人教版中职数学(基础模块)知识点汇总

合集下载

中职数学基础模块第1章《集合》知识点小结

中职数学基础模块第1章《集合》知识点小结

(3)
(2)运算性质: ① A B B A ② (A B) C A (B C) ③ A A A ④ A A ⑤ 若A B,则A B A,反之也成立.
知识清单 ——————————————————————————
2.并集(“取全部”)
(1)定义:给定两个集合A,B,把它们所有的元素合并在一起构成的集合叫作A 与B的并集,记作 A B ,读作“A并B”,即 A B {x x A或xB}
知识清单
知识清单
一.集合的概念
1.集合的概念:一般地,把一些能够确定 的对象看成一个整体,我们就说,这个整 体是由这些对象的全体构成的集合(简称 集).通常用大写英文字母A,B,C...表示;
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.
(3)空 集:不含任何元素的集合 记作
知识清单
6.实数的分类:
ቤተ መጻሕፍቲ ባይዱ
整数
正整0 数自然数
实数
有理数






负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
知识清单
2.性质描述法 用集合所含元素的共同特征表示集合的方法
(把集合中元素的公共特征描述出来,按一定格式 写在括号里)
形式: A {x I | P(x)}其中竖线前的x叫集合的

中职数学基础模块第4章《指数函数与对数函数》知识点

中职数学基础模块第4章《指数函数与对数函数》知识点

【注意】: (1) 底数的限制: a>0 且 a 不等于 1 ; (2)N 的限制: N>0 ;
(3)log 是对数的符号 .
2. 指数式与对数式的互化:a 0且a 1,N 0时,ab N loga N b
3. 对数的性质:
(1)N>0( 零和负数没有对数 ) ; (2)loga1=0(1 的数等于 0) ; (3)logaa=1( 底的对数等于 1) ; (4) aloga N .N
(2)loga
M N
loga M
loga
N (商的对数等于对数的差)
(3)logaM b b loga M (幂的对数等于幂指数乘幂的底数的对数)
推广:loga (N1 N2 NK ) loga N1 loga N2 loga Nk
6. 换底公式
logb
N
loga N loga b
(b
2.n 次根式:形如n a (n N*且n 1)
的式
子叫作 a 的 n 次根式,其中 n 叫做根指数, a 叫做
被开方数。
3. 根式的性质: (1) ( n a )n a n an a (2) 当 n 为奇数时,
当 n 为偶数时,
1
an n a
n
an
a
a(a 0) a(a 0)
知识清单 —————————————————————————
知识清单
知识清单
—————————————————————————
一—. 有理数指数幂
二 . 根式
1. 正整数指数幂an aaa (n N*)
n个a相乘
a 叫幂的底数, n 叫幂的指数
2. 零指数幂 a0 1(a 0)

中职数学基础模块上册

中职数学基础模块上册
补集
对于一个集合A,由属于全集U 但不属于集合A的元素组成的集
合,叫做集合A的补集。记作 CuA。
命题与逻辑连接词
命题
能够判断真假的陈述句叫做命题。
02
逻辑连接词
用来表示命题之间关系的词语,如“ 如果…那么…”、“且”、“或”、“ 非”。
01
03
充分条件
如果命题P成立,可以推出命题Q成立 ,那么称P是Q的充分条件。
函数的表示法
函数通常可以用解析式、 图像和表格等方式来表示 。
函数的性质
包括奇偶性、单调性、周 期性等。
常见函数
01
02
03
04
一次函数
形式为y=kx+b,其中k、b为 常数,k≠0。
反比例函数
形式为y=k/x,其中k为常数 ,k≠0。
幂函数
形式为y=x^n,其中n为常数 。
对数函数
形式为y=log(a)x,其中a为 常数,a>0且a≠1。
等差数列与等比数列
等差数列
从第二项起,每一项与前一项的差等于同一 个常数的数列。
公差
这个常数叫做等差数列的公差。
通项公式
$a_n=a_1+(n-1)d$
等比数列
从第二项起,每一项与前一项的比等于同一个常数 的数列。
公比
这个常数叫做等比数列的公比。
通项公式
$a_n=a_1r^{n-1}$
数列的应用
充要条件
如果命题P成立,可以推出命题Q成立 ,并且命题Q成立,也可以推出命题P 成立,那么称P是Q的充要条件。
05
04
必要条件
如果命题Q成立,可以推出命题P成立 ,那么称Q是P的必要条件。
02

