风力发电机组偏航控制系统设计
3MW风力发电机组偏航控制系统设计

3MW风力发电机组偏航控制系统设计发表时间:2020-10-10T11:53:08.160Z 来源:《中国电业》2020年6月第16期作者:张津瑞[导读] 本文整体的设计需求是以3MW风力发电机组的控制系统为基础,核心采用德国Beckhoff生产的嵌入式PC控制器组成整体的控制系统。
张津瑞(中国能源建设集团沈阳电力机械总厂有限公司辽宁省沈阳市110000)摘要:本文整体的设计需求是以3MW风力发电机组的控制系统为基础,核心采用德国Beckhoff生产的嵌入式PC控制器组成整体的控制系统。
主要内容依据模糊控制原理,主要设计是针对偏航系统的模糊控制自定义参数设计,实验采用MATLAB/simulink进行仿真,通过PLC 实现F-PID控制,最后论证系统可行性。
1 风机控制系统组成风轮的组成包括桨叶、轮毂、风轮轴及变桨系统。
桨叶是获取风能及进行能量转化的部件。
轮毂主要是起固定作用的装置。
风轮轴起到把风轮旋转产生的机械能传递到发电机当中的作用,是风机关键性结构之一。
塔架用来支撑机舱和叶片,必须具有足够的静动强度来承载风轮转动所引起的震动载荷。
偏航系统主要由执行机构、控制器、传感器和偏航计数器等组成,主要包括主动和被动两种偏航方式。
变桨距功率调节机构主要由桨叶、导套、连杆、法兰、短转轴、长转轴、推动杆、支撑杆、同步盘、偏心盘、防转装置等部件组成。
变桨系统针对不断变化的风速,通过调整叶片攻角来保持功率的恒定。
同条件下两种功率调节方式对比见图1.1所示。
图1.1 变桨距与定桨距输出功率的对比构成风机的两大块部分为风力机和发电机,在风力发电机组吸收风能并对其尽可能地转化阶段中,起关键作用的是风机的控制系统。
如果把控制系统比作风机的大脑起到监控、预警等作用,那么PLC就是其中枢神经起着调节、指示作用。
针对不断变化的风,PLC通过对偏航系统发出指令调节控制桨叶位置,保证风能利用效率的最大化。
2 偏航控制系统设计风力发电机组偏航控制系统工作过程:风传感器把采集到的风向角度传送至PLC控制器,控制器对其进行判断预处理,若需对风则输出命令驱动偏航电机旋转至与风向正对90°的位置,来达到快速对风的目的。
MW级风力发电系统偏航控制器的硬件设计

MW级风力发电系统偏航控制器的硬件设计关 开(华北电力大学,河北石家庄 050000) 摘 要:本文中利用PLC 作为偏航控制器,单片机为主的外围电路作为P LC 的信号转换和处理单元。
通过对各种信号的转换、处理,匹配成PLC 能够接受的信号,再通过P LC 实现的偏航控制程序,输出相应的控制信号控制执行机构,来达到自动对风的目的。
关键词:风能;偏航控制器;单片机 中图分类号:T K83 文献标识码:A 文章编号:1006—7981(2012)12—0074—02 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
其蕴量巨大,全球的风能约为2×107MW,其中可利用的风能为2.74×109MW 。
如何有效、高效的利用风能就是偏航控制系统所要解决的问题。
偏航控制器是偏航控制系统的控制机构,在偏航控制系统的信号下,做相应的动作。
由于风力机所处的工作环境比较特殊,一般情况下都是些恶劣的自然气候如大风,冰雹等,所以对控制器的抗扰动要求就比较严格。
在恶劣环境中不受影响的或能把影响限制在最小范围是偏航控制器最基本要求。
1 偏航控制系统简介偏航系统是水平轴式风力发电机组必不可少的组成系统之一。
偏航系统的主要作用有两个:其一是与风力发电机组的控制系统相互配合,使风力发电机组的风轮始终处于迎风状态,充分利用风能,提高风力发电机组的发电效率;其二是提供必要的锁紧力矩,以保障风力发电机组的安全运行。
偏航系统一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压回路等几个部分组成。
