数值分析-第一章-学习小结
数值分析学习心得体会

数值分析学习感想一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
数值分析作学习总结

摘 要在科学工作中经常出现这类问题,我们关注求解非线性方程或非线性方程组——求x 使得f (x )=0或求得X= 使得F (X )=0。
这些方程中,至少一个变量以任意的非线性方程形式出现。
在实变量变量的实值函数这种最简单的情况下,提出的一般问题是:已知函数f :R →R ,求x 的解使得f (X )=0这里主要讨论解决这类问题的一般方法和过程。
在许多应用中可以发现非线性方程的例子。
例如在光的衍射理论中,我们需要用到方程:X-tanX=0在行星轨道的计算中我们需要开普勒方程:X-asinX=b其中a 和b 任意取值。
在科学研究和科学计算中常常碰到以上的非线性方程求解问题。
非线性方程的解一般不能解析求出。
所以数值解法显得非常重要,而数值解法在实际中的实现则更为重要。
本文将介绍几种数值解法以及Matlab 中的实现程序。
为研究非线性方程数值解,给出了二分法、简单迭代法和牛顿迭代法的Matlab 程序,并进行了近似计算。
结果表明,牛顿迭代法收敛最快。
关键词:非线性方程;Matlab 程序;二分法;迭代法;简单迭代法;弦截法。
()T1n x x x ⋅⋅⋅2,,非线性方程数值解法1 二分法设f (x)在[a,b]连续,假定f (a)<0,f (b)>0,取中点 ,检查f (x0)符号。
若f (x0)=0,则x0就是一个根;若f (x0)>0,记a为a1,x0为b1,则得有根区间[a1,b1];若f(x0)<0,记x0为a1,b为b1,则得有根区间[a1,b1]。
后两种情况都得到有根区间[a1,b1],它的长度为原区间的一半。
对[a1,b1],令 ,再用同样的方法,可得新的有根区间[a2,b2],它的长度为[a1,b1]的一半,如此反复进行下去,其中每一个区间是前一区间的一半。
有这就是方程的根。
而即为方程的近似根,且有估计误差下面用二分法求在区间[1,2]上的根.因为二分法只能求单根,首先可以搜索函数(2.2)在区间[1,2]的根的情况。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析学习总结感想

数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。
通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。
在此过程中,我收获了很多,也产生了许多感想。
首先,数值分析教给我了科学问题解决的方法。
在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。
这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。
通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。
这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。
其次,数值分析也教会了我如何分析和估计误差。
在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。
因此,我们需要了解误差的来源,能够进行误差估计和控制。
通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。
这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。
另外,数值分析还教会了我如何进行数值模拟和数据处理。
在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。
通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。
这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。
最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。
在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。
通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。
这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。
综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。
数值分析总结

第一章绪论1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.避免误差的相关问题病态问题与条件数算法的数值稳定性数值运算中的若干原则第二章非线性方程求根1.不动点迭代格式不动点迭代格式的构造、计算全局收敛性判断局部收敛性与收敛阶判断(两个方法)2.Newton迭代格式、计算及几何意义局部收敛性及收敛阶(单、重根)非局部收敛性判断(两个方法)3.Steffensen迭代格式及计算(具有)二阶的局部收敛性4.Newton迭代的变形求重根的迭代法(三种方法)避免导数计算的弦割法(两种方法)Newton下山法*5.二分法计算预先估计对分次数第三章解线性方程组的直接法1.矩阵三角分解法及其方程组求解 直接三角分解法及其分解的条件平方根法(Cholesky 分解)追赶法列主元三角分解法* 2.Gauss 消去法Gauss 主元素消去法(列主元素消去法、全主元素消去法) Gauss 顺序消去法3.方程组的性态与误差分析 向量和矩阵的范数(基础知识) 方程组解的相对误差估计 矩阵的条件数 病态方程组的求解*第四章解线性代数方程组的迭代法1.迭代法的基本理论简单迭代法格式的构造、收敛性判断以及方程组的求解Gauss—Seidel迭代法格式的构造、收敛性判断以及方程组的求解2.三种迭代法的构造、收敛性判断以及方程组的求解Jacobi迭代法基于Jacobi迭代法的Gauss—Seidel迭代法逐次超松弛迭代法①掌握简单迭代收敛性判断的方法。
设B为迭代矩阵,如果||B||<1,则用||B||判断迭代的收敛性比用ρ(B)<1更为方便,但此结论仅为充分条件。
如果||B||≥1,判断迭代的收敛性需考察ρ(B)<1是否成立。
如果需证明迭代发散,则需证明ρ(B)≥1。
②简单迭代法的收敛快慢,依赖于迭代矩阵谱半径的大小。
当ρ(B)<1,迭代次数k≥(mln10)/(-lnρ(B)),则迭代矩阵谱半径越小,收敛越快。
数值分析总结

