2020年高考物理高三冲刺复习讲义及练习:3 牛顿运动定律

合集下载

2020版高考物理一轮复习第三章牛顿运动定律冲刺训练

2020版高考物理一轮复习第三章牛顿运动定律冲刺训练

第三章 牛顿运动定律(一)巧用动力学观点,破解三类板块模型木板与物块组成的相互作用的系统统称为板块模型。

板块模型是高中动力学部分中的一类重要模型,也是高考考查的重点,此类模型一个典型的特征是,物块与木板间通过摩擦力作用使物体的运动状态发生变化,同时注意分析二者之间相对地面的位移之间的关系。

[典例1] 的木板A ,在木板的左端有一质量为2 kg 的小物体B ,A 、B 之间的动摩擦因数为μ=0.2。

当对B 施加水平向右的力F =10 N 时,求经过多长的时间可将B 从木板A 的左端拉到右端?(物体B 可以视为质点,g 取10 m/s 2)[解析] 假设二者相对静止,则对整体由牛顿第二定律得F =(M +m )a 。

设A 、B 之间的摩擦力为f ,A 所受的摩擦力水平向右,对A :f =Ma 。

由于二者相对静止,故f 为静摩擦力,要使二者不发生相对滑动,满足f ≤μmg ,解得F ≤μmgM +mM=6 N ,由于F >6 N ,故B 将相对于A 发生滑动。

法一:以地面为参考系,A 和B 都做匀加速运动,且B 物体的加速度大于A 物体的加速度,B 的加速度大小:a B =F -μmg m=3 m/s 2;A 的加速度大小:a A =μmg M=1 m/s 2。

B 从A 的左端运动到右端,A 、B 的位移关系满足 x 1-x 2=L ,即12a B t 2-12a A t 2=L ,解得t =0.8 s 。

法二:以A 为参照物,B 相对A 的加速度a BA =a B -a A ,即B 相对A 做初速度为零的匀加速直线运动,相对位移大小为L ,故L =12a BA t 2,解得t =0.8 s 。

案] 0.8 s[答2] 如图所示,质量M =8 kg 的小车放在光滑的水平面上,在小车左端加[典例力F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放一水平推上一个大小不计,质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,小车足够长。

