高一数学试卷含答案、解析以及知识点分类

合集下载

高一数学试卷附答案解析

高一数学试卷附答案解析

高一数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.袋中共有7个大小相同的球,其中3个红球、2个白球、2个黑球.若从袋中任取3个球,则所取3个球中至少有2个红球的概率是( ) A . B . C . D .2.函数f (x )=x 2+2ax -b 在(-∞,1)上为减函数,则a 的取值范围为( ) A .[-1,+∞) B .(-∞,-1]C .[1,+∞)D .(-∞,1] 3.要得到的图象只需将y=3sin2x 的图象( )A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .B .C .D .5.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)6.对2×2数表定义平方运算如下:.则为()A. B. C. D.7.(2014•南昌一模)已知函数f(x)=|2x﹣a|+a.若不等式f(x)≤6的解集为{x|﹣2≤x≤3},则实数a的值为()A.1 B.2 C.3 D.48.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是()A.A=B=CB.A CC.A∩C=BD.B∪C⊆C9.已知函数①函数关于对称②函数关于对称③函数最小正周期为④函数向左平移个单位后的新函数为偶函数以上四个命题中,正确的命题的序号是:()A.①②③ B.①③ C.②③ D.①③④10.已知,,则()A. B. C. D.11.(2014•珠海二模)通过随机询问100名性别不同的小学生是否爱吃零食,得到如下的列联表:男女总计爱好104050不爱好203050总计3070100P (K2≥k )0.100.050.025k 2.706 3.84150.24由K2=算得K2=≈4.762参照附表,得到的正确结论()A.在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”B.在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”C.有97.5%以上的把握认为“是否爱吃零食与性别有关”D.有97.5%以上的把握认为“是否爱吃零食与性别无关”12.已知角的终边所在的直线过点P(4,-3),则的值为()A.4 B.-3 C. D.13.现有60瓶矿泉水,编号从1到60,若用系统抽样方法从中抽取6瓶检验,则所抽到的个体编号可能是()A.5,10,15,20,25,30B.2,14,26,28,42,56C.5,8,31,36,48,54D.3,13,23,33,43,5314.下列结论正确的是()A.若,则ac2>bc2B.若,则C.若,则D.若,则15.在中,有如下四个命题:①;②;③若,则为等腰三角形;④若,则为锐角三角形.其中正确的命题序号是()A.② ③ B.① ③ ④ C.① ② D.② ④16.在“①高一数学课本中的难题;②所有的正三角形;③方程的实数解”中,能够表示成集合的是()A.② B.③ C.②③ D.①②③17.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定18.任取,且,若恒成立,则称为上的凸函数。

