牛顿运动定律常用解题方法
应用牛顿运动定律解题的方法和步骤

应用牛顿运动定律解题的方法和步骤Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-§3.4应用牛顿运动定律解题的方法和步骤应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。
解题的基本步骤如下:(1)选取隔离体,即确定研究对象一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。
有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。
有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。
在选取隔离体时,采用整体法还是隔离法要灵活运用。
如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有两种方法,一种是将两物体隔离,得方程为 另—种方法是将整个系统作为研究对象,得方程为 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。
(2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。
①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。
并配合作物体的受力示意图。
大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。
这m图3-4-1就决定了分析受力的顺序。
如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。
②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。
一般情况下选取合力,如物体在斜面上受到重力,一般不说它受到下滑力和垂直面的两个力。
求解牛顿运动定律问题的常用方法

求解牛顿运动定律问题的常用方法上海师范大学附属中学 李树祥一、 合成法合成法是根据物体受到的力,用平行四边形定则求出合力,再根据要求进行计算的方法。
这种方法一般适用于物体只受两个力作用的情况例1. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=0.6,cos37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况.(2)求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mg tan37°由牛顿第二定律F 合=ma 可求得球的加速度为=︒==37tan g m F a 合7.5m/s 2加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动.(2)由图可得,线对球的拉力大小为8.010137cos ⨯=︒=mg F T N=12.5 N 二、分解法:当物体受到两个以上的力作用而产生加速度时,通常采用正交分解法解题,为减少矢量的分解,通常有两种方法1. 分解力而不分解加速度这是最常用的方法。
分解力而不分解加速度,通常以加速度a的方向为x轴的正方向(对于变速直线运动,由于加速度的方向和物体运动方向共线,因此也可以说以运动方向为x轴),建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别求得x轴和y轴上的合力和。
根据力的独立作用原理,各个方向上的力分别产生各自的加速度,得。
例2. 如图3所示,小车在水平面上以加速度a向左做匀加速直线运动,车厢内用OA、OB两根细绳系住一个质量为m的物体,OA与竖直方向的夹角为,OB是水平的,求OA、OB两绳的拉力T1、T2各是多少?解析:m的受力情况及直角坐标系的建立如图4所示(这样建立只需分解一个力),注意到,则有解得2. 分解加速度而不分解力若物体受几个互相垂直的力的作用,应用牛顿运动定律求解时,若分解的力太多,则比较繁琐,所以在建立直角坐标系时,可根据物体的受力情况,使尽可能多的力位于两坐标轴上而分解加速度a,得和,根据牛顿第二定律得,再求解。
高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
应用牛顿运动定律解题的一般步骤

应用牛顿运动定律解题的一般步骤一、分析物体的受力情况和运动情况,并将物体的运动过程进行分段处理,使每段运动过程的运动性质单一化。
(本步在草稿纸上进行)二、画好物体的受力示意图,并进行必要的分解或合成(也要在图上表示出来)。
如采用分解的方法,一般选择正交分解(分解到相互垂直的两个方向),其中对平衡问题是根据受力示意图分解的(保持原来已相互垂直的力);而非平衡问题是根据加速度方向分解的(与加速度垂直和平行)。
然后根据示意图建立平衡方程和合力的表达式(根据需要建立,并不是所有问题的解答都需要两个方向的方程)。
(象平抛运动这类物体在恒力作用下的曲线运动问题,我们往往不是采用力分解的方法,而是采用运动分解的方法,从而将复杂运动转化为两个相对较为简单的运动进行研究)。