2020年高考物理新课标第一轮总复习讲义:第三章 第三讲 牛顿运动定律的综合应用(一) 含答案

2020年高考物理新课标第一轮总复习讲义:第三章 第三讲 牛顿运动定律的综合应用(一) 含答案

能力提升课第三讲 牛顿运动定律的综合应用(一)热点一 牛顿运动定律与图象综合问题的求解方法 (师生共研)物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点. 1.“两大类型”(1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v -t 图象与F -t 图象的桥梁. 3.解决图象问题的方法和关键(1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点、图线的转折点和两图线的交点等表示的物理意义.(3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点.[典例1] (多选)(2015·全国卷Ⅰ)如图(a),一物块在t =0时刻滑上一固定斜面,其运动的v -t 图线如图(b)所示.若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出( )A .斜面的倾角B .物块的质量C .物块与斜面间的动摩擦因数D .物块沿斜面向上滑行的最大高度解析:设物块的质量为m 、斜面的倾角为θ,物块与斜面间的动摩擦因数为μ,物块沿斜面上滑和下滑时的加速度大小分别为a 1和a 2,根据牛顿第二定律有:mg sin θ+μmg cos θ=ma 1,mg sin θ-μmg cos θ=ma 2.再结合v -t 图线斜率的物理意义有:a 1=v 0t 1,a 2=v 1t 1.由上述四式可见,无法求出m ,可以求出θ、μ,故B 错,A 、C 均正确.0~t 1时间内的v -t 图线与横轴包围的面积大小等于物块沿斜面上滑的最大距离,θ已求出,故可以求出物块上滑的最大高度,故D正确.答案:ACD[反思总结]分析图象问题时常见的误区1.没有看清横、纵坐标所表示的物理量及单位.2.没有注意坐标原点是否从零开始.3.不清楚图线的点、斜率、面积等的物理意义.4.忽视对物体的受力情况和运动情况的分析.1-1.[牛顿运动定律与v-t图象的综合]以不同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可忽略,另一物体所受空气阻力大小与物体速率成正比,下列用虚线和实线描述两物体运动的v-t图象可能正确的是()解析:不受空气阻力的物体,整个上抛过程中加速度恒为g,方向竖直向下,题图中的虚线表示该物体的速度—时间图象;受空气阻力的物体在上升过程中,mg+k v=ma,即a=g+k vm,随着物体速度的减小,物体的加速度不断减小,故A项错误;受空气阻力的物体上升到最高点时,速度为零,此时物体的加速度也是g,方向竖直向下,故图中实线与t轴交点处的切线的斜率应与虚线的斜率相同,故D项正确,B、C项错误.答案:D1-2.[牛顿运动定律与a-F图象的综合](多选)如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后做变加速运动.其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出(g取10 m/s2)()A.物体的质量为1 kgB.物体的质量为2 kgC.物体与水平面间的动摩擦因数为0.3D.物体与水平面间的动摩擦因数为0.5解析:物体的受力如图所示,在力F从0增大到7 N之前物体静止,在7 N时运动状态发生变化,由牛顿第二定律得F-F f=ma,代入图乙中F1=7 N和F2=14 N及对应的加速度a1=0.5 m/s2和a2=4 m/s2,解得m=2 kg,F f=6 N,A错误,B正确;F f=μF N=μmg,则μ=0.3,C正确,D错误.答案:BC1-3.[牛顿运动定律与F-x图象的综合]水平地面上有一轻质弹簧,下端固定,上端与物体A相连接,整个系统处于平衡状态.现用一竖直向下的力压物体A,使A竖直向下做匀加速直线运动一段距离,整个过程中弹簧一直处在弹性限度内.下列关于所加力F的大小和运动距离x之间的关系图象正确的是()解析:开始时,物体处于平衡状态,物体受重力和弹力,则有mg=kx1,物体向下匀加速过程,对物体受力分析,受重力、弹簧向上的弹力、推力F,根据牛顿第二定律,有F+mg-F弹=ma,根据胡克定律,有F弹=k(x1+x)=mg+kx,解得F=ma-mg+F弹=ma+kx,故弹力与x呈线性关系,且是增函数,故D正确.答案:D热点二连接体问题的分析方法(师生共研)1.