘要 深入分析了怒江水电开发中经济发展与生态保护两难悖论的典型性和特殊性,在研究经济发展与生态保护之间关系的基础上,提出了在保护的前提下实现怒江水能资源开发中经济发展与生态保护“双赢”的对策与建议。

关键词 怒江水电开发;经济发展;生态保护;悖论及破解中图分类号 X171 文献标识码 A 文章编号 0517-6611(2008)34-15188-02Pa ra do x b e tw e e n th e E c on om ic D e v e lo pm en t an d E c o lo g ic a l Pro te c tio n in th e H y dro pow e r D e v e lo pm e n t o f Nu jian g R iv e r o f Y un n a n Pro v in c e an d Its D e c la s s ific a tio nFENG Yun (S ch oo l o f S ocia l S cien ce s ,K u nm in g U n iv er sity o f S cien ce an d E n g in ee rin g ,K u nm in g ,Y u nn an 650224)A b s tra c t T h e typ ica lity and pa rticu la r ity o f tw o -d ifficu lt pa radox be tw eenth e econ om ic deve lopm en t and en v ironm en t pro te ction inth e h ydropow e r de-ve lopm en t o f N u jian g R ive r w ere deep ly an a ly zed .B ased onstudy i n gth e re la tion sh ip be tw eenth e econ om ic deve lopm en t an d en v ironm en t p ro tection,so m e cou n te rm ea su re s an d su gg estion s for rea lizin g th e dou b le w in s o f econ o m ic deve lopm en t an d en v ironm en t pro te ctioninth e w a te r en e rg y resou rce exp lo ita tion o f N u jian g R iv er un de r th e prem ise o f p ro tection w e re u t fo rw ard.K e y w o rd s H ydyopow e r dev e lopm en t o f N u jian g R ive r ;E con om ic dev e lopm en t ;E co lo g ica l pro te ction ;P a radox an d its de class ifica tion作者简介 冯芸(1972-),女,云南昆明人,讲师,从事区域可持续发展研究。

计量经济学导论

计量经济学导论
第十六页,编辑于星期三:七点 五十五分。
1995 Robert E. Lucas Jr.
1994 John C. Harsanyi, John F. Nash Jr., Reinhard Selten 1993 Robert W. Fogel, Douglass C. North 1992 Gary S. Becker
Memory of Alfred Nobel 1969
for having developed and applied dynamic models for the analysis of economic processes
Ragnar Frisch Norway
Jan Tinbergen the etherlands
Economic Forecasts. 4rd ed. McGraw-HILL,1998.
[21] Veerbeek M. A Guide to Modern Economertrics.England:John Wiley and Sons Ltd,2000.
第四页,编辑于星期三:七点 五十五分。
1972 John R. Hicks, Kenneth J. Arrow 1971 Simon Kuznets 1970 Paul A. Samuelson
1969 Ragnar Frisch, Jan Tinbergen
第十九页,编辑于星期三:七点 五十五分。
The Bank of Sweden Prize in Economic Sciences in
中级计量经济学 讲课提纲
第一页,编辑于星期三:七点 五十五分。
参考文献
[1] 李子奈 . 计量经济学 (第二版 ). 北京:高等教育出版社, 2005. [2] 于 俊 年 . 计 量 经 济 学 ( 第 二 版 ). 北 京 : 对 外 经 济 贸 易 大 学 出 版

Econ1320期中攻略

Econ1320期中攻略

Econ1320期中攻略更新一:关于使用Lilliefors Test或K-S test检测正态性的问题,在将样本值调整到标准正态形态,使用x-μ/δ时,样本标准差δ的计算应是(x-xbar)^2/n-1,如是进行无偏估计,大家可回忆统计学或概率论内容。

此文原因有三:1、我好为人师;2、我闲得蛋疼;3、此科我已学过对我没有竞争性。

如怀疑此文动机,请参考如上三条,任何高尚特性,本人一概敬谢不敏,自甘鄙陋。

前言1320在排序上是1310的后续课程,对于华电2+2的同学而言,统计学或概率论及其数理统计课程和本课上的衔接是比较吃力的,甚或根本忘了,这并不稀奇。

不过相信5周的课程之后,大家基本能达到这样的共识:此科授课过程中对1310知识的假设不多,即不会突兀地冒出一个概念而不加以解释,譬如t-检验、p值的含义、z-分布的特性等等,课程中都作出了比较详细的解释。