高一数学试卷带答案解析

高一数学试卷带答案解析

高一数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.(2013秋•宁县校级期中)下列函数f(x)与g(x)表示同一函数的是()A.f(x)=x0与g(x)=1B.f(x)=x与g(x)=()C.f(x)=D.f(x)=,g(x)=x+12.下列函数中,既是偶函数又在区间上单调递增的函数是()A. B. C. D.3..函数的值域是A. B. C. D.4.如果实数满足等式,那么的最大值是A. B. C. D.5.设,是两条不同的直线,,是两个不同的平面,则下列命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则6.在中,,则的面积为A. B. C.或 D.或7.若数列满足:,,则数列的前项和数值最大时,的值是A.6 B.7 C.8 D.98.若g(x)=2x+1,f[g(x)]=x2+1,则f(1)=()A.1 B.﹣1 C.3 D.29.有个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的概率为()A. B. C. D.10.当时,函数是()A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数11.以下命题正确的是()A.两个平面可以只有一个交点B.一条直线与一个平面最多有一个公共点C.两个平面有一个公共点,它们可能相交D.两个平面有三个公共点,它们一定重合12.下列集合到集合的对应是映射的是A.:中的数平方;B.:中的数开方;C.:中的数取倒数;D.:中的数取绝对值;13.设函数则的值为()A.2B.1C.-1D.-214.=A. B. C. D.15.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,……,,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为()A. B. C. D.16.在正三棱锥S-ABC中,外接球的表面积为,M,N分别是SC,BC的中点,且,则此三棱锥侧棱SA=()A.1 B.2 C. D.17.设集合={|},={| },则∪=()A.{|}B.{|}C.D.{|或}18.语句或的否定是()A.B.C.D.19.函数图像的一条对称轴方程是()A. B. C. D.20.有限数列,为其前项和,定义为A的“凯森和”,如果有99项的数列的“凯森和”为1000,则有100项的数列的“凯森和”为()A.1001 B.991 C.999 D.990二、填空题21.三内角为,若关于x的方程有一根为1,则的形状是.22.函数的图象为,则如下结论中正确的序号是______.①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④由的图角向右平移个单位长度可以得到图象.23.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为.24.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.25.(2014•宝鸡二模)已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为.26.若对任意x>0,≤a恒成立,则a的取值范围是________.27.函数的单调递减区间是.28.若函数的图象经过点,则函数的图象必定经过的点的坐标是 .29.已知圆台的上、下底面半径分别是1、2,且侧面面积等于两底面积之和,则圆台的体积等于.30.设直线系M: xcosθ+(y-2)sinθ=1(0≤θ<2π),下列四个命题中:①存在定点P不在M中的任一条直线上;②M中所有直线均经过一个定点;③对于任意整数n(n≥3), 存在正n边形, 其所有边均在M中的直线上;④M中的直线所能围成的正三角形面积都相等.其中真命题的序号是(写出所有真命题的序号).三、解答题31.((本小题满分12分)由倍角公式,可知可以表示为的二次多项式.对于,我们有可见可以表示为的三次多项式。

高一数学试卷带答案解析

高一数学试卷带答案解析

高一数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.函数的单调递增区间为A.B.C.D.2.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)⊆{0,1,2}.A.0B.1C.2D.33.若函数y=f(x)的图象过点(1,-1),则y=f(x-1)-1的图像必过点()A.(2,-2) B.(1,-1) C.(2,-1) D.(-1,-2)4.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31,如果该班有45名同学,那么根据提供的数据估计这周全班同学各家总共丢弃塑料袋的数量约为A.900 B.1080 C.1260 D.18005.的零点个数是()A.0个 B.1个 C.2个 D.3个6.在下列函数中,最小值是2的是()A.y=B.y=(x>0)C.y="sin" x+(0<x<)D.y=7x+7-x7.函数的定义域为()A. B. C. D.R8.(如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若角的终边与单位圆的交点为,则()A. B. C. D.10.若函数在上单调递增,则实数的取值范围是()A. B. C. D.11.化简的结果为()A.a16 B.a8 C.a4 D.a212.已知f(x)=,则f(3)等于()A.2 B.3 C.4 D.513.如果直线的倾斜角为,则有关系式A. B. C. D.以上均不可能14.已知,且垂直,则实数的值为()A. B. C. D.1[15.下列不等式中,正确的是()A.B.C.D.16.已知集合,集合,则()A. B. C. D.17.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度18.的值为()A. B. C. D.19.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的方差,则有()A.>,<B.=,>C.=,=D.=,<20.在中,内角的对边分别为,且,则是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形二、填空题21.将正方形沿对角线折成直二面角,有如下四个结论:①; ②是等边三角形;③所成的角是60°; ④所成的角是60°.其中正确结论的序号是________.22.(2014•虹口区二模)对于数列{a n },规定{△1a n }为数列{a n }的一阶差分数列,其中△1a n =a n+1﹣a n (n ∈N *).对于正整数k ,规定{△k a n }为{a n }的k 阶差分数列,其中△k a n =△k ﹣1a n+1﹣△k ﹣1a n .若数列{a n }有a 1=1,a 2=2,且满足△2a n +△1a n ﹣2=0(n ∈N *),则a 14= . 23.已知圆与圆,过动点分别作圆、圆的切线、、分别为切点),若,则的最小值是 .24.用二分法求函数在区间上零点的近似解,经验证有.取区间的中点,计算得,则此时零点★ (填区间)25.若某空间几何体的三视图如图所示,则 该几何体的表面积S=_______26.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.27.已知,且,则的最大值为__________. 28.设是等差数列的前项和,若,则. 29.设函数是定义域R 上的奇函数,且当时,则当时, ____________________30.由正数组成的等比数列中,,,则__________。