偏航控制系统主要具备以下几个功能:风向标控制的自动偏航;风向标控制的90°侧风;自动解缆;人工偏航,按其优先级别由高到低依次为:顶部机舱控制偏航、面板控制偏航、远程控制偏航。
图1 偏航控制系统框图偏航控制系统是一个随动系统,是风力发电机组电控系统的重要组成部分。
偏航控制系统可实现在规定风速范围内自动准确对风,在非可用风速范围内能够90°侧风,在连续跟踪风向可能造成电缆缠绕的情况下自动解缆,从而使风力发电机能够平稳可靠的运转,高效地利用风能,节约了大量能源,进一步降低发电成本并且有效地保护风力发电机。
基于PLC的风力发电机偏航控制系统设计

基于PLC的风力发电机偏航控制系统设计摘要由于化石资源的日益枯竭和人类对全球环境恶化的倍加关注,因此清洁绿色的风力发电技术已深受全世界的重视。
本设计主要研究的偏航系统是风力发电机组的重要组成部分。
由于偏航机构安装在机舱底部,通过偏航轴承与机舱相连。
当风向改变时,风向仪将信号传到控制系统,控制驱动装置工作,小齿轮在大齿圈上转动,从而带动机舱旋转,是风轮对准风向。
当机舱的旋转方向有接近开关进行检测,当机舱向同一方向达到极限偏航角度时,限位开关会及时将信号传到控制装置内,控制装置会迅速发出信号使机组快速停机,并反转解缆,经过上述过程从而实现偏航控制使风轮始终保持迎风状态。
根据边行系统的工作原理本设计所要解决的基本问题有:1、实现自动偏航控制及手动偏航控制的双控制系统设计2、设计偏航系统的制动装置以及扭缆、解缆保护装置的控制方法3、了解偏航液压系统的作用、工作原理和控制方法。
4、编写驱动控制程序、扭缆、解缆保护程序。
关键词:风向,自动偏航,风向仪,偏航电机Designof Yaw Control SystemforWindMotor Based on PLCABSTRACTCleanandgreen wind power technology has gottengreat attention bythe worldbecause ofthe increasingly exhaustedfossil resources andthe more attentionon the global environmentaldegradation。
This desi gn mainly researchesthe yaw system which isan importantcomponent of thewindturbine。
Becausethe yaw mechanisminstalled at the bottomofthe engineroom an dconnected totheengineroom through the yaw beari ng. When thewindchanges, wind vane willsendthe signal to the controlsystem tocontrol the drivework.The pinion rotated on the big gear ring,which ca nturnthe engine room to make thewind wheel turbines on the direction of thewind.When the revolving direction of the engine roomisclosedto the switchto do detection and the engine room reaches themaximum yawangle tothe samedirection,the limited switch willsend the signals to the controldevicein time. Then the control device could quickly sendasignal tomake the set quick stop and turn over thecast loop.Afterabovethe process,it will realize the yaw control andmake the wind wheel keepthe state offacingthe wind。
