数值分析知识点总结
数值分析 知识点总结

数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。
这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。
例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。
2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。
例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。
3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。
它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。
二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。
离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。
数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。
误差分析则研究数值计算中产生的误差的成因和大小。
2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。
插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。
3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。
数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。
这两项工作在科学计算中有着广泛的应用。
4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。
常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。
数值分析知识点总结

数值分析知识点总结数值分析是计算数值解的方法和理论,它研究的是如何利用计算机对数学问题进行数值计算和数值逼近。
数值分析包括了数值方法的设计、分析和实现,以及误差分析和计算复杂性分析等方面。
下面是数值分析的一些重要知识点的总结。
1.数值算法:数值算法是解决数学问题的计算方法,它由一系列具体的计算步骤组成。
常见的数值算法有插值、数值积分、数值微分、常微分方程数值解法等。
2.数值稳定性:数值稳定性是指数值算法在计算过程中对误差的敏感程度。
一个数值算法如果对输入数据的微小扰动具有较大的响应,就称为不稳定算法;反之,如果对输入数据的微小扰动具有较小的响应,就称为稳定算法。
3.四舍五入误差:在浮点数计算中,由于计算机表示的限制,涉及舍入运算的计算可能会引入误差。
四舍五入误差是指在进行舍入运算时,取最近的浮点数近似值所引入的误差。
4.条件数:条件数是用来衡量数值问题的不稳定性的一个指标。
它描述了输入数据的微小扰动在计算结果中的放大程度。
条件数的大小决定了数值算法的数值稳定性,通常越大表示问题越不稳定。
5.插值:插值是基于已知数据点,构造插值函数来近似未知数据点的方法。
常用的插值方法有线性插值、多项式插值和样条插值等。
6. 数值积分:数值积分是用数值方法进行积分计算的一种方法。
常见的数值积分方法有梯形法则、Simpson法则和Gauss-Legendre积分法等。
7.数值微分:数值微分是通过数值方法来计算函数的导数的一种方法。
常用的数值微分方法有中心差分法和前向差分法等。
8. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的近似解。
常用的常微分方程数值解法有Euler法、Runge-Kutta法和Adams法等。
9.误差分析:误差分析是对数值算法计算结果误差的研究。
可以通过理论分析或实验方法来估计误差,并找到减小误差的方法。
10.计算复杂性分析:计算复杂性分析是对数值算法运行时间和计算资源的需求进行评估的方法。
数值分析(计算方法)总结

第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。
例:设x==3.1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位.科学计数法:记有n位有效数字,精确到.由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1。
逐步搜索法设f (a) <0,f (b)> 0,有根区间为(a,b),从x0=a出发,按某个预定步长(例如h=(b—a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)〉0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k—x k-1|〈 为止,此时取x*≈(x k+x k-1)/2作为近似根.2。
二分法设f(x)的有根区间为[a,b]= [a0,b0],f(a)<0, f(b)>0。
将[a0,b0]对分,中点x0=((a0+b0)/2),计算f(x0)。
3。
比例法一般地,设[a k,b k]为有根区间,过(a k, f(a k))、 (b k,f(b k))作直线,与x轴交于一点x k,则:1。
期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。
数值逼近的主要内容包括多项式逼近、插值和最小二乘等。
1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。
通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。
其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。
多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。
2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。
牛顿插值则利用差商的概念来构造插值多项式。
插值方法在数值微分和数值积分中有广泛的应用。
3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。
通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。
最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。
第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。
数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。
1. 迭代法迭代法是求解非线性方程组的常用方法之一。
通过不断迭代逼近方程的根,可以得到方程组的数值解。
常用的迭代法有牛顿迭代法和弦截法。
迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。
2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。
常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。
常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。
3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。
数值分析主要知识点