高一数学试卷含答案、解析以及知识点分类

高一数学试卷含答案、解析以及知识点分类

高一数学试卷含答案、解析以及知识点分类 (数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A C C .()()A B B CD .()A B C 4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈A B C2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C AB =,则C 的非空子集的个数为 。

3.若集合{}|37A x x =≤<,{}|210B x x =<<,则AB =_____________.4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。

高一数学试题及答案解析

高一数学试题及答案解析

高一数学试题及答案解析高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的答案填在指定位置上。

)1.XXXα、β满足−90°<α<β<90°,则是()。

A。

第一象限角B。

第二象限角C。

第三象限角D。

第四象限角2.若点P(3,y)是角α终边上的一点,且满足y<0,cosα=1/2,则tanα=()。

A。

−1B。

−√3C。

√3D。

13.设f(x)=cos(30°x),g(x)=2cos2x−1,且f(30°)=3/4,则g(x)可以是()。

A。

cosxB。

sinxC。

2cosxD。

2sinx4.满足tanα≥cotα的一个取值区间为()。

A。

(0,π)B。

[0,π/4)C。

(π/4,π/2)D。

[π/2,π)5.已知sinx=−√2/2,则用反正弦表示出区间[XXXπ,−π/2]中的角x为()。

A。

arcsin(−√2/2)B。

−π+arcsin(−√2/2)C。

−arcsin(−√2/2)D。

π+arcsin(−√2/2)6.设|α|<π/4,则下列不等式中一定成立的是()。

A。

sin2α>sinαB。

cos2α<cosαC。

tan2α>tanαD。

cot2α<cotα7.△ABC中,若cotAcotB>1,则△ABC一定是()。

A。

钝角三角形B。

直角三角形C。

锐角三角形D。

以上均有可能8.发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t的函数:IA=Isinωt,IB=Isin(ωt+2π/3),IC=Isin(ωt+4π/3),且IA+IB+IC=0,π/3≤ϕ<2π/3,则ϕ=()。