另,此门课极重应用(p.s. 对于学过2300的同学,这一点和2300有差异,2300的最终考核中对数理考核较严而应用较松),于数理证明几乎不详细讨论,所以对号入座,确定题目的考核内容后,假设检验过程中死记五步法步骤而不乱,注意calculated值公式细节,注意critica值自由度、置信度,则不难获得高分。

对于较细的概念题目,我也见过,我会在最后的给出一个例子,如若嫌麻烦,舍弃亦是简便之法。

以下内容中红色的部分我建议进入考场能开始写时(也就是听instruction,收到命令填签到卡、填姓名学号等,之后,听到命令开始Perusal 可以开始在草稿纸上写时写在草稿纸上,以提醒自己);蓝色的部分是我自己的一些数理认识,有需求的同学可以看,也可以跟我讨论(我可能理解错误),而想免除麻烦的同学跳过即可。

正文首先,要读懂Kadd的Output!否则给出来了不认得不会用就麻烦了....在复习时,我曾经的Pass leader给出这样的建议:要总结检验名称、作用、假设(假设主要考察一些概念型选择或简答)、五步法(从H0、H1,到Decision Rule[hereafter DR],Test Statistics,Decision,Conclusion)的写法。

麻省理工化工数值分析第六课

麻省理工化工数值分析第六课

⿇省理⼯化⼯数值分析第六课10.34, Numerical Methods Applied to Chemical EngineeringProfessor William H. Green Lecture #6: Modern Methods for Solving Nonlinear Equations.1D-Problemunknown: T of reactor f(x) = 0Q rxn exp(-Ea /RT ) + h(T – T a ) + c(T 4 – T a 4) = 0heat of reaction convection radiation (+) (-) (-)steady state temperatures Make a plot with MATLAB *nethe a t.m* function qdot = netheat(T) % computes the net heating rate of a reactor % qdot = 0 at the steady state qdot = Q.*exp(-Ea/(R.*T)) + h.*(T-Ta) + c.*(T.^4-Ta.^4);Figure 2. Professor Green modified variables Q and c until the plot looked likethe one above. Increased Q and decreased c.T o solve for steady state zerosf(T Figure 1. 1D problem Q = -2e-5; Ea = 5000; R = 1.987; h = 3; Ta = 300; c = 1e-8; Tvec = linspace(300,3000)qdot = netheat(Tvec) plot(Tvec,qdot) Figure 3. Have computer bracket in and find smallrange where plot goes from negative to positive.Bisection10.34 Numerical Methods Applied to Chemical EngineeringLecture 6 Prof. William GreenPage 2 of 4start a,b such that f(a)<0 and f(b) < 0 2b a x +=Figure 4. Funif f(x) · f(a) > 0 a = xelse b = xThis is a problem of TOLERANCEif((b-a) < tol) stopTypes of tolerance Absolute tolerance Relative tolerance atol: has unitsif |f(x)| < atol·f rtol: if(b-a) < rtol*|a| has to be BIG numberIn MATLAB while abs(b-a) > atolx x = (a+b)/2 if f(x)·f(a) > 0 a = x else b = x end *bisect.m* function x = bisect(f,a,b,atolx,rtolx, atolf) %solves f(x) = 0 while abs(b-a) > atolx x = 0.5*(b+a); if((feval(f,x)*feval(f,a))>0) a =x; else b=x; end endCommand Window x = bisect(@netheat,300,2000,0.1,0,0) x = 1.2373e+003CHECK: netheat(1237) = -1.0474 í closeKeep in mind: never get actual solution, but can come closeWe can change tolerances to improve results. ? while(abs(b-a)>atolx)&&(abs(b-a)>(rtolx*abs(a)))x = 0.5*(b+a); AND: must satisfy both conditions if(a bs(fev a l(f,x))x = 1.2363e+003 looser tolerance gives less accurate answerBisection cuts interval by 2 each timeEvery time we cut 3 times, we lose a sig figIn bisection, time grows linearly with the number of significant figures.a < x true < bx true = x soln ± b-a/2Newton’s Method (1-D)evaluates slope of f(x)next guess is the x new that satisfies f(x new)=0for a line from f(x guess) with the slope at f(x guess)Figure 5. Newton’s Method.For a good guess Newton’s method doublesthe number of significant figures after everyiteration; however, we lose robustness ifguess is poorf(x) = f(x0)+f’(x0)*(x-x0)+O(Δx2)0 = f(x guess)+f’(x guess)*(x-x guess)If f’(x guess) ≈ 0 -- doesn’t workx new = x guess – f(x guess)/f’(x guess)Figure 6.NO intersectionAnother drawback is one needs a derivative of the function. Secant Methodsame as Newton’s, but uses f’(x) approximate]1[][]1[][)()()('=kkkkapproxxxxfxfxfBisection method works only for 1D problems, but Newton/Secant can be used for problems with greater dimension 10.34 Numerical Methods Applied to Chemical Engineering Lecture 6 Prof. William Green Page 3 of 4 Broyden’s Method (Multi-dimensional) F(x) = F(x 010.34 Numerical Methods Applied to Chemical EngineeringLecture 6 Prof. William GreenPage 4 of 4f(x) = 0 approx J = B 2][1||||x B BΔ+=+k ][k Outer Product:ΔΔΔΔΔΔ (32221)2312111x F x F x F x F x F x FNewton’s Method (Multi-dimensional)O = F(x 0)+J(x 0)·(x-x 0)J*Δx = -F(x 0) B [k]Δx = -FLU LU [k+1] without redoing factorization Done in detail in homework problem.。