数值分析总结数值分析是一门应用数学的学科,它的目标是使用数值方法来解决数学问题,尤其是那些难以使用解析方法求解的问题。
通过使用计算机来计算近似解,数值分析提供了一种实用而有效的解决方案。
在本文中,我将对我在学习数值分析过程中的一些主要收获进行总结。
一、数值方法的重要性数值方法不仅在科学计算中起着重要作用,而且在工程和实际应用领域也有广泛的应用。
无论是模拟天气预报、设计飞机的机翼,还是分析金融市场的波动,数值分析都可以提供快速、准确的结果。
因此,掌握数值方法成为了现代科学与工程领域必备的技能之一。
二、数值计算的误差与稳定性在数值计算中,我们经常会面对误差的问题。
舍入误差、截断误差和舍入误差都是我们需要关注的。
舍入误差是由于计算机在进行浮点数计算时的有限精度而引入的,而截断误差则是由于将无限精度的数学问题转化为有限精度计算引起的。
为了减小误差,我们可以使用舍入规则,并尽可能减小截断误差。
稳定性是另一个需要考虑的重要因素。
在一些计算中,输入数据的微小变化可能会导致输出结果的巨大变化。
这种情况下,我们说该算法是不稳定的。
为了确保计算的稳定性,我们需要选择合适的算法和数据结构,并且要进行合理的数值分析。
三、插值和拟合插值和拟合是数值分析的重要应用之一。
在实际问题中,我们往往只能够获得有限个数据点,但是我们需要获得一条曲线或函数来描述这些数据。
插值方法可以通过连接这些数据点来获得平滑的曲线,而拟合方法则通过选择一个合适的函数来逼近数据点。
在实际应用中,我们需要根据具体问题选择合适的插值和拟合方法,并进行适当的调整和优化。
四、求解非线性方程求解非线性方程是数值分析中的一个重要问题。
在实际应用中,很多问题都可以归纳为求解非线性方程。
例如,求解光学系统中的折射问题、解微分方程等。
数值分析提供了多种求解非线性方程的方法,如牛顿法、二分法、割线法等。
这些方法有着各自的特点和适用范围,我们需要根据问题的性质选择合适的方法。
数值分析知识点总结

数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。
一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。
有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。
即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。
其中m 位该数字在科学计数法时的次方数。
例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。
2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。
对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。
(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。
数值分析(计算方法)总结