绳(或杆)连接体[典例2](多选)如图所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右解析:隔离小球,可知小球的加速度方向为沿斜面向下,大小为g sin θ,对支架系统整体进行受力分析,只有斜面光滑,支架系统的加速度才是g sin θ,所以A正确,B错误;对斜面体进行受力分析,如图,斜面体静止,由牛顿第三定律有地面对斜面体的摩擦力水平向左,故选A、C.答案:AC2.弹簧连接体[典例3]如图所示,A、B两球完全相同,质量均为m,用两根等长的细线悬挂在升降机内天花板的O点,两球之间连着一根劲度系数为k的轻质弹簧,当升降机以加速度a竖直向上匀加速运动时,两根细线之间的夹角为θ.则弹簧的被压缩的长度为()A.m (α+g )tan θkB .mg tan θkC.m (α+g )tan θ2kD .2m (α+g )tan θ2k解析:对球A 受力分析,受重力mg 、拉力T 、弹簧的弹力F 而向上做匀加速直线运动,则由牛顿第二定律可知Ftan θ2-mg =ma ,即F =m (g +a )tan θ2,根据胡克定律,有F =kx ,联立可得x =m (a +g )tan θ2k,C 正确. 答案:C [反思总结]求解弹簧连接体加速度的两种情况3.接触连接体[典例4] 如图所示,在倾角为θ的固定斜面上有两个靠在一起的物体A 、B ,两物体与斜面间的动摩擦因数μ相同,用平行于斜面的恒力F 向上推物体A 使两物体沿斜面向上做匀加速运动,且B 对A 的压力平行于斜面,则下列说法中正确的是( )A .只减小A 的质量,B 对A 的压力大小不变 B .只减小B 的质量,B 对A 的压力大小会增大C .只减小斜面间的倾角,B 对A 的压力大小不变D .只减小两物体与斜面间的动摩擦因数μ,B 对A 的压力会增大解析:将A 、B 看成一个整体,整体在沿斜面方向上受到沿斜面向下的重力的分力,沿斜面向下的滑动摩擦力,沿斜面向上的推力,根据牛顿第二定律可得a =F -(m A +m B )g sin θ-μ(m A +m B )g cos θm A +m B =F m A +m B -g sin θ-μg cos θ.隔离B 分析可得F N -m B g sin θ-μm B g cos θ=m B a ,解得F N =m B Fm A +m B,由牛顿第三定律可知,B对A的压力F N′=m B Fm A+m B,若只减小A的质量,压力变大,若只减小B的质量,压力变小,故A、B错误;A、B之间的压力与斜面的倾角、与斜面间的动摩擦因数无关,C正确,D 错误.答案:C2-1.[弹簧接触连接体](多选)如图所示,甲、乙、丙三个木块的质量分别为m1、m2和m3,甲、乙两木块用细线连在一起,中间有一被压缩竖直放置的轻弹簧,乙放在丙物体上,整个装置放在水平地面上.系统处于静止状态,此时绳的张力为F,在把细线烧断的瞬间,甲的加速度大小为a,对细线烧断后的瞬间,下列说法正确的是()A.甲受到的合力大小为FB.丙对乙的支持力大小为(m1+m2)gC.丙对地面的压力大小为(m1+m2+m3)g+FD.地面对丙的支持力大小为m1(a+g)+m2g+m3g解析:开始系统处于静止,对甲分析,有:F+m1g=F弹,剪断细线的瞬间,弹簧弹力不变,对甲,合力为F合甲=F弹-m1g=F,故A正确;对乙分析,根据共点力平衡得,F弹+m2g=F丙对乙,解得F丙对乙=F+m1g+m2g,故B错误;对乙丙整体分析,根据共点力平衡得,F弹+(m2+m3)g=F地,解得地面对丙的支持力F地=(m1+m2+m3)g+F,因为F合甲=F弹-m1g=m1a,则F地=m1(a+g)+m2g+m3g,故C、D正确.答案:ACD2-2. [绳连接体]如图所示,三个物体质量分别为m1=1.0 kg、m2=2.0 kg、m3=3.0 kg,已知斜面上表面光滑,斜面倾角θ=30°,m1和m2之间的动摩擦因数μ=0.8.不计绳和滑轮的质量和摩擦.初始时用外力使整个系统静止,当撤掉外力时,m2将(g取10 m/s2,最大静摩擦力等于滑动摩擦力)()A.和m1相对静止一起沿斜面下滑B.和m1相对静止一起沿斜面上滑C.相对于m1上滑D.相对于m1下滑解析:假设m1和m2之间保持相对静止,对整体分析,整体的加速度a=m3g-(m1+m2)g sin 30°m1+m2+m3=2.5 m/s2.隔离对m2分析,根据牛顿第二定律得F f-m2g sin 30°=m2a,解得F f=m2g sin 30°+m2a=15 N,最大静摩擦力F fm=μm2g cos 30°=8 3 N,可知F f>F fm,知m2的加速度小于m1的加速度,m2相对于m1下滑,故D正确.答案:D热点三临界问题的处理方法(师生共研)1.临界或极值条件的标志(1)有些题目中有“刚好”“恰好”“正好”等字眼,表明题述的过程存在临界点.(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在“起止点”,而这些起止点往往就对应临界状态.