A。

πB。

高一数学试卷附答案解析

高一数学试卷附答案解析

高一数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( ) A .15,5,25 B .15,15,15 C .10,5,30 D .15,10,202.已知全集,,,则( )A .B .C .D.3.下列函数中,既不是奇函数也不是偶函数的是( ) A .B .C .D .4.设全集则图中阴影部分表示的集合为 ( )A .B .C .D .5.在空间,下列命题错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个相交B .一个平面与两个平行平面相交,交线平行C .平行于同一平面的两个平面平行D.平行于同一直线的两个平面平行6.在锐角三角形中,a、b、c分别是内角A、B、C的对边,设B=2A,则的取值范围是()A.(,)B.(-2,2)C.(,2)D.(0,2)7.已知单位向量、,则下列各式成立的是()A. B. C. D.8.化简的结果为 ( )A.5 B. C.- D.-59.在中,面积则的长为()A.75 B.51 C.49 D.10.如图在斜三棱柱中,,,则在底面上的射影必在A.直线上B.直线上C.直线上D.内部11.已知集合,则A. B. C. D.12.sin210°的值为()A. B.﹣ C. D.﹣13.先将函数图象向右平移个单位,再将所得的图象作关于y 轴的对称变换,所得图象的解析式是()A.B.C.D.14.现有数列满足:,且对任意的m,n∈N*都有:,则()A. B. C. D.15.不等式的解集是()A. B. C. D.16.已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是()A.3 B. C.6 D.817.从四个公司按分层抽样的方法抽取职工参加知识竞赛,其中甲公司共有职工96人.若从甲、乙、丙、丁四个公司抽取的职工人数分别为12,21,25,43,则这四个公司的总人数为A.101 B.808 C.1212 D.201218.函数的图象的一条对称轴是()A. B. C. D.19.在等比数列中,若,是方程的两根,则()A. B. C. D.20.化简[3]的结果为()A.5 B. C.- D.-5二、填空题21.设f:x→x2是从定义域A到值域B的函数,若A={1,2},则A∩B=________.22.函数的定义域为,且对其内任意实数均有:,则在上是23.已知集合,则24.已知等比数列的各项都为正数,它的前三项依次为1,,,则数列的通项公式是="_____________"25.过点(1,-1)的圆x+y=2的切线方程为________、过点(1,1)的圆(x-1) + (y-2) =1的切线方程为________26.函数恒过的定点坐标为.27.设时,函数的图象在直线的上方,则P的取值范围是____________28.若,则.29.已知方程组,则其增广矩阵为.30.函数的定义域________.三、解答题31.已知函数f(x)=2cos2x+sin 2x,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数h(x)的图象,再将函数h(x)的图象向右平移个单位后得到函数g(x)的图象,求函数g(x)的解析式,并求g(x)在[0,π]上的值域.32.已知集合A={-4,2-1, },B={-5,1-,9},分别求适合下列条件的的值.(1);(2).33.已知函数(1)当时,化简的解析式并求的对称轴和对称中心;(2)当时,求函数的值域.34.(本小题满分12分)如图(1),在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图(2)所示.(1)求证:平面;(2)求二面角的正切值.35.设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.参考答案1 .D【解析】试题分析:按抽样比计算得高一、高二、高三各年级抽取的人数分别为15,10,20人,选D。

高一数学试卷附答案解析

高一数学试卷附答案解析

高一数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知,则函数的最小值为( )A .1B .2C .3D .42.在△ABC 中,若a 2=b 2+c 2-bc ,则A 等于( ) A .120° B .60° C .45° D .30°3.已知,且,则函数与函数的图像可能是( )4.已知的值等于( )A .B .3C .-D .-3 5.函数f(x)=是( )A .偶函数,在(0,+∞)是增函数 B.奇函数,在(0,+∞)是增函数C .偶函数,在(0,+∞)是减函数D .奇函数,在(0,+∞)是减函数6.三点(3,10),(7,20),(11,24)的回归方程是( )A .B .C .D .7. 若,且,直线不通过( )A .第三象限B .第一象限C .第四象限D .第二象限 8.已知集合满足,则集合的个数为( )A .2B .4C .3D .5 9.在空间直角坐标系中,已知,,则,两点间的距离是 A .B .C .D .10.如右图,是由三个边长为1的正方形拼成的矩形,且,,则的值为 ( )A .B .C .D . 11.无论=(x 1,x 2,x 3),=(y 1,y 2,y 3),=(z 1,z 2,z 3),是否为非零向量,下列命题中恒成立的是( )A .cos <,>=B .若∥,∥,则∥C .()•=•()D .|||﹣|||≤|±|≤||+||12.函数f(x)=7+a x-3 (a>0,a≠1)的图象恒过定点P ,则定点P 的坐标为 A .(3,3) B .(3,2) C .(3,8) D .(3,7)13.某种商品,现在每件定价p 元,每月卖n 件。