中职数学基础模块上册知识点归纳

中职数学基础模块上册知识点归纳

中职数学基础模块上册知识点归纳一、集合集合是由若干确定的、互不相同的元素组成的。

集合的表示方法有:列举法、描述法和集合的图示法。

二、集合的运算1. 并集:若A、B是两个集合,A∪B={x|x∈A 或x∈B},读作“A并B”,表示由A和B的所有元素组成的集合。

2. 交集:若A、B是两个集合,A∩B={x|x∈A 且x∈B},读作“A交B”,表示既属于A又属于B的元素组成的集合。

3. 补集:设U是一个集合,A是U的一个子集,由U中所有不属于A 的元素组成的集合叫做A的补集,记作A的·,A'={x|x∈U 且 x∉A}。

三、函数函数是一种对应关系,每一个自变量对应唯一的因变量。

函数的表示方法有:映射图、用公式表示和用表格表示。

四、函数的性质1. 有界性:有上界和下界。

2. 单调性:增函数、减函数和常函数。

3. 奇偶性:奇函数和偶函数。

4. 周期性:以T为周期的周期函数。

五、一元二次方程1. 一元二次方程的解的判别式Δ=b²-4ac,若Δ>0,解为两个不相等的实数;若Δ=0,解为两个相等的实数;若Δ<0,无实根。

2. 一元二次方程的解x=(-b±√Δ)/2a。

3. 一元二次方程的根的性质,与根有关的因式分解。

六、统计1. 统计数据的整理与分析,频率分布表和频率分布直方图。

2. 统计数据的均值、中位数、众数和四分位数。

3. 离均差、方差以及标准差的计算和应用。

七、概率1. 随机事件及其概率。

2. 事件的概率计算,互斥事件和对立事件。

3. 概率的加法定理和乘法定理。

以上是中职数学基础模块上册的知识点归纳。

在学习中职数学基础模块上册的过程中,我们要重视基础知识的掌握,并能够扎实地掌握各种特定概念和解题方法。

只有在建立扎实的基础上,我们才能够更好地掌握数学知识,提高数学解题的能力。

在实际生活中,数学无处不在。

掌握了这些数学基础知识,我们在解决实际问题时能够灵活运用数学方法,更好地理解和应用数学知识。

中职数学知识点归纳

中职数学知识点归纳

中职数学是中等职业学校数学课程的简称,主要培养学生的数学基本概念、基本运算能力和解决实际问题的能力。

下面是对中职数学知识点的归纳:一、数与代数1. 自然数、整数、有理数、实数的概念和性质;2. 加法、减法、乘法、除法、乘方、开方等基本运算;3. 分数的四则运算;4. 等式与方程的概念,一元一次方程的解法;5. 不等式的概念,一元一次不等式的解法;6. 函数的概念,一次函数、二次函数的性质和图像;7. 指数与对数的概念,指数函数、对数函数的性质和图像;8. 三角函数的概念,正弦函数、余弦函数、正切函数的性质和图像;9. 复数的概念,复数的四则运算;10. 排列、组合、二项式定理等。

二、几何与测量1. 点、线、面、体的概念;2. 直线、射线、线段、角的概念,角的度量;3. 平行线、垂直线、相交线的概念,平行线的性质;4. 三角形、四边形、多边形的概念,三角形的性质;5. 圆的概念,圆的性质;6. 直角三角形、等腰三角形、等边三角形的概念,直角三角形的性质;7. 平面图形的相似性,相似三角形的判定和性质;8. 立体图形的概念,长方体、立方体、圆柱体、圆锥体、球体的性质;9. 空间几何体的投影,三视图的绘制;10. 长度、面积、体积的计算。

三、统计与概率1. 数据的收集、整理和分析;2. 频数、频率、平均数的概念和计算;3. 数据的描述,直方图、折线图的绘制;4. 统计量的概念,样本均值、样本标准差、样本方差的计算;5. 概率的概念,事件的概率计算;6. 事件的独立性,条件概率的计算;7. 随机变量的概念,离散型随机变量和连续型随机变量的概率分布;8. 随机变量的期望值和方差的计算;9. 随机变量的相关性,相关系数的计算;10. 抽样调查和抽样误差。

四、应用与解决问题1. 数学在实际生活中的应用,如金融、经济、工程等领域的应用;2. 解决实际问题的数学方法,如建模、推理、证明等;3. 解决实际问题的数学思维,如分析问题、提出假设、验证结论等;4. 解决实际问题的数学工具,如计算器、计算机软件等。