风力机偏航系统

限位开关
大齿圈
接近开关
17
18
当然风向变化是一个连续的过程,并不一定瞬时从东南风就 变为南风了,而是一个逐渐变化的过程。
15
机舱是可以顺时针旋转也可以逆时针旋转的,在偏航 过程中,机舱不能总是朝向一个方向旋转,因为机舱底 部大齿圈内部布置着多根电缆,机舱旋转电缆也就跟着 扭转,所以为了防止电缆扭转破坏特地控制机舱同一方 向旋转圈数不得超过650度(从0度开始,0度为安装风 电机组时确定的位置)。这种控制方法就是靠偏航接近 开关和限位开关来实现的,接近开关一左一右共两个, 负责记录机舱位置,当机舱达到+650度或-650度时 发出信号,控制系统控制偏航电机反向旋转解缆。限位 开关是作为极限位置开关使用的,当机舱继续旋转达到 700度时,限位开关被触发而使得风电机组快速停机。
这时,由风速风向仪测得风向变化,并传给控制系统存储 下来,控制系统又来控制偏航驱动装置中的四台偏航电机往 风速变化的方向同步运转,偏航电机通过减速齿轮箱带动小 齿轮旋转。小齿轮是与大齿圈相啮合的,与偏航电机、偏航 齿轮箱统一称为偏航驱动装置,上图可以看出,偏航驱动装 置通过螺栓紧固在主机架上,而大齿圈通过88个螺栓紧固在 塔筒法兰上,不可旋转,那么只能是小齿轮围绕着大齿圈旋 转带动主机架旋转,直到机舱位置与风向仪测得的风向相一 致。
3
尾舵对风
许多农用的多 叶风轮风力机也采 用尾舵对风,有些 尾舵是两叶张开的 样式,对风有较大 的阻力,以抗衡多 叶风轮的阻力,保 证稳定的对风。
4
尾舵对风
5
侧风轮对风
侧风轮对风结构在机舱后部两侧有两个侧风轮(舵轮),两个侧风轮一 般在同一个转轴上,转轴水平并与风力机风轮主轴垂直。在风力机准确对风 时两侧风轮面与风向平行,侧风轮不会旋转;当风力机未对风时侧风轮与风 有夹角就会旋转,并通过齿轮、蜗杆蜗轮推动机舱转动直至风力机风轮对风 后停止。
风力发电机组偏航系统自动控制设计

理工学院毕业设计学生姓名:学号:专业:电气工程及其自动化题目:风力发电机组偏航系统自动控制设计指导教师:(教授)评阅教师:2013 年 6 月河北科技大学理工学院毕业设计成绩评定表注:该表一式两份,一份归档,一份装入学生毕业设计说明书(论文)中。
毕业设计中文摘要毕设计外文摘要目录1 绪论 (1)1.1风能的意义 (1)1.2国际风电技术的发展现状和趋势 (1)1.3我国风电技术的发展现状和趋势 (2)1.4风力发电控制技术现状 (4)2 风力发电机组系统构成及功能简介 (5)2.1风电机简介 (5)2.2风力发电的原理 (7)2.3风力发电机系统组成部分简介 (8)3 偏航控制系统功能和原理 (14)3.1偏航系统概述 (14)3.2偏航系统的组成 (14)3.3偏航控制机构 (15)3.4偏航驱动机构 (17)4 偏航控制系统设计及结果分析 (22)4.1偏航系统控制过程分析 (22)4.2 偏航控制系统整体方案设计 (25)4.3 结果分析 (41)5 结论 (42)致谢 (43)参考文献 (44)1 绪论1.1 风能的意义世界经济的快速发展和激烈的竞争,新能源发电尤其是风力发电技术日趋受到世界各国的普遍重视。
除水力发电技术外,风力发电是新能源发电技术中最成熟、最具大规模开发和最有商业化发展前景的发电方式。
由于在改善生态环境、优化能源结构、促进社会经济可持续发展等方面的突出作用,目前世界各国都在大力发展和研究风力发电及其相关技术。
风能取之不尽,用之不竭,是非常重要的一种洁净的可再生能源,是人类能源结构的转变中一个非常重要的部分。
风力发电是人们有效利用风能的方法之一,其技术在可再生能源利用中的运用也是比较成熟的。
风力发电是一项高新技术,它涉及到气象学、空气动力学、结构力学、计算机技术、电子控制技术、材料学、化学、机电工程、电气工程、环境科学、等十几个专业学科,是一项系统技术。