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析1.已知命题,且,命题,且.(1)若,,求实数的值;(2)若是的充分条件,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先求集合,由条件知的值正好是集合对应端点的值,解得;(Ⅱ)由题意得试题解析:(Ⅰ)因为,由题意得,.(Ⅱ)由题意得【考点】集合的关系、充要条件、一元二次不等式的解法.2.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为.【答案】【解析】设底边边长为a,高为h,利用体积公式V=Sh得出h,再根据表面积公式得S=,最后利用导函数即得底面边长.解:设底边边长为a,高为h,则V=Sh=a2×h,∴h==,则表面积为=,则,令可得,即a=.故答案为.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.3.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系为R=R(x)=,则总利润最大时,每年生产的产品数量是.【答案】300.【解析】先根据题意得出总成本函数,从而写出总利润函数,它是一个分段函数,下面求其导数P′(x),令P′(x)=0,从而得出P的最大值即可.解析:由题意,总成本为C=20000+100x.∴总利润为:P=R﹣C=,P′=.令P′=0,即可得到正确答案,即x=300.故答案:300.点评:本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.4.已知f(x)=x2+2x•f′(1),则f′(0)= .【答案】﹣4.【解析】要求某点处函数的导数,应先求函数解析式f (x ),本题求函数解析式f (x )关键求出未知f′(1).解:f'(x )=2x+2f'(1)⇒f'(1)=2+2f'(1),∴f'(1)=﹣2,有f (x )=x 2﹣4x ,f'(x )=2x ﹣4,∴f'(0)=﹣4.点评:本题考查导数的运算,注意分析所求.5. 双曲线8kx 2﹣ky 2=8的一个焦点为(0,3),则k 的值为 . 【答案】﹣1.【解析】先把双曲线8kx 2﹣ky 2=8的方程化为标准形式,焦点坐标得到c 2=9,利用双曲线的标准方程中a ,b ,c 的关系即得双曲线方程中的k 的值. 解:根据题意可知双曲线8kx 2﹣ky 2=8在y 轴上, 即,∵焦点坐标为(0,3),c 2=9, ∴,∴k=﹣1,故答案为:﹣1.点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,注意化成双曲线的标准方程中a ,b ,c 的关系.6. 过抛物线y 2=4ax (a >0)的焦点F ,作相互垂直的两条焦点弦AB 和CD ,求|AB|+|CD|的最小值.【答案】16a .【解析】根据抛物线方程求得焦点坐标,设直线AB 方程为y=k (x ﹣a ),则CD 方程可得,分别代入抛物线方程,根据抛物线定义可知|AB|=x A +x B +p ,|CD|=x C +x D +p 进而可求得|AB|+|CD|的表达式,根据均值不等式求得|AB|+|CD|的最小值为16a .解:抛物线的焦点F 坐标为(a ,0),设直线AB 方程为y=k (x ﹣a ), 则CD 方程为,分别代入y 2=4x 得:k 2x 2﹣(2ak 2+4a )x+k 2a 2=0及,∵,|CD|=x C +x D +p=2a+4ak 2+2a ,∴,当且仅当k 2=1时取等号,所以,|AB|+|CD|的最小值为16a .点评:本题主要考查了抛物线的应用.涉及了直线与抛物线的关系及抛物线的定义.7. 已知抛物线的准线方程是x=﹣7,则抛物线的标准方程是 . 【答案】y 2=28x .【解析】设抛物线方程为y 2=2px (p >0),根据题意建立关于p 的方程,解之可得p=14,得到抛物线方程.解析:由题意,设抛物线的标准方程为y 2=2px (p >0), 准线方程是x=﹣,则﹣=﹣7,解得p=14,故所求抛物线的标准方程为y 2=28x . 故答案为:y 2=28x .点评:本题给出抛物线的准线,求抛物线的标准方程,着重考查了抛物线的定义与标准方程的知识,属于基础题.8. 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2﹣6x ﹣7=0相切,则p 的值为 . 