三、画出物体的运动过程简图,并针对每个过程建立相应的运动学关系式(平抛类问题一般需要将运动分解到与合力平行和垂直的两个方向上,然后对两个方向的运动分别建立关系式;而圆周运动问题往往表现为正确选择向心力表达式和图象中某些线段和半径的关系),在建立运动学关系时,应注意选择对题意最合适的关系,尽量少走弯路。
四、分析已建立的方程,补充相应的公式(要根据题意将公式中的通用符号改换成适合题意的符号)和题中给出条件可建立的关系式。
五、解答时,要先分析哪些方程可以直接求解,哪些方程可以通过加减或乘除简化计算,同时应注重公式的推导、演化得出最终的表达式,不要每一步都想得出结论。
六、在建立每个表达式时,应在表达式的前面简要地说明该表达式的研究对象、研究的时间范围或空间范围(什么位置、时刻或什么过程、时间)、主要研究的物理量及物理学原理等。
七、最后要有必要的答,如题目要求压力,而我们在题中解答的是支持力;求某物理量的范围等。
历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。
各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。
所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。
故选B。
2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。
若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。
牛顿第一定律题解题技巧

牛顿第一定律题解题技巧牛顿第一定律是力学中的基本定律之一,也被称为惯性定律。
它指出,一个物体如果没有受到外力的作用,将保持静止状态或匀速直线运动状态。
这一定律在解题时经常用到,下面我们来探讨一些解题技巧。
首先,我们需要理解牛顿第一定律的基本概念。
它指出当物体受到平衡力时,物体将保持匀速直线运动或静止。
这意味着没有任何加速度的存在。
所以,当我们遇到与牛顿第一定律相关的题目时,首先要判断物体是否处于平衡状态。
当物体受到平衡力时,我们可以应用牛顿第一定律来解题。
一个典型的解题思路是,首先绘制自由体图或受力分析图。
自由体图是指将物体从其环境中分离出来,并标明已知和未知力的作用线方向和大小的图形。
这个图形可以帮助我们清晰地看到物体受到的各个力。
受力分析图是针对单个物体的分析,我们可以将物体上的各个力都标出来,然后根据牛顿第一定律进行推理。
在绘制出自由体图或受力分析图之后,下一步是应用牛顿第一定律的数学表达式,即“物体所受合外力等于物体的质量乘以加速度”。
这个表达式可以帮助我们计算物体受到的合外力或加速度。
在解题时,我们需要将已知的力和未知的力都考虑进去,并根据已知条件进行计算。
在具体的题目分析中,我们还可以利用牛顿第一定律的相关规律。
例如,如果一个物体在水平面上处于平衡状态,我们可以通过牛顿第一定律来推导出物体所受合外力为零。
同样地,如果物体在竖直方向上受到重力和支持力之间的平衡,我们可以利用牛顿第一定律来解题。
除了常见的平衡力应用,我们还可以运用牛顿第一定律来解决一些其他类型的问题。
例如,当物体受到恒定力时,可以利用牛顿第一定律来求解物体的运动轨迹和速度等。
这些问题可能需要我们进行更复杂的数学推导,但是牛顿第一定律仍然是我们解题的基础。
在解题的过程中,我们还需要注意一些常见的错误。
首先,我们要正确地选择分析的物体,避免混淆或遗漏。
其次,我们要注意力的平衡条件,并在受力分析中考虑到所有可能的力。
此外,我们需要注意单位的一致性,并进行必要的单位转换。
牛顿运动定律的综合应用

3.解题方法 整体法、隔离法. 4.解题思路 (1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出 滑块和滑板的加速度. (2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的 位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都 是相对地的位移.
[典例 1] 长为 L=1.5 m 的长木板 B 静止放在水平冰面上,
3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要 求分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略 (1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理 意义. (2)应用物理规律列出与图象对应的函数方程式,进而明确 “图象与公式”、“图象与物体”间的关系,以便对有关物理问 题作出准确判断.
可行的办法是( BD )
A.增大 A 物的质量 B.增大 B 物的质量 C.增大倾角θ D.增大拉力 F
2. 如图所示,质量为 M、中空为半球形的光滑凹槽放置于光 滑水平地面上,光滑槽内有一质量为 m 的小铁球,现用一水平向 右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心
和小铁球的连线与竖直方向成 α 角,则下列说法正确的是( C )
A.小铁球受到的合外力方向水平向左 B.凹槽对小铁球的支持力为smingα C.系统的加速度为 a=gtan α D.推力 F=Mgtan α
二、动力学中的图象问题 1.常见的图象有
v-t 图象,a-t 图象,F-t 图象,F-a 图象等.
2.图象间的联系
加速度是联系 v-t 图象与 F-t 图象的桥梁.
