中职数学基础模块上册知识点归纳

合集下载

中职数学基础的知识点整理

中职数学基础的知识点整理

中职数学基础知识汇总预备知识:1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式: a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)4. 元素与集合、集合与集合之间的关系:(1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“” “”“”“”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑Ф是否满足题意) (2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1){|}A B x x A x B 且:A 与B 的公共元素组成的集合(2){|}ABx xA xB 或:A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:=()U U U C AB C A C B ()U U U C A B C A C B6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。

7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q ,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。

(2)不等式两边同时乘以负数要变号!!(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。

中职数学基础模块第1章《集合》知识点小结

中职数学基础模块第1章《集合》知识点小结

(3)
(2)运算性质: ① A B B A ② (A B) C A (B C) ③ A A A ④ A A ⑤ 若A B,则A B A,反之也成立.
知识清单 ——————————————————————————
2.并集(“取全部”)
(1)定义:给定两个集合A,B,把它们所有的元素合并在一起构成的集合叫作A 与B的并集,记作 A B ,读作“A并B”,即 A B {x x A或xB}
知识清单
知识清单
一.集合的概念
1.集合的概念:一般地,把一些能够确定 的对象看成一个整体,我们就说,这个整 体是由这些对象的全体构成的集合(简称 集).通常用大写英文字母A,B,C...表示;
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.
(3)空 集:不含任何元素的集合 记作
知识清单
6.实数的分类:
ቤተ መጻሕፍቲ ባይዱ
整数
正整0 数自然数
实数
有理数






负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
知识清单
2.性质描述法 用集合所含元素的共同特征表示集合的方法
(把集合中元素的公共特征描述出来,按一定格式 写在括号里)
形式: A {x I | P(x)}其中竖线前的x叫集合的

中职数学基础模块(上册)全套

中职数学基础模块(上册)全套
一般式
$x^{2} + y^{2} + Dx + Ey + F = 0$,其中D、E和F为系数。
直线与圆的位置关系
相离
直线与圆没有交点,相离时圆 心到直线的距离大于圆的半径

相交
直线与圆有两个交点,相交时圆 心到直线的距离小于圆的半径。
相切
直线与圆只有一个交点,相切时圆 心到直线的距离等于圆的半径。
三视图
01
02
03
三视图的基本概念
了解三视图的基本原理和 概念,包括正视图、俯视 图和左视图。
三视图的画法
掌握如何根据几何体的形 状和尺寸画出其三视图。
三视图的识别
能够根据三视图识别出对 应的几何体,并理解各个 视图之间的关系。
空间几何体的性质和计算
空间几何体的性质
了解常见空间几何体的性 质和特点,如球体、长方 体、圆柱体等。
数在区间(-∞,+∞)内具有单调性。
05
第五章 空间几何
空间几何的基本概念
点、直线、平面
了解空间中点、直线和平面的基本性质,包括定义、表示方法以 及相互之间的关系。
空间向量
掌握向量的基本概念、运算规则和性质,了解向量的应用。
空间几何图形的作图与识别
掌握常见空间几何图形的作图方法,能够识别和区分不同的几何 图形。
数列的极限
01
02
03
04
05
数列极限的定义:数列 的极限是指当 n 趋于无 穷大时,数列的第 n 项 的值趋于一个特定的值 。
极限的四则运算规则: 极限的四则运算规则包 括加法、减法、乘法和 除法,具体规则如下
1. 若lim a_n = A 和 lim b_n = B,则lim (a_n + b_n) = A + B。