【答案】2【解析】先表示出准线方程,然后根据抛物线y 2=2px (p >0)的准线与圆(x ﹣3)2+y 2=16相切,可以得到圆心到准线的距离等于半径从而得到p 的值. 解:抛物线y 2=2px (p >0)的准线方程为x=﹣,因为抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,所以3+=4,解得p=2.故答案为:2点评:本题考查抛物线的相关几何性质及直线与圆的位置关系,理解直线与圆相切时圆心到直线的距离等于半径.9.双曲线与椭圆+=1有相同焦点,且经过点(,4),求其方程.【答案】【解析】根据已知中双曲线与椭圆有相同焦点,我们可以设出双曲线的标准方程(含参数a),然后根据经过点(,4),得到一个关于a的方程,解方程,即可得到a2的值,进而得到双曲线的方程.解:椭圆的焦点为(0,±3),c=3,…设双曲线方程为,…(6分)∵过点(,4),则,…(9分)得a2=4或36,而a2<9,∴a2=4,…(11分)双曲线方程为.…(12分)点评:本题考查的知识点是双曲线的标准方程,其中根据已知条件设出双曲线的标准方程(含参数a),并构造一个关于a的方程,是解答本题的关键.10.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.【答案】抛物线的方程为y2=12x或y2=﹣4x【解析】设出抛物线的方程,直线与抛物线方程联立消去y,进而根据韦达定理求得x1+x2的值,进而利用弦长公式求得|AB|,由AB=可求p,则抛物线方程可得.解:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程可得,4x2+(4﹣2p)x+1=0则,,y1﹣y2=2(x1﹣x2)====解得p=6或p=﹣2∴抛物线的方程为y2=12x或y2=﹣4x点评:本题主要考查了抛物线的标准方程.解题的关键是对抛物线基本性质和标准方程的熟练应用11.下列命题是全称命题并且是真命题的是.①每个二次函数的图象都开口向上;②对任意非正数c,若a≤b+c,则a≤b;③存在一条直线与两个相交平面都垂直;④存在一个实数x0使不等式x2﹣3x+6<0成立.【答案】②【解析】先确定各命题中是否含有全称量词,然后再判断真假.解:①含有全称量词“每个”,所以为全称命题.当二次函数的二次项系数小于时,二次函数的图象开口向下,所以①为假命题.②含有全称量词“任意”,所以为全称命题.∵c≤0,∴b+c≤b.∵a≤b+c,∴a≤b.所以②为真命题.③含有特称量词“存在一条”,所以不是为全称命题.所以③不满足条件.④含有特称量词“存在一个”,所以不是为全称命题.所以④不满足条件.故答案为:②.点评:本题主要考查命题是否是全称命题,以及全称命题的真假判断,比较基础.12.已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.【答案】[﹣8,+∞).【解析】求出x∈[1,2]时,x2+2x的最大值,然后求出a的范围即可.解:因为命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,x∈[1,2]时,x2+2x的最大值为8,所以a≥﹣8时,命题“∃x∈[1,2],使x2+2x+a≥0”为真命题.所以a的取值范围:[﹣8,+∞).点评:本题考查命题的真假的判断,特称命题的判断,考查基本知识的应用.13.不等式x2﹣x>x﹣a对∀x∈R都成立,则a的取值范围是.【答案】a>1.【解析】将不等式转化为一元二次不等式的形式,然后利用不等式的性质求解.解:法一:不等式x2﹣x>x﹣a对∀x∈R都成立,即不等式x2﹣2x+a>0恒成立;结合二次函数图象得对应方程的△<0,即4﹣4a<0,所以a>1.法二:不等式x2﹣x>x﹣a对∀x∈R都成立,也可看作a>﹣x2+2x对∀x∈R都成立,;而二次函数f(x)=﹣x2+2x的最大值为,所以a>(﹣x2+2x)max所以a>1.故答案为:a>1.点评:本题主要考查一元二次不等式恒成立问题,比较综合.14.下列存在性命题中,是真命题的是.①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是质数;③∃x∈{x|x是无理数},x2是无理数.【答案】①②③【解析】利用特称命题的真假的判断方法分别判断.解:①真命题,如当x=﹣1时,x≤0成立;②真命题,1既不是合数,也不是质数;③真命题,如x=,x2=为无理数.故答案为:①②③.点评:本题主要考查特称命题的真假判断,对于特称命题,存在即为真命题,否则为假命题.15.