风力发电作为现在新能源利用的重要技术之一,电气工程和它是息息相关,密不可分的。
风力发电机组偏航系统探究与优化

风力发电机组偏航系统探究与优化摘要:可再生能源的异军突起,风力发电被广泛应用,风力发电机组的容量己普遍达到兆瓦级别,因此风力发电机组的稳定性尤为重要,尤其是偏航系统,偏航系统对风的准确性直接影响机组的发电效率。
目前风力发电机组关于风向偏航控制主要是基于风向标进行的控制,而风向标的控制误差值较大,还有风向标控制的相关数据都是非线性的。
也就是说在小范围以内,风向标的控制精度较低,影响了风电机组对风能的获取。
因此探讨怎样提高对风精度,对进一步增加发电量具有重要意义。
所以,偏航控制技术的探究和优化,对改善风能捕捉、确保机组安全使用具有一定现实意义。
1本文的研究意义主要体现(1)有效缓解风力发电机组在使用中出现运行不稳定的情况;(2)小范围风向变化以内,缓解风向标的控制精度较低的情况,提高对风精度,增加发电量。
(3)改善风能捕捉、确保机组安全使用。
2风电机组的三种控制技术定桨距控制技术:机组桨叶的桨距角受安装位置等限制保持一个定值,许可的风速变化范围以内,控制系统则不会做出具体控制,技术简化明了。
变桨距控制技术:在机组刚启动运行时就可以实现对转速的跟踪控制,并网以后实现对功率的跟踪控制,大大改善了机组风机的启动特性以及功率变化情况。
变速恒频技术:跟踪控制机组的转速和功率,而直接以采集到的风速信号为机组控制的输入量来跟踪变化,当机组在额定风速以下运行时,可以达到最优功率变化的跟踪控制,这样可以保证风电机组获得最大的风能资源,提高风能利用率;当机组在额定风速以上运行时,变速控制可以使得控制系统更具有柔性,进而确保系统输出稳定的功率。
3偏航系统概述1.偏航系统。
风力发电机组要在最佳的载荷情况下最大限度的捕获风能,输出较多的电量,必须要保证机组在安全的环境下正常稳定地运转工作,在风力发电机组控制系统研究时,变桨的动作和发电机的转速相关,而风向的特性和偏航系统相关,偏航系统的控制是通过风向标实现的。
利用风向标传感器来监测风的方向,偏航控制器通过采集监测到的风信号,并分析判断风信号和风轮轴向之间的偏移角度,然后输出偏航控制信号,从而带动机组将叶轮的轴向和风向位置调整到同一位置上,进而实现对风目的。
PLC的风力发电机偏航系统控制

偏航控制系统主要有三个功能: (1) 正常运行时自动对风:当机舱偏离风向一定角度时,控制系统发出向左或者向右 调向的指令,机舱开始对风,知道达到允许的范围内,自动对风停止; (2) 绕缆时自动解缆:当机舱向同一方向累计偏转达到一定的角度时,系统控制停机, 或者此时报告扭缆故障,机组自动停机,等待工作人员来手动解缆; (3)失速保护时偏离风向:当有特大强风发生时,机组自动停机,释放叶尖,背风,以 达到保护风轮免受损坏的目的。
4
图 2-2-3 带有避雷装置的风向传感器
图 2-2-4 偏航驱动装置
其中,风向传感器采用绝对式传感器,绝对式风向传感器一般由风向标和旋转编码盘组 成,风向标可随风自由转动,其方向与风向一致,旋转编码盘安装在风向标的转轴上,风向 标转动带动旋转编码盘轴转动,当编码盘处于不同的位置时,就会输出不同的风向。
1.3.1 世界风电发展.............................................2 1.3.2 我国风电发展.............................................3 第二章 偏航控制系统功能简介和原理.................................3 2.1 偏航控制系统的功能............................................
错误!未定义书签。
2.2 风力发电机组偏航控制原理......................................
错误!未定义书签。
第三章 偏航系统的控制过程.........................................