高职高考中职数学对口升学总复习基础模块(上册)全册重点知识点小结归纳

高职高考中职数学对口升学总复习基础模块(上册)全册重点知识点小结归纳
C O U N T E R PA R T ENTRANCE EXAM
中职数学基础模块(上册)知识点
出品人:好老师
高职高考中职数学对口升学总复习知识点总结归纳 基础模块(上册)
CONTENTS
第一章 P03 第二章 P25 第三章 P37 第四章 P46 第五章 P55
知识清单
【知识结构】
知识清单
6.实数的分类:
整数
正整0 数自然数
实数
有理数
负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
——————————————————————————
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
Z
自然数 集
N
正整数 集
N*或N+
知识清单
——————————————————————————
⑤ 第一象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑥ 第二象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑦ 第三象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑧ 第四象限的所有点组成的集合:{(x, y) | x 0, y 0}
知识清单
——————————————————————————
性质描述法
【注意】:
①有些集合的代表元素需要有两个或两个以上的字母表示. ②如下 一些写法是错误的,如:
把{(a,b)}表示成{a,b},{x=a,y=b}或{x|a,b};× 用{实数集}或{全体实数}表示R;×
知识清单
——————————————————————————

中职数学基础模块上册

中职数学基础模块上册
补集
对于一个集合A,由属于全集U 但不属于集合A的元素组成的集
合,叫做集合A的补集。记作 CuA。
命题与逻辑连接词
命题
能够判断真假的陈述句叫做命题。
02
逻辑连接词
用来表示命题之间关系的词语,如“ 如果…那么…”、“且”、“或”、“ 非”。
01
03
充分条件
如果命题P成立,可以推出命题Q成立 ,那么称P是Q的充分条件。
函数的表示法
函数通常可以用解析式、 图像和表格等方式来表示 。
函数的性质
包括奇偶性、单调性、周 期性等。
常见函数
01
02
03
04
一次函数
形式为y=kx+b,其中k、b为 常数,k≠0。
反比例函数
形式为y=k/x,其中k为常数 ,k≠0。
幂函数
形式为y=x^n,其中n为常数 。
对数函数
形式为y=log(a)x,其中a为 常数,a>0且a≠1。
等差数列与等比数列
等差数列
从第二项起,每一项与前一项的差等于同一 个常数的数列。
公差
这个常数叫做等差数列的公差。
通项公式
$a_n=a_1+(n-1)d$
等比数列
从第二项起,每一项与前一项的比等于同一个常数 的数列。
公比
这个常数叫做等比数列的公比。
通项公式
$a_n=a_1r^{n-1}$
数列的应用
充要条件
如果命题P成立,可以推出命题Q成立 ,并且命题Q成立,也可以推出命题P 成立,那么称P是Q的充要条件。
05
04
必要条件
如果命题Q成立,可以推出命题P成立 ,那么称Q是P的必要条件。
02

中职数学知识点归纳

中职数学知识点归纳

中职数学是中等职业学校数学课程的简称,主要培养学生的数学基本概念、基本运算能力和解决实际问题的能力。

下面是对中职数学知识点的归纳:一、数与代数1. 自然数、整数、有理数、实数的概念和性质;2. 加法、减法、乘法、除法、乘方、开方等基本运算;3. 分数的四则运算;4. 等式与方程的概念,一元一次方程的解法;5. 不等式的概念,一元一次不等式的解法;6. 函数的概念,一次函数、二次函数的性质和图像;7. 指数与对数的概念,指数函数、对数函数的性质和图像;8. 三角函数的概念,正弦函数、余弦函数、正切函数的性质和图像;9. 复数的概念,复数的四则运算;10. 排列、组合、二项式定理等。

二、几何与测量1. 点、线、面、体的概念;2. 直线、射线、线段、角的概念,角的度量;3. 平行线、垂直线、相交线的概念,平行线的性质;4. 三角形、四边形、多边形的概念,三角形的性质;5. 圆的概念,圆的性质;6. 直角三角形、等腰三角形、等边三角形的概念,直角三角形的性质;7. 平面图形的相似性,相似三角形的判定和性质;8. 立体图形的概念,长方体、立方体、圆柱体、圆锥体、球体的性质;9. 空间几何体的投影,三视图的绘制;10. 长度、面积、体积的计算。

三、统计与概率1. 数据的收集、整理和分析;2. 频数、频率、平均数的概念和计算;3. 数据的描述,直方图、折线图的绘制;4. 统计量的概念,样本均值、样本标准差、样本方差的计算;5. 概率的概念,事件的概率计算;6. 事件的独立性,条件概率的计算;7. 随机变量的概念,离散型随机变量和连续型随机变量的概率分布;8. 随机变量的期望值和方差的计算;9. 随机变量的相关性,相关系数的计算;10. 抽样调查和抽样误差。