命题“原函数与反函数的图象关于y=x对称”的否定是.【答案】存在一个原函数与反函数的图象不关于y=x对称.【解析】命题中隐含全称量词“所有的”.分别对题设和结论进行否定即可.解:题设隐含全称量词“所有的”.故题设的否定为存在一个原函数,结论为原函数与反函数的图象不关于y=x对称∴原命题的否定为:存在一个原函数与反函数的图象不关于y=x对称.故答案:存在一个原函数与反函数的图象不关于y=x对称.点评:本题考查了命题的否定,注意题设和结论否定时的写法.16.下列命题的否定为假命题的是.①∀x∈R,﹣x2+x﹣1<0;②∀x∈R,|x|>x;③∀x,y∈Z,2x﹣5y≠12;④∃x∈R,Tsin2x+sinx+1=0.【答案】①【解析】要使命题的否定为假命题则证明原命题为真命题即可.解析:命题的否定为假命题亦即原命题为真命题,只有①为真命题.解:①因为﹣x2+x﹣1=﹣(x﹣)2﹣<0,所以①正确.②当x=0时,|x|=x=0,所以②错误.③当x=1,y=2时,2x﹣5y=12,所以③错误.④设t=sinx,则原方程为t2+t+1=0,因为△=1﹣4=﹣3<0,所以方程无解,所以④错误.故答案为:①.点评:本题主要考查全称命题和特称命题的否定以及命题的真假判断.17.判断下列命题的真假.(1)∀x∈R,|x|>0;(2)∀a∈R,函数y=logax是单调函数;(3)∀x∈R,x2>﹣1;(4)∃∈{向量},使=0;(5)∃x>0,y>0,使x2+y2=0.【答案】(1)假命题.(2)假命题.(3)真命题.(4)真命题.(5)假命题.【解析】根据全称命题和特称命题判断条件分别判断命题的真假.解:(1)由于0∈R,当x=0时,|x|>0不成立,因此命题“∀x∈R,|x|>0”是假命题.(2)由于1∈R,当a=1时,y=loga x无意义,因此命题“∀a∈R,函数y=logax是单调函数”是假命题.(3)由于∀x∈R,都有x2≥0,因而有x2>﹣1.因此命题“∀x∈R,x2>﹣1”是真命题.(4)由于∈{向量},当时,能使•=0,因此命题“∃∈{向量},使•=0”是真命题.(5)由于使x2+y2=0成立的只有x=y=0,而0不是正实数,因而没有正实数x,y,使x2+y2=0,因此命题“∃x>0,y>0,使x2+y2=0”是假命题.点评:本题主要考查含有量词的命题的真假判断.18.若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是.【答案】p假,q假.【解析】利用“p或q”的否定是真命题,得到p或q”是假命题,从而确定p、q的真假.解:因为p或q的否定是真命题,所以p或q为假命题,因此p、q为假命题.故答案为:p假,q假.点评:本题主要考查复合命题的真假判断,比较基础.19.已知命题p:集合{x|x=(﹣1)n,n∈N}只有3个真子集,q:集合{y|y=x2+1,x∈R }与集合{x|y=x+1}相等.则下列新命题:①p或q;②p且q;③非p;④非q.其中真命题的个数为.【答案】2【解析】利用或且非的含义判断命题p,q的真假关系,进一步利用复合命题与简单命题真假之间的关系确定出有关命题的真假即可.解:命题p的集合为{﹣1,1},只有2个元素,有3个真子集,故p为真,非p为假;q中的两个集合不相等,故q为假,非q为真.因此有2个新命题为真.故答案为:2点评:本题考查含有量词的命题真假的判断,解决的关键是寻找和证明相结合.集合之间关系的运用,理解复合命题真假与简单命题真假之间的关系.20.椭圆的离心率为,则的值为_____________.【答案】【解析】当焦点在轴时,,所以,解得,当焦点在轴时,,所以,解得,所以答案应填:.【考点】1、椭圆的离心率;2、分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学试卷含答案、解析以及知识点分类 (数学1必修)第一章(上) 集合[基础训练A 组]一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A C C .()()A B B CD .()A B C 4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3)2323-++________{}|6,,x x a b a Q b Q =+∈∈A B C2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C AB =,则C 的非空子集的个数为 。