练习: 1.(多选)如图(a),一物块在 t=0 时刻滑上一固定斜面,其运
牛顿运动定律常用解题方法

牛顿运动定律常用解题方法1.合成法与分解法【例1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=0.6,cos37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况. (2)求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mg tan37°由牛顿第二定律F 合=ma 可求得球的加速度为=︒==37tan g mF a 合7.5m/s 2加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动. (2)由图可得,线对球的拉力大小为8.010137cos ⨯=︒=mg F T N=12.5 N点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.2. 正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有F ma F ma x x y y ==,,有的情况下分解加速度比分解力更简单。
例2. 质量为m 的物体放在倾角为α的斜面上斜面固定在地面上,物体和斜面间的动摩擦因数为μ,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,如图2的所示,则F 的大小为多少?图2解析:物体受力分析如图2(a )所示,以加速度方向即沿斜面向上为x 轴正向,分解F 和mg ,建立方程并求解:图2(a )x 方向:F mg F ma f cos sin αα--= y 方向:F mg F N --=cos sin αα0 又因为F F f N =μ联立以上三式求解得Fm a g g=++-(sin cos)cos sinαμααμα例3 如图3所示,电梯与水平面夹角为30°,当电梯加速向上运动时,人对梯面压力是其重力的65,则人与梯面间的摩擦力是其重力的多少倍?图3解析:此题为分解加速度较简单的典型例题,对人受力分析如图3(a)所示,取水平向右为x轴正方向,此时只需分解加速度,建立方程并求解:图3(a)x方向:F maf=cos30y方向:F mg maN-=sin30解得Fmgf=353. 假设法在分析物理现象时,常常出现似乎是这又似乎是那,不能一下子就很直观地判断的情况,通常采用假设法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、牛顿运动定律常用解题方法1.合成法与分解法【例1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg .(g =10m/s 2,sin37°=0.6,cos37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况. (2)求悬线对球的拉力.解析:(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应以球为研究对象.球受两个力作用:重力mg 和线的拉力F T ,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为F 合=mg tan37°由牛顿第二定律F 合=ma 可求得球的加速度为=︒==37tan g mF a 合7.5m/s 2加速度方向水平向右.车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动. (2)由图可得,线对球的拉力大小为8.010137cos ⨯=︒=mg F T N=12.5 N 点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.2. 正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有,有的情况下分解加速度比分解力更简单。
例3. 质量为m 的物体放在倾角为的斜面上斜面固定在地面上,物体和斜面间的动摩擦因数为,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,如图2的所示,则F 的大小为多少?图2解析:物体受力分析如图2(a)所示,以加速度方向即沿斜面向上为x轴正向,分解F和mg,建立方程并求解:图2(a)x方向:y方向:又因为联立以上三式求解得例4. 如图3所示,电梯与水平面夹角为30°,当电梯加速向上运动时,人对梯面压力是其重力的,则人与梯面间的摩擦力是其重力的多少倍?图3解析:此题为分解加速度较简单的典型例题,对人受力分析如图3(a)所示,取水平向右为x轴正方向,此时只需分解加速度,建立方程并求解:图3(a)x方向:y方向:解得3. 假设法在分析物理现象时,常常出现似乎是这又似乎是那,不能一下子就很直观地判断的情况,通常采用假设法。
例5. 两重叠在一起的滑块,置于固定的、倾角为的斜面上,如图4所示,滑块A、B的质量分别在M、m,A与斜面间的动摩擦因数为,B与A之间的动摩擦因数为,已知滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力()A. 等于零B. 方向沿斜面向上C. 大小等于D. 大小等于图4解析:以B为研究对象,对其受力分析如图4所示,由于所求的摩擦力是未知力,可假设B受到A对它的摩擦力沿斜面向下,由牛顿第二定律得①对A、B整体进行受力分析,有②由①②得式中负号表示的方向与规定的正方向相反,即沿斜面向上,所以选B 、C 。
4、整体法与隔离法例1、如图所示,在粗糙的水平面上有一个三角形木块abc ,在它的两个粗糙斜面上分别放两个质量为m 1和m 2的木块,m 1>m 1;已知三角形木块和两个物体都静止,则粗糙的水平面对三角形木块 ( )A 、有摩擦力的作用,摩擦力的方向水平向右;B 、有摩擦力的作用,摩擦力的方向水平向左;C 、有摩擦力的作用,但摩擦力的方向不能确定,因m 1、m 2、θ1、θ2的数值均未给出;D 、没有摩擦力的作用。
分析:对abc 和m 1、m 2组成的系统进行分析,整体受到系统外的作用力只有abc 和m 1、m 2的重力G 和水平面的支持力F N ,受力情况如图2所示,在水平方向系统不受其它外力,而abc 和m 1、m2组成的系统中各物体的加速度都为零,系统处于平衡状态,所以在水平方向a 受到水平面的摩擦力必为零。