第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。
例:设x==3。
1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位.科学计数法:记有n位有效数字,精确到。
由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1。
逐步搜索法设f (a) <0, f (b)〉 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)〉0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根),然后从x k—1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k—x k-1|< 为止,此时取x*≈(x k+x k-1)/2作为近似根.2。
二分法设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0,f(b)〉0。
将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。
3.比例法一般地,设 [a k,b k]为有根区间,过(a k,f(a k))、 (b k, f(b k))作直线,与x轴交于一点x k,则:1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析
第1章绪论
--------学习小结
一、本章学习体会
通过本章的学习,让我初窥数学的又一个新领域。
数值分析这门课,与我之前所学联系紧密,区别却也很大。
在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。
误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。
而对于二元函数的误差计算亦有其独自的方法。
无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。
而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。
如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。
对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。
因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。
故对这部分内容的困惑也相对较多。
本章的困惑主要有两方面。
一方面是如何能够寻找一个可靠而高效的算法。
虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。
另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。
希望通过以后的学习能够渐渐解开自己的疑惑。
二、本章知识梳理
2.1 数值分析的研究对象
方法的构造
研究对象
求解过程的理论分析
数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。
它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。
2.2误差知识与算法知识
2.2.1误差来源
误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。
其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。
2.2.2绝对误差、相对误差与有效数字
1.(1)绝对误差e指的是精确值与近似值的差值。
绝对误差:
绝对误差限:
(2)相对误差是指绝对误差在原数中所占的比例。
相对误差:
相对误差限:
结论:凡是经过四舍五入而得到的近似值,其绝对误差不超过该近似值末位的半个单位。
(3)有效数字的定义
有效数字的第一种定义:设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即则称近似值a准确到小数点后第
k位。
从小数点后的第k位数字直到最左边非零数字之间的所有数字都叫有效数字。
有效数字第二种定义:设数x的近似值其中m是整数,是0,1,2,,9中的任意数,但,若
则具有k位有效数字。
通过学习总结出下面几个结论:
(1)若a是经过四舍五入而得到的近似值,则从它的末位数字到第一位非零数字都是有效数字。
(2)将任何数乘以10p(p=0,±1,±2,…)等于移动该数的小数点,并不影响其有效数字。
(3)有效数字相同的两个近似值的绝对误差不一定相同。
(2)二元函数:
)()
,()(),()),((b y
b a f a x b a f b a f εεε⋅∂∂+⋅∂∂≈
(3)n 元函数:
设
存在足够高阶的导数,a 是自变量x 的近似值,则是
的近似值。
如果且比值
不是很大,
则
2.算数运算误差:
2.2.4算法及计算复杂性
在数值计算中,要注意遵循一些原则,以保证数值稳定性。
(1)能控制舍入误差的传播。
(2)合理安排量级相差悬殊数间的运算次序,防止大数将小数吃掉。
(3)避免两个相近的数相减。
(4)避免接近零的数做除数,防止溢出。
(5)简化计算步骤,尽量减少运算次数。
2.3向量范数与矩阵范数
2.3.1 向量范数
1.向量范数满足三个条件:
(1)正定性
(2)齐次性
(3)成立三角不等式
2.对于中的任一向量则有
1-范数(列范数)
2-范数(欧氏范数)
P-范数
∞-范数
3.在空间中可以引进各种向量范数,且它们都满足下述向量定理:
设是上的任意两种向量范数,则存在与向量x无关的数m和M (0<m<M),使下列关系成立。
也就是说,向量x的某一范数可以任意小(大)时,该向量的其它任意一种范数也会任意小(大)。
2.3.2矩阵范数
1.定义在上的实值函数称为矩阵范数,如果对于中任意的矩阵A和B,阵范数满足下列条件:
(1)非负性
(2)齐次性
(3)成立三角不等式
(4)相容性
2.当一个问题中需要向量范数和矩阵范数时,向量范数和矩阵范数应该是相容的。
对于给定的向量范数和矩阵范数,如果对于任一个x∈R n,A∈R n×n,满足,则所给的向量范数和矩阵范数是相容的。
设在中给定了一种向量范数,对任意矩阵,令
,由此定义的矩阵范数与给定的向量范数相容,将这种范数称为从属于所给定的向量范数的矩阵范数。
3.设A=,则:
矩阵A的列范数
矩阵A的谱范数
矩阵的行范数
弗罗贝尼乌斯范数
4.设矩阵的某种范数,则为非奇异矩阵,并且当这种范数
为算子范数时,还有
成立。
三、 本章思考题
问题:
向量和矩阵有多种范数,如1范数、2范数、∞范数。
而作为向量和矩阵“大小”的度量,为什么要用这么多种范数来度量,而不是专门指定一种范数? 个人理解:
1. 对于不同向量和矩阵,从运算等方面考虑,某一种或几种范数在计算上较为简单方便;
2. 对于不同领域,某一种或者几种范数,其应用价值和使用价值更高。
四、 本章测验题.
设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=953765432
A
试求 F
p A
p A ,,1,∞=
知识点:关于1-范数、∞-范数、佛罗比尼乌斯范数的概念及其计算。
解:=1A max (2+|-5|+3,3+|-6|+5,4+|-7|+9)=20
=∞A max (2+3+4,|-5|+|-6|+|-7|,3+5+9)=18 2549537654322222
22222=+++-+-+-+++=)()()(F
A。