大全,MCM备用数学方法中英文对照

大全,MCM备用数学方法中英文对照

MCM备用数学方法中英文对照MCM临近了,专业规范的表达是必不可少的,大家都来热热身吧!各位模友们自己有想到的数学方法或相关方面的专业词汇也可以贴出中英对照的版本![B]计算数学方法:[/B]内插法:interpolation method有限元方法:method of finite element有限差分法:method of finite difference曲线拟合法:method of curve fitting迭代法:method of iteration误差分析法:error analysis样条函数法:method of spline function最小二乘法:method of least square[B]概率论方法:[/B]可靠性分析法:method of reliability analysis时间序列分析法: method of time-series analysis抽样调查法:method of sampling investigation非参数统计法:method of nonparametric statistics实验设计法:method of experiment design故障分析法:method of fault analysis相关分析法:method of correlation analysis测度论方法:method of measure theory统计假设检验法: method of statistical hypothesis testing随机服务法(排队论法):stochastic service system数理统计法:method of mathematical statistics 蒙特卡洛法:Monte Carlo method[B]运筹学方法:[/B]共轭函数法:method of conjugate function动态规划法:method of dynamic programming网络法:method of network优选法:method of optimum seeking图论法:method of graph theory爬山法:method of climbing线性规划法:method of linear programming罚函数法: method of penalty function统筹法:method of overall planning乘子法:method of multiplier最速下降法:method of steepest descent整数规划法:method of integer programming。