即abc 相对于水平面没有运动趋势。
故正确的答案是D 。
例5. 如图12所示,两个用轻线相连的位于光滑平面上的物块,质量分别为m 1和m 2。
拉力F 1和F 2方向相反,与轻线沿同一水平直线,且。
试求在两个物块运动过程中轻线的拉力。
图12解析:设两物块一起运动的加速度为a ,则对整体有对m 1有解以上二式可得点评:该题体现了牛顿第二定律解题时的基本思路:先整体后隔离––––即一般先对整体应用牛顿第二定律求出共同加速度,再对其中某一物体(通常选受力情况较为简单的)应用牛顿第二定律,从而求出其它量。
系统内各物体加速度不同时对于整体法,其本质是采用牛顿第二定律,设质点系在某一方向上所受到如图1的合力为F ,质点系中每一个物体的质量分别为m 1、m 2、m 3……,每一个物体的加速度分别为a 1、a 2、a 3……,则F = m 1a 1 +m 2a 2 +m 3a 3+……。
例1:如图1所示,质量为M 的框架放在水平的地面上,内有一轻质弹簧上端固定在框架上,下端固定一个质量为m 的小球。
小球上下振动时不与框架接触,且框架始终没有跳起。
则当框架对地面的压力刚好为零时,小球的加速度为多大?解:对于本题,若采用常规的方法,先对框架进行受力分析,如图2所示,弹簧对框架的作用力为N =Mg 。
再对小球进行受力分析,如图3所示,则根据牛顿第二定律可得:N +mg =maMg +mg =maa =Mg +mg m若采用整体法,取框架、小球为一个整体,则整体所受的合力为Mg +mg ,框架的加速度a 1=0,小球的加速度a 2=a ,则根据牛顿第二定律可得:Mg +mg =Ma 1+ma 2=maa =Mg +mg m可见,采用整体法比分别分析两个物体要简单。
【例8】如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B 级要求.错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.解题方法与技巧: 解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图. 据物体平衡条件得:F N -F f ′-Mg =0②图1 图2图3N mg且F f =F f ′ ③由①②③式得F N =22mM +g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =22mM +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式: (mg +Mg )-F N = ma +M ×0 故木箱所受支持力:F N =22mM +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =22mM +g .【例7】 如图,倾角为α的斜面与水平面间、斜面与质量为m 的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。
求水平面给斜面的摩擦力大小和方向。
解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。
可以先求出木块的加速度()αμαcos sin -=g a ,再在水平方向对质点组用牛顿第二定律,很容易得到:ααμαcos )cos (sin -=mg F f如果给出斜面的质量M ,本题还可以求出这时水平面对斜面的支持力大小为:F N =Mg +mg (cos α+μsin α)sin α,这个值小于静止时水平面对斜面的支持力。
5、结合图象分析解决问题应用图象是分析问题和解决问题的重要方法之一,在解决动力学问题时,如果物体的受力情况比较复杂,要分析物体的运动情况可以借助于图象,根据物体的受力情况做出运动物体的速度-时间图象,则物体的运动情况就一目了然,再根据图象的知识求解可以大大地简化解题过程。
例:质量为1kg 的物体静止在水平地面上,物体与地面间的动摩擦因数0.2,作用在物体上的水平拉力F 与时间的关系如图所示,求运动物体在12秒内的位移?(答案:s=100m )6. 程序法按顺序对题目给出的物体运动过程进行分析的方法简称“程序法”。
“程序法”要求我们从读题开始,注意题中能划分多少个不同的过程或多少个不同的状态,然后对各个过程进行分析。
一、牛顿运动定律在动力学问题中的应用1、已知力求运动例1:如图所示,长为L 的长木板A 放在动摩擦因数为μ1的水平地面上,一滑块B (大小可不计)从A 的左侧以初速度v 0向右滑入木板A ,滑块与木板间的动摩擦因数为μ2(A 与水平地面间的最大静摩擦力与滑动摩擦力大小相同),已知A 的质量M=2.0kg ,B 的质量m=3.0kg ,AB 的长度L=3.0m ,v 0=5.0m/s ,μ1=0.2,μ2=0.4,请分别求出A 和B 对地的位移?解:分别对A 、B 受力分析如图所示:根据牛顿第二定律:B 物体的加速度a B =f 1/m=μ2mg/m=4m/s 2A 物体的加速度a A =(f 1-f 2)/M=(μ2mg-μ1(M+m)g)/M=1m/s 2设经过时间t ,AB 的速度相等则有:v 0-a B t=a A t 解得 t=1s 所以B 发生的位移:m t a t v s B B 0.32120=-= A 发生的位移:m t a s A A 5.0212==AB 速度达到相等后,相对静止一起以v=1m/s 的初速度,a=μ2g=2m/s2的加速度一起匀减速运动直到静止,发生的位移:av s 22=所以A 发生的位移为s A +s=o.5m+0.25m=0.75m B 发生的位移为s B +s=3.0m+0.25m=3.25m例三:质量为12kg 的箱子放在水平地面上,箱子和地面的滑动摩擦因数为0.3,现用倾角为37︒的60N 力拉箱子,如图3.2-3所示,3s 末撤去拉力,则撤去拉力时箱子的速度为多少?箱子继续运动多少时间而静止? 析与解:选择木箱为研究对象,受力分析如图3.2-4: 沿水平和竖直方向将力正交分解,并利用牛顿运动定律,得方向: 水平方向: F cos37︒-μN =ma 竖直方向: F sin37︒+N =mg解得: a =1.9m/s 2v=at =5.7m/s当撤去拉力F 后,物体的受力变为如图3-2-5,则由牛顿第二定律得: μN =μmg =ma`, a`=μg =3m/s 2 t=v/a `=1.9s点评:本例考察了支持力和摩擦力的的被动力特征,当主动力F 变化时,支持力N 摩擦力f 都随之变。