中职数学基础模块上册全册重点知识点小结归纳(方便复习记忆)

中职数学基础模块上册全册重点知识点小结归纳(方便复习记忆)

实数
有理数






负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
7.常用数集的记法:

集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
Z
自然数 集
N
正整数 集
N*或N+
知识清单
1.列举法 把集合中的元素一一列举出来 ,用花括号 { }括起来,
元素之间用“,”隔开.(注意无素的互异性)
知识清单
5.集合的分类
(1)有限集:集合中含有有限个元素 如: 明德中学2019届数控班所有同学构成的集合.
(2)无限集:集合中含无有限个元素 如: 大于0的所有正整数构成的集合.
(3)空 集:不含任何元素的集合 记作
知识清单
6.实数的分类:

整数
正整0 数自然数
(3)
(2)运算性质: ① A B B A ② (A B) C A (B C) ③ A A A ④ A A ⑤ 若A B,则A B A,反之也成立.
知识清单 ——————————————————————————
2.并集(“取全部”)
(1)定义:给定两个集合A,B,把它们所有的元素合并在一起构成的集合叫作A 与B的并集,记作 A B ,读作“A并B”,即 A B {x x A或xB}
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.

(完整版)中职数学基础知识汇总,推荐文档

(完整版)中职数学基础知识汇总,推荐文档

中职数学基础知识汇总预备知识:1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式: a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)4. 元素与集合、集合与集合之间的关系:(1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“” “”“”“”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑Ф是否满足题意) (2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1){|}A B x x A x B 且:A 与B 的公共元素组成的集合(2){|}ABx xA xB 或:A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:=()U U U C AB C A C B ()U U U C A B C A C B6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。

7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q ,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。

(2)不等式两边同时乘以负数要变号!!(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。

职中数学知识点总结

职中数学知识点总结

职中数学知识点总结一、代数方程在职中数学中,代数方程是一个重要的内容。

代数方程是数学中的基础概念,它是利用字母、数字、符号等表示数学规律的一种数学表达式。

代数方程的基本含义是用字母或其他符号表示的未知数及其各种关系,并以等式形式表示。

1、一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数是1的方程。

一元一次方程的一般形式是ax + b = 0,其中a和b是已知的数,x是未知数,a≠0。

一元一次方程的解是使等式成立的未知数x的值。

2、一元二次方程一元二次方程是指只含有一个未知数,并且未知数的最高次数是2的方程。

一元二次方程的一般形式是ax² + bx + c = 0,其中a、b、c是已知数,a≠0。

一元二次方程的解是使等式成立的未知数x的值。

3、二元一次方程组二元一次方程组是包含两个未知数的一次方程组。

一般来说,二元一次方程组有两个方程,其一般形式是a₁x + b₁y = c₁a₂x + b₂y = c₂其中a₁,b₁,c₁,a₂,b₂,c₂都是已知数。

求解二元一次方程组是求出使两个方程都成立的未知数x和y的值。

4、一元高次多项式方程一元高次多项式方程是指只含有一个未知数,并且未知数的最高次数大于1的多项式方程。

一般地,一元高次多项式方程的一般形式是anxn + an-1xn-1 + ... + a1x + a0 = 0其中an, an-1, ..., a1, a0都是已知数且an≠0。

一元高次多项式方程的解是使等式成立的未知数x的值。

5、绝对值方程绝对值方程是含有绝对值的方程。

一般地,绝对值方程的一般形式是|ax + b| = c其中a、b、c都是已知数,a≠0。

绝对值方程的解是使等式成立的未知数x的值。

6、分式方程分式方程是含有分式的方程。

一般地,分式方程的一般形式是f(x)/g(x) = p/q其中f(x)、g(x)是已知函数,p、q是已知数。

分式方程的解是使等式成立的未知数x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版中职数学(基础模块)知识点汇总第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集)4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:B C A C B A C U U U =)( B C A C B A C U U U =)( 6. 逻辑联结词: 且(∧)、或(∨)非(⌝)如果……那么……(⇒) 量词:存在(∃) 任意(∀) 真值表:q p ∧:其中一个为假则为假,全部为真才为真; q p ∨:其中一个为真则为真,全部为假才为假; p ⌝:与p 的真假相反。