econ2003-08

econ2003-08

5
ECON2003W1
U John(b, w) = (bJohn + 1) ∗ wJohn
U Mary(b, w) = bMary ∗ wMary
(a) Draw the Edgeworth box that represents this little economy (put bread
on the horizontal axis and water on the vertical).
University approved tors may be used
A foreign language translation dictionary is permitted provided it contains no notes, additions or annotations.
U (wF , wC) = wF2/3wC1/3?
ANSWER: 10 units of the French wine and 25 units of the California wine.
2. (10 points) Suppose that the consumer has an endowment of 6 units of
(a) Explain whether Peter is risk averse, risk neutral or risk loving.
RISK NEUTRAL. LINEAR UTILITY FUNCTION. THE UTILITY OF THE EXPECTED VALUE IS EQUAL TO THE EXPECTED UTILITY
of x and 4 units of y.
(a) Draw the Edgeworth box.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Econ 6003 Final Exam Practice USYD 20091. Solve the problemmax x,y (x1/2 + y) subject to px + y≤I, x≥ 0, and y≥ 0where p > 0 and I > 0 are parameters.[You may use without proof the fact that the function x1/2 + y is quasiconcave.]2. Solve the problemmax x,y x2y2 subject to 2x + y≤ 2, x≥ 0, and y≥ 0.[You may use without proof the fact that x2y2 is quasiconcave for x≥ 0 and y≥ 0.] [Note: questions 1 and 2 would be examples of utility maximization.]3. Let u be a quasiconcave, increasing function of n variables. (Increasing means u'i(x) > 0 for all i.) Let w > 0 be a number and let p = (p1, ..., p n) be a vector with p i > 0 for all i. Consider the problemmax x u(x) subject to ∑i=1n p i x i≤w and x≥ 0.a.Write down the Kuhn-Tucker conditions for this problem.b.Suppose that x* solves the problem. Is there necessarily a value of λ* such that(x*,λ*) satisfies the Kuhn-Tucker conditions?c.Suppose that (x*,λ*) satisfies the Kuhn-Tucker conditions. Does x* necessarilysolve the problem?d.Suppose that x* solves the problem. What can you say about the relationshipbetween p i/p j and the value of u'i(x*)/u'j(x*) wheni.x i* > 0 and x j* > 0?ii.x i* = 0 and x j* > 0?iii.x i* = 0 and x j* = 0?4. Consider the following problem.max x−(x1−c1)2− (x2−c2)2 subject to (x1 + 1)2 + x22≤ 4, x1≥ 0, and x2≥ 0, where c1 and c2 are constants.a.Are the Kuhn-Tucker conditions necessary for a solution of this problem?b.Are the Kuhn-Tucker conditions sufficient for a solution of this problem?c.If possible, use the Kuhn-Tucker conditions to find the solution(s) of the problemfor c1 = c2 = 0.d.If possible, use the Kuhn-Tucker conditions to find the solution(s) of the problemfor c1 = 2 and c2 = 0.5. (Cost Minimization)A firm produces output y with capital K and labor L according to the Cobb-Douglas specification K a L b≥ y, where the parameters a and b satisfy 0 < a < 1, 0 < b < 1, and 0 < a + b < 1 (so that production exhibits decreasing returns to scale and decreasing marginal products).Suppose that the firm chooses capital and labor inputs in order to minimize the total cost rK+wL of producing at least y units of output, where r > 0 is the rental rate for capital and w > 0 is the wage rate for labor. That is, suppose that the firm solves min K,L rK + wL subject to K a L b≥ y, K ≥ 0 and L ≥ 0.a) Define the Lagrangian for this cost minimization problem. Write down the full set of first-order conditions and complementary slackness conditions that, according to the Kuhn-Tucker theorem, must be satisfied by K*, L* and the associated value λ* of the Lagrange multiplier. Here K* and L* denote the values of K and L that solve the optimization problem.b) Next, use these Kuhn-Tucker conditions to find solutions for K*, L* and λ* in terms of the model’s five parameters: r, w, y, a, and b. [Note: these solutions for K* and L* define the firm’s conditional factor demand curves for capital and labor.]c) Now define the value function of the optimization problem as the cost function C(r, w, y). Use your results from above to obtain expressions for the derivatives of the cost function, C1(r, w, y), C2(r, w, y), and C3(r, w, y), in terms of the parameters r, w, y, a, and b.d) What do your results from above tell you about the relationship between the conditional factor demand curves and the derivatives of the minimum cost function? What economic interpretation does your results provide for the Lagrange multiplier in this constrained minimization problem?6. (Profit Maximization) A firm produces output y with capital K and labor L according to the Cobb-Douglas specification K a L b≥ y, where the parameters a and b satisfy 0 < a < 1, 0 < b < 1, and 0 < a + b < 1.Assume that the firm faces the rental rate r > 0 for capital and the wage rate w > 0 for labour. Now, however, suppose that the firm maximizes profits py − rK − wL, where p > 0 denotes its output price, subject to the constraint imposed by its production possibilities. That is, suppose that the firm solvesmax y,k,l py − rK − wL subject to K a L b≥ y, K ≥ 0 and L ≥ 0.a) Define (set up) the Lagrangian for this profit maximization problem. Write down the full set of first-order conditions, and complementary slackness conditions that, according to the Kuhn-Tucker theorem, must be satisfied by y*, K*, L* and the associated value λ* of the Lagrange multiplier. Here y*, K* and L* denote the values of y, K, and L that solve the optimization problem.b) Next, use these Kuhn-Tucker conditions to find solutions for y*, K*, L*, and λ* in terms of the model’s five parameters: p, r, w, a, and b. [Note: this solution for y* defines the firm’s supply function, and these solutions for K* and L* define the firm’s factor demand curves for capital and labor.]c) Now define the value function of the optimization problem as the profit functionΠ(p, r, w). Use your results from above to obtain expressions for the derivatives of the profit function, Π1(p, r, w), Π2(p, r, w), and Π3(p, r, w), in terms of the parameters p, r, w, a, and b.d) What do your results from above tell you about the relationship between the supply and factor demand curves and the derivatives of the profit function?。

相关文档
最新文档