四、应用与解决问题1. 数学在实际生活中的应用,如金融、经济、工程等领域的应用;2. 解决实际问题的数学方法,如建模、推理、证明等;3. 解决实际问题的数学思维,如分析问题、提出假设、验证结论等;4. 解决实际问题的数学工具,如计算器、计算机软件等。

中职数学基础模块上册全册重点知识点小结归纳(方便复习记忆)

中职数学基础模块上册全册重点知识点小结归纳(方便复习记忆)

实数
有理数






负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
7.常用数集的记法:

集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
Z
自然数 集
N
正整数 集
N*或N+
知识清单
1.列举法 把集合中的元素一一列举出来 ,用花括号 { }括起来,
元素之间用“,”隔开.(注意无素的互异性)
知识清单
5.集合的分类
(1)有限集:集合中含有有限个元素 如: 明德中学2019届数控班所有同学构成的集合.
(2)无限集:集合中含无有限个元素 如: 大于0的所有正整数构成的集合.
(3)空 集:不含任何元素的集合 记作
知识清单
6.实数的分类:

整数
正整0 数自然数
(3)
(2)运算性质: ① A B B A ② (A B) C A (B C) ③ A A A ④ A A ⑤ 若A B,则A B A,反之也成立.
知识清单 ——————————————————————————
2.并集(“取全部”)
(1)定义:给定两个集合A,B,把它们所有的元素合并在一起构成的集合叫作A 与B的并集,记作 A B ,读作“A并B”,即 A B {x x A或xB}
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.

中专《数学》(基础模块)上册课件整理版

中专《数学》(基础模块)上册课件整理版
x a(a 0) 型不等式来求解.这种方法称为“变量替换法”或
“换元法”.
返回
第3章 函数
3.1 函数 3.2 一次函数和二次函数 3.3 函数的应用
返回
内容简介:函数是研究客观世界变化规律和集合之间关系
得一个最基本的数学工具.本章介绍了函数的概念,函数的三 种表示方法及其基本性质,并通过实际的例子介绍了函数的 实际应用.
如果给定某一集合 A 是全集 U 的一个子集,则 U 中不属于
概念
A 的所有元素组成的集合叫做 A 在全集 U 中的补集,记作
UA,
读作“A 在 U 中的补集” ,即
UA={x︱x∈U
且 x A}.
全集 U 与它的任意一个真子集 A 之间的关系可用下图来表示,其中阴 影部分表示 A 在 U 中的补集.
学习目标:理解函数的概念,理解函数的三种表示方法,
理解函数的单调性和奇偶性 ,了解函数的实际应用.
3.1 函数的概念
设集合 D 是一个非空集合,如果按照某个对应法则 f , 对于 D 中的任意一个数 x ,都有唯一确定的数
y 与之对应,

则这种对应关系叫做集合 D 上的一个函数,记作
y f ( x), x D,
学习目标:理解集合的有关概念,并掌握集合的表示方法,
掌握集合之间的关系和集合的运算,了解充要条件.
1.1 集合及其运算
1.1.1 集合的概念
概念
由某些指定的对象集在一起所组成的整体就叫做集合,简
称集.组成集合的每个对象称为元素.
集合一般采用大写英文字母 A、B、C„来表示,它们的 元素一般采用小写英文字母 a、b、c„来表示.如果 a 是集合 A 的元素,就说 a 属于 A,记作 a A ;如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a A . 一般地, 我们把不含任何元素的集合叫做空集, 记作 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学基础模块上册知识点归纳
一、集合
集合是由若干确定的、互不相同的元素组成的。