(同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。

) 7. 充分必要条件∆p 是q 的……条件 p 是条件,q 是结论p q ==⇒<=≠=充分不必要→ 的充分不必要条件是q p (充分条件) p q =≠⇒<===不充分必要→ 的必要不充分条件是q p (必要条件) p q ==⇒⇐==充分必要→ 的充分必要条件是q p (充要条件) p q =≠⇒⇐≠=不充分不必要→ 件的既不充分也不必要条是q p 第二章 不等式1. 不等式的基本性质: 注:(1)比较两个实数的大小一般用比较差的方法(2)不等式两边同时乘以负数要变号!! (3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。

2. 重要的不等式:(∆均值定理)(1)ab b a 222≥+,当且仅当b a =时,等号成立。

(2)),(2+∈≥+R b a ab b a ,当且仅当b a =时,等号成立。

(3)),,(3+∈≥++R c b a abc c b a ,当且仅当c b a ==时,等号成立。

注:2ba +(算术平均数)≥ab (几何平均数) 3. 一元一次不等式的解法 4. 一元二次不等式的解法 (1) 保证二次项系数为正(2) 分解因式(十字相乘法、提取公因式、求根公式法),目的是求根: (3) 定解:(口诀)大于两根之外,大于大的,小于小的; 小于两根之间注:若00<∆=∆或,用配方的方法确定不等式的解集。

5. 绝对值不等式的解法若0>a ,则⎩⎨⎧-<>⇔><<-⇔<ax a x a x ax a a x 或||||6. 分式不等式的解法:与二次不等式的解法相同。

注:分母不能为0.第三章 函数1. 函数:(1) 定义:在某一个变化过程中有两个变量x 和y ,设变量x 的取值范围为数集D ,如果对于D 内的每一个x 值,按照某个对应法则f ,y 都有唯一确定的值与它对应,那么,把x 叫做自变量,把y 叫做x 的函数。

(2) 函数的表示方法:列表法、图像法、解析式法。

注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单。

2. 函数的三要素:定义域、值域、对应法则(1) ∆定义域的求法:使函数(的解析式)有意义的x 的取值范围 主要依据:① 分母不能为0② 偶次根式的被开方式≥0③ 特殊函数定义域0,0≠=x x yR x a a a y x ∈≠>=),10(,且 0),10(,log >≠>=x a a x y a 且)(,2,tan Z k k x x y ∈+≠=ππ(2) ∆值域的求法:y 的取值范围① 正比例函数:kx y = 和 一次函数:b kx y +=的值域为R② 二次函数:c bx ax y ++=2的值域求法:配方法。

如果x 的取值范围不是R 则还需画图像③ 反比例函数:xy 1=的值域为}0|{≠y y ④ d cx b ax y ++=的值域为}|{c ay y ≠⑤ cbx ax nmx y +++=2的值域求法:判别式法⑥ 另求值域的方法:换元法、反函数法、不等式法、数形结合法、函数的单调性等等。

(3) 解析式求法:在求函数解析式时可用换元法、构造法、待定系数法等。

3. 函数的奇偶性:(1) 定义域关于原点对称(2) 若)()(x f x f -=-→奇 若)()(x f x f =-→偶 注:①若奇函数在0=x 处有意义,则0)0(=f ②常值函数a x f =)((0≠a )为偶函数 ③0)(=x f 既是奇函数又是偶函数 4. ∆函数的单调性:对于],[21b a x x ∈∀、且21x x <,若⎩⎨⎧><上为减函数在称上为增函数在称],[)(),()(],[)(),()(2121b a x f x f x f b a x f x f x f增函数:x 值越大,函数值越大;x 值越小,函数值越小。

减函数:x 值越大,函数值反而越小;x 值越小,函数值反而越大。

复合函数的单调性:))(()(x g f x h =)(x f 与)(x g 同增或同减时复合函数)(x h 为增函数;)(x f 与)(x g 相异时(一增一减)复合函数)(x h 为减函数。