第三章
非线性方程的数值解法
二分法的思想以及其中对分次数的计算;
不动点迭代法、迭代格式的收敛性判定方法、
误差估计式;
Newton迭代法及其收敛性; 割线法迭代格式;
迭代加速方法。
第四章
线性方程组的直接解法
Gauss消去法与列主元素Gauss消去法; 三角分解(LU)法; 平方根方法(Cholesky分解); 向量与矩阵范数; 条件数与病态方程组求解。
第五章
曲线拟合与最小二乘问题
拟合与插值的异同点、矛盾方程组的最小二乘解; 满秩分解、法方程组、可化为线性拟合的非线性拟合;
(极小)最小二乘解的存在唯一性、广义逆与极小
最小二乘解;
GS与MGS正交化与最小二乘解;
Householder正交化与最小二乘解。
第六章代法与Gauss-Seidel迭代法及其收敛性;
SOR迭代法及其收敛的必要条件、最佳松弛因子; 解非线性方程组的Newton迭代法与拟Newton思想。
第七章
最优化方法与共轭梯度法
与方程组等价的变分问题、线性寻查(线搜索)法;
最速下降法; 解线性方程组的共轭梯度法。
写、不得打印、不得复印,纸上签有姓名和学号;
可以携带计算器(考试期间不允许互借)。
《数值分析》复习主要知识点 第一章
绪论 基本概念:误差的分类(截断误差、舍入误差)、 绝对误差和相对误差、有效数字;
数值稳定性; 误差分析的原则:1)尽量避免相近的数相减,2)
尽量避免绝对值小的数做除数,3)防止大数吃小数, 4)先化简再计算,5)选用数值稳定的算法;
浮点数系统特征(四个整数表征)。
第八章
数值微分与数值积分
数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。
它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。
数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。
1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。
其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。
1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。
在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。
二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。
常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。
2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。
常用的数值微分方法包括差商法、中心差商法等。
数值积分是指利用离散数据计算函数的积分值的数值计算方法。
常用的数值积分方法包括复合梯形法、复合辛普森法等。
2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。
它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。
2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。
数值分析例题和知识点总结

数值分析例题和知识点总结数值分析是一门研究如何用计算机求解数学问题数值解的学科,它在科学计算、工程技术、金融经济等领域都有着广泛的应用。
为了更好地理解和掌握数值分析的知识,下面将通过一些例题来对常见的知识点进行总结。
一、误差分析误差是数值分析中一个非常重要的概念。
误差分为绝对误差、相对误差和有效数字。
绝对误差:设某量的准确值为$x$,近似值为$x^$,则绝对误差为$|x x^|$。
相对误差:相对误差是绝对误差与准确值的比值,即$\frac{|xx^|}{|x|}$。
有效数字:若近似值$x^$的绝对误差限是某一位的半个单位,该位到$x^$的第一位非零数字共有$n$位,则称$x^$有$n$位有效数字。
例如,$\pi$的近似值为 314,准确值约为 31415926,绝对误差为$|31415926 314| = 00015926$,相对误差为$\frac{00015926}{31415926} \approx 0000507$,314 有 3 位有效数字。
二、插值法插值法是数值分析中的一种基本方法,用于通过已知的数据点来构造一个函数。
1、拉格朗日插值已知$n + 1$个互异节点$(x_0, y_0),(x_1, y_1),\cdots, (x_n, y_n)$,拉格朗日插值多项式为:$L_n(x) =\sum_{i = 0}^n y_i l_i(x)$其中,$l_i(x) =\frac{\prod_{j = 0, j \neq i}^n (x x_j)}{\prod_{j = 0, j \neq i}^n (x_i x_j)}$例如,已知点$(1, 2)$,$(2, 3)$,$(3, 5)$,求插值多项式。
设$L_2(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$$l_0(x) =\frac{(x 2)(x 3)}{(1 2)(1 3)}=\frac{1}{2}(x 2)(x 3)$$l_1(x) =\frac{(x 1)(x 3)}{(2 1)(2 3)}=(x 1)(x 3)$$l_2(x) =\frac{(x 1)(x 2)}{(3 1)(3 2)}=\frac{1}{2}(x 1)(x 2)$则$L_2(x) = 2 \times \frac{1}{2}(x 2)(x 3) + 3 \times (x1)(x 3) + 5 \times \frac{1}{2}(x 1)(x 2)$2、牛顿插值牛顿插值多项式为:$N_n(x) = fx_0 + fx_0, x_1(x x_0) + fx_0, x_1, x_2(x x_0)(xx_1) +\cdots + fx_0, x_1, \cdots, x_n(x x_0)(x x_1) \cdots (xx_{n 1})$其中,均差$fx_0, x_1, \cdots, x_k =\frac{fx_1, x_2, \cdots, x_k fx_0, x_1, \cdots, x_{k 1}}{x_k x_0}$三、数值积分数值积分用于计算定积分的近似值。
数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。
它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。
在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。
本文将对数值分析期末知识点进行总结,以便帮助大家复习。
二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。
插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。
常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。
2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。
微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。
数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。
3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。
原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。
数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。
4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。
在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。
数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。
三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。
这些误差可能来自于测量、舍入、截断等各种原因。
因此,误差分析是数值分析中一个非常重要的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析知识点总结
数值分析知识点总结:
本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:
绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:
插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需
要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:
带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:
XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:
插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:
第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
第8章介绍了矩阵特征值计算,其中幂法是一种常用的方法。
利用原点平移方法可以加速幂法的收敛。
第9章介绍了常微分方程初值问题的数值解法。
相关例题可以参考附录。