集合的表示方法有:列举法、描述法和集合的图示法。

二、集合的运算
1. 并集:若A、B是两个集合,A∪B={x|x∈A 或x∈B},读作“A并B”,表示由A和B的所有元素组成的集合。

2. 交集:若A、B是两个集合,A∩B={x|x∈A 且x∈B},读作“A交B”,表示既属于A又属于B的元素组成的集合。

3. 补集:设U是一个集合,A是U的一个子集,由U中所有不属于A 的元素组成的集合叫做A的补集,记作A的·,A'={x|x∈U 且 x∉A}。

三、函数
函数是一种对应关系,每一个自变量对应唯一的因变量。

函数的表示方法有:映射图、用公式表示和用表格表示。

四、函数的性质
1. 有界性:有上界和下界。

2. 单调性:增函数、减函数和常函数。

3. 奇偶性:奇函数和偶函数。

4. 周期性:以T为周期的周期函数。

五、一元二次方程
1. 一元二次方程的解的判别式Δ=b²-4ac,若Δ>0,解为两个不相等的实数;若Δ=0,解为两个相等的实数;若Δ<0,无实根。

2. 一元二次方程的解x=(-b±√Δ)/2a。

3. 一元二次方程的根的性质,与根有关的因式分解。

六、统计
1. 统计数据的整理与分析,频率分布表和频率分布直方图。

2. 统计数据的均值、中位数、众数和四分位数。

3. 离均差、方差以及标准差的计算和应用。

七、概率
1. 随机事件及其概率。

2. 事件的概率计算,互斥事件和对立事件。

3. 概率的加法定理和乘法定理。

以上是中职数学基础模块上册的知识点归纳。

在学习中职数学基础模
块上册的过程中,我们要重视基础知识的掌握,并能够扎实地掌握各
种特定概念和解题方法。

只有在建立扎实的基础上,我们才能够更好
地掌握数学知识,提高数学解题的能力。

在实际生活中,数学无处不在。

掌握了这些数学基础知识,我们在解
决实际问题时能够灵活运用数学方法,更好地理解和应用数学知识。

数学基础模块上册的知识点对于我们今后的学习和工作都有着重要的
意义,因此需要我们对知识点进行深入的理解和灵活的运用。

通过深入研究中职数学基础模块上册的知识点,我们可以更好地掌握
数学基础知识,提高数学解题能力,为今后相关学科的深入学习打下
坚实的基础。

希望同学们在学习中职数学基础模块上册的知识点时,
能够认真对待,善于总结归纳,灵活运用,不断提升数学水平。

中职
数学基础模块上册的知识点是我们学习数学的基础,它们对于我们理
解和掌握更复杂的数学知识具有重要的作用。

除了上述知识点外,中
职数学基础模块上册还包括对数与指数、三角函数、向量等内容的学习。

下面将对这些知识点进行深入的拓展和探讨。

一、对数与指数
对数与指数是数学中重要的概念,在许多实际问题中都能够得到应用。

在中职数学基础模块上册中,我们需要学习对数的定义、性质、对数
运算和指数的运算等内容。

除了基础知识外,我们还需要了解对数与
指数在生活中的实际应用,如在科学计算、经济学中的应用等。

二、三角函数
三角函数是数学中重要的概念之一,它们在几何学、物理学、工程学
等领域有着广泛的应用。

在中职数学基础模块上册中,我们需要学习
正弦函数、余弦函数、正切函数等的定义、性质、图像和应用等内容。

通过学习三角函数,我们可以更好地理解和利用三角关系,解决实际
问题。

三、向量
向量是数学中的重要工具,它们在几何学、物理学、工程学中都有着
广泛的应用。

在中职数学基础模块上册中,我们需要学习向量的定义、性质、线性运算、数量积、向量积等内容。

通过学习向量,我们可以
更好地理解空间中的几何关系,解决实际问题。

除了以上内容外,中职数学基础模块上册还包括数学归纳法、排列组合、数列与数学归纳法等内容。

通过学习这些知识点,我们可以进一
步提高数学思维能力,培养解决实际问题的能力。

在学习过程中,我们需要注重理论与实践相结合,注重数学知识的应用。

只有通过不断地实践和思考,我们才能更好地掌握数学知识,提
高数学解题的能力。

希望同学们在学习中职数学基础模块上册的知识
点时,能够注重理论联系实际,勤于思考,不断提升自己的数学水平。

相关文档
最新文档