注:奇偶性和单调性同时出现时可用画图的方法判断。

5. 二次函数:(1)二次函数的三种解析式:①一般式:c bx ax x f ++=2)((0≠a )②∆顶点式:h k x a x f +-=2)()( (0≠a ),其中),(h k 为顶点③两根式:))(()(21x x x x a x f --= (0≠a ),其中21x x 、是0)(=x f 的两根 (2)图像与性质:∆ 二次函数的图像是一条抛物线,有如下特征与性质:① 开口 →>0a 开口向上 →<0a 开口向下② ∆对称轴:abx 2-=③ ∆顶点坐标:)44,2(2ab ac a b -- ④ ∆与x 轴的交点:⎪⎩⎪⎨⎧→<∆→=∆→>∆无交点交点有有两交点0100⑤ 一元二次方程根与系数的关系:(韦达定理)∆⎪⎩⎪⎨⎧=⋅-=+a cx x a b x x 2121⑥ c bx ax x f ++=2)(为偶函数的充要条件为0=b ⑦ 二次函数(二次函数恒大(小)于0)⇔>0)(x f ⎩⎨⎧⇔<∆>轴上方图像位于x a 00轴下方图像位于x a x f ⇔⎩⎨⎧<∆<⇔<000)(⑧ 若二次函数对任意x 都有)()(x t f x t f +=-,则其对称轴是t x =。

⑨ 若二次函数0)(=x f 的两根21x x 、ⅰ. 若两根21x x 、一正一负,则⎩⎨⎧<≥∆0021x xⅱ. 若两根21x x 、同正(同负)⎪⎩⎪⎨⎧>>+≥∆0002121x x x x 若同正,则 ⎪⎩⎪⎨⎧><+≥∆0002121x x x x 若同负,则ⅲ.若两根21x x 、位于),(b a 内,则利用画图像的办法。

则若,0>a ⎪⎩⎪⎨⎧>>≥∆0)(0)(0b f a f 则若,0<a ⎪⎩⎪⎨⎧<<≥∆0)(0)(0b f a f注:若二次函数0)(=x f 的两根21x x 、;1x 位于),(b a 内,2x 位于),(d c 内,同样利用画图像的办法。

6. 反函数:(1)函数)(x f y =有反函数的条件y x 与是一一对应的关系(2)求)(x f y =的反函数的一般步骤: ①确定原函数的值域,也就是反函数的定义域 ②由原函数的解析式,求出⋯=x③将y x ,对换得到反函数的解析式,并注明其定义域。

(3) ∆原函数与反函数之间的关系 ① 原函数的定义域是反函数的值域 原函数的值域是反函数的定义域 ② 二者的图像关于直线x y =对称③ 原函数过点),(b a ,则反函数必过点),(a b ④ 原函数与反函数的单调性一致第四章 指数函数与对数函数1. 指数幂的性质与运算: (1)根式的性质:①n 为任意正整数,n n a )(a =②当n 为奇数时,a a n n =;当n 为偶数时,||a a n n = ③零的任何正整数次方根为零;负数没有偶次方根。

(2) 零次幂:10=a )0(≠a(1) 负数指数幂:n n aa 1=- ),0(*N n a ∈≠ (2) 分数指数幂:n m nm a a= )1,,0(>∈>+n N n m a 且(3) 实数指数幂的运算法则:),,0(R n m a ∈>①n m n m a a a +=⋅ ②mn n m a a =)( ③n n n b a b a ⋅=⋅)(2. 幂运算时,注意将小数指数、根式都统一化为分数指数;一般将每个数都化为最小的一个数的n 次方。

3. ∆幂函数⎩⎨⎧∞+=<∞+=>=)上单调递减,在(时,当)上单调递增,在(时,当0000aa ax y a x y a x y 4. 指数与对数的互化b N N a a b =⇔=log )10(≠>a a 且 、 )0(>N① 对数基本性质:① 1log =a a ②01log =a ③N a N a =log ④N a N a =log∆⑤互为倒数与a b b a log log ab a b b a b a log 1log 1log log =⇔=⋅⇔ ∆⑥b mnb a n a m log log =5. 对数的基本运算:∆N M N M a a a log log )(log +=⋅ N M NMa a a log log log -= 6. ∆换底公式:aNN b b a log log log =)10(≠>b b 且 7. ∆指数函数、对数函数的图像和性质 指数函数 对数函数定义 )1,0(的常数≠>=a a a y x)1,0(log 的常数≠>=a a x y a图 像性 质(1) 0,>∈y R x (2)∆ 图像经过)1,0(点 (3)∆为减函数为增函数;xx a y a a y a =<<=>,10,1(1) 0,>∈y R x (2) ∆图像经过)0,1(点 (3)∆上为减函数在上为增函数;在),0(log ,10),0(log ,1+∞=<<+∞=>x y a x y a a a8. ∆利用幂函数、指数函数、对数函数的单调性比较两个数的大小,将其变为同底、同幂(次)或用换底公式或是利用中间值0,1来过渡。

相关文档
最新文档