错误!未定义书签。
风力发电机组偏航系统

风力发电机组偏航系统偏航系统的功能是驱动风轮跟踪风向的变化,使其扫掠面始终与风向垂直,以最大限度地提升风轮对风能的捕获能力。
偏航系统位于塔架和主机架之间,一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压装置等几个部分组成,结构简图如图2-17所示,包含外齿驱动[图2-17(a)]和内齿驱动[图2-17(b)]两种形式。
当风向改变时,风向仪将信号传输到控制装置,控制驱动装置工作,小齿轮在大齿圈上旋转,从而带动机舱旋转使得风轮对准风向。
机舱可以两个方向旋转,旋转方向由接近开关进行检测。
当机舱向同一方向偏航的角度达到700°(根据机型设定)时,限位开关将信号传输到控制装置后,控制机组快速停机,并反转解缆。
偏航驱动装置可以采用电动机驱动或液压马达驱动,制动器可以是常闭式或常开式。
常开式制动器一般是指有液压力或电磁力拖动时,制动器处于锁紧状态;常闭式制动器一般是指有液压力或电磁力拖动时,制动器处于松开状态。
采用常开式制动器时,偏航系统必须具有偏航定位锁紧装置或防逆传动装置。
图2-17 偏航系统结构简图1.偏航轴承偏航轴承的轴承内、外圈分别与机组的机舱和塔体用螺栓连接。
轮齿可采用内齿或外齿形式。
内齿形式是轮齿位于偏航轴承的内圈上,啮合受力效果较好,结构紧凑;外齿形式是轮齿位于偏航轴承的外圈上,加工相对来说比较简单。
具体采用哪种形式应根据机组的具体结构和总体布置进行选择。
偏航齿圈结构简图如图2-18所示。
(1)偏航齿圈的轮齿强度计算方法参照DIN3990—1970《圆柱齿轮和圆锥齿轮承载能力的计算》和GB 3480—1997《渐开线圆柱齿轮承载能力计算方法》及GB/Z 6413.2—2003《圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法:第2部分》进行计算。
在齿轮的设计上,轮齿齿根和齿表面的强度分析,应使用以下系数:图2-18 偏航齿圈结构简图>1.0;对轮齿齿根断裂强1)静强度分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电机组偏航控制系统设计
一、引言
二、偏航控制系统的功能
偏航控制系统的主要功能是实时监测风向,并控制风轮的转向,使其
与风向保持一致。
具体功能包括以下几个方面:
1.风向传感器:获取当前的风向信息。
2.控制算法:根据风向传感器的数据计算需要偏航的角度,并输出控
制信号。
3.控制执行部分:根据控制信号,驱动偏航装置,使其实现风轮的转向。
三、偏航控制系统的设计要求
1.稳定性:偏航控制系统需要保证在各种天气条件下都能稳定工作,
即使在强风或恶劣天气下也能可靠控制风轮的转向。
2.灵敏性:系统需要快速响应风向变化,并及时调整风轮的转向,以
最大化风能转化效率。
四、偏航控制系统的设计方案
1.风向传感器的选取:选择高精度、高灵敏度的风向传感器,能够准
确地获取当前的风向信息。
2.控制算法的设计:采用先进的控制算法,如模糊控制、PID控制等,根据当前风向和期望风向之间的差异,计算偏航的角度,并输出控制信号。
3.控制执行部分的设计:根据控制信号,选择合适的偏航装置,如电
动执行器或液压执行器,进行风轮的转向控制。
五、偏航控制系统的实施和测试
1.系统的实施:根据设计方案,搭建偏航控制系统的实验装置,进行
系统的实施和调试。
2.系统的测试和评估:对实施后的偏航控制系统进行测试和评估,包
括稳定性测试、灵敏性测试和抗干扰性测试等。
六、偏航控制系统的性能提升方案
1.优化风向传感器:选择更高精度、更高灵敏度的风向传感器,以提
高系统的测量精度和响应速度。
2.改进控制算法:采用更先进的控制算法,如模型预测控制、自适应
控制等,进一步提高系统的控制精度和响应速度。
3.优化控制执行部分:选择更高性能的偏航装置,如脉冲宽度调制执
行器等,以提高风轮转向的准确性和稳定性。
七、结论
本文详细介绍了风力发电机组偏航控制系统的设计,包括系统的功能、设计要求和设计方案等。
通过实施和测试,可以验证系统的性能,并提出
性能提升方案,进一步提高系统的稳定性和效率,为风力发电行业的发展
做出贡献。