3.若集合{}|37A x x =≤<,{}|210B x x =<<,则AB =_____________.4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。

5.已知{}{}221,21A y y x x B y y x ==-+-==+,则A B =_________。

三、解答题1.已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,试用列举法表示集合A 。

2.已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。

3.已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,求实数a 的值。

4.设全集U R=,{}2|10M m mx x =--=方程有实数根,{}()2|0,.U N n x x n C M N =-+=方程有实数根求(数学1必修)第一章(上) 集合[综合训练B 组]一、选择题1.下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。

A .0个B .1个C .2个D .3个2.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .1-C .1或1-D .1或1-或03.若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( )A .MN M = B . M N N = C . M N M = D .M N =∅4.方程组⎩⎨⎧=-=+9122y x y x 的解集是( )A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-。

5.下列式子中,正确的是( )A .R R ∈+B .{}Z x x x Z∈≤⊇-,0|C .空集是任何集合的真子集D .{}φφ∈ 6.下列表述中错误的是( ) A .若A B A B A =⊆ 则, B .若B A B B A ⊆=,则 C .)(B A A )(B AD .()()()B C A C B A C U U U =二、填空题1.用适当的符号填空(1){}()(){}1|,____2,1,2|______3+=≤x y y x x x (2){}32|_______52+≤+x x , (3){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭2.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或 则___________,__________==b a 。

3.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人。

4.若{}{}21,4,,1,A x B x ==且AB B =,则x = 。

5.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 ; 若至少有一个元素,则a 的取值范围 。

三、解答题1.设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求2.设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果AB B =,求实数a 的取值范围。

3.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=满足,AB φ≠,,AC φ=求实数a 的值。

4.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若φ=B A C U )(,求m 的值。

(数学1必修)第一章(上) 集合[提高训练C 组]一、选择题1.若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆ B .{}0X ∈C .X φ∈D .{}0X ⊆2.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是( ) A .35 B .25C .28D .153.已知集合{}2|10,A x x A R φ=+==若,则实数m 的取值范围是( )A .4<mB .4>mC .40<≤mD .40≤≤m 4.下列说法中,正确的是( )A . 任何一个集合必有两个子集;B . 若,AB φ=则,A B 中至少有一个为φC . 任何集合必有一个真子集;D . 若S 为全集,且,AB S =则,A B S ==5.若U 为全集,下面三个命题中真命题的个数是( ) (1)若()()U B C A C B A U U == 则,φ (2)若()()φ==B C A C U B A U U 则, (3)若φφ===B A B A ,则A .0个B .1个C .2个D .3个6.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .M NC .NM D .MN φ=7.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =( )A .0B .{}0C .φD .{}1,0,1-二、填空题1.已知{}R x x x y y M ∈+-==,34|2,{}R x x x y y N ∈++-==,82|2则__________=N M 。

2.用列举法表示集合:M m m Z m Z =+∈∈{|,}101= 。

3.若{}|1,I x x x Z =≥-∈,则N C I = 。

4.设集合{}{}{}1,2,1,2,3,2,3,4A B C ===则A B =()C 。

5.设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-, 那么()()U U C M C N 等于________________。

三、解答题1.若{}{}{}.,,|,,M C A M A x x B b a A B 求=⊆==2.已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈, 且C B ⊆,求a 的取值范围。

3.全集{}321,3,32S x x x =++,{}1,21A x =-,如果{},0=A C S 则这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由。

4.设集合{}1,2,3,...,10,A =求集合A 的所有非空子集元素和的和。

(数学1必修)第一章(中) 函数及其表示[基础训练A 组] 一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。

相关文档
最新文档