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在极值,这个极值点往往是临界点.(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度.2.几种临界状态和其对应的临界条件如下表所示3.1.k 的轻弹簧相连,在外力F1、F2作用下运动,且满足F1>F2,当系统运动稳定后,弹簧的伸长量为()A.F1-F2k B.F1+F22kC.F1-F22k D.F1+F2k解析:本题利用牛顿第二定律,先选A、B为一整体,再隔离A物体,求出弹簧的弹力F,由F=kx,即可求得弹簧的伸长量.但是若用极限分析法,可快速得出结果:令F1=F2,则两物体静止,F=F1=F2=kx,能满足此条件的结果只有B选项.答案:B2.假设分析法[典例6]如图所示,一轻质弹簧的一端系一质量为m的小球,另一端固定在倾角为37°的光滑斜面体顶端,弹簧与斜面平行.在斜面体以大小为g的加速度水平向左做匀加速直线运动的过程中,小球始终相对于斜面静止.已知弹簧的劲度系数为k,则该过程中弹簧的形变量为(已知:sin 37°=0.6,cos 37°=0.8)()A.mg5k B.4mg5kC.mgk D.7mg5k解析:在斜面体以大小为g的加速度水平向左做匀加速直线运动时,弹簧是处于伸长状态还是压缩状态,无法直接判断,此时可采用假设法,假设弹簧处于压缩状态,若求得弹力F为正值,则假设正确;水平方向上由牛顿第二定律得:F N sin θ+F cos θ=mg;竖直方向上由受力平衡得:F N cos θ=mg+F sinθ,联立得:F=15mg.由胡克定律得F=kx,x=mg5k,F为正值,弹簧压缩,故选A.答案:A3.数学极值法[典例7]如图所示,一质量为m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 解析:(1)设物块加速度的大小为a ,到达B 点时速度的大小为v B , 由运动学公式得L =v 0t +12at 2 v B =v 0+at解得 a =3 m/s 2,v B =8 m/s.(2)物块的受力分析如图所示,F N 、F f 为物块所受支持力、摩擦力,设拉力F 与斜面夹角为α, 由牛顿第二定律得垂直斜面方向有F sin α+F N =mg cos θ 沿斜面方向有F cos α-mg sin θ-F f =ma 又因为F f =μF N解得F cos α+33F sin α=5.2 N 则F =5.2 N cos α+33sin α=15.6 N23(32cos α+12sin α)= 7.8 N3sin (α+60°)当α=30°时,拉力F 有最小值,F min =135 3 N. 答案:(1)3 m/s 2 8 m/s (2)30° 135 3 N1.(多选)(2015·全国卷Ⅱ)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a的加速度向东行驶时,连接某两相邻车厢的挂钩P和Q间的拉力大小为F;当机车在西边拉着车厢以大小为23a的加速度向西行驶时,P和Q间的拉力大小仍为F.不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( BC )A.8B.10C.15D.182.(2019·广东肇庆高三统测)如图所示,质量为m的球置于斜面上,被一个竖直挡板挡住.现用一个力F 拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,下列说法正确的是( A )A.斜面对球不仅有弹力,而且该弹力是一个定值B.斜面和挡板对球的弹力的合力等于maC.若加速度足够小,则竖直挡板对球的弹力可能为零D.若加速度足够大,斜面对球的弹力可能为零解析:对小球受力分析,小球受重力mg、斜面的支持力F N2、竖直挡板的水平弹力F N1,设斜面的倾斜角为α,则竖直方向有:F N2cos α=mg.∵mg和α不变,∴无论加速度如何变化,F N2不变且不可能为零,故A正确,D错误;水平方向有:F N1-F N2sin α=ma.∵F N2sin α≠0,若加速度足够小,竖直挡板的水平弹力不可能为零,故C错误;斜面和挡板对球的弹力的合力即为竖直方向的F N2cos α与水平方向的力ma的合成,因此大于ma,故B错误.3.如图所示,光滑水平面上放置M、N、P、Q四个木块,其中M、P质量均为m,N、Q质量均为2m,M、P之间用一轻质弹簧相连,现用水平拉力F拉N,使四个木块以同一加速度a向右运动,则在突然撤去F的瞬间,下列说法正确的是( D )A.P、Q间的摩擦力改变B.M、P的加速度大小变为a 2C.M、N间的摩擦力不变D.N的加速度大小仍为a[A组·基础题]1. 如图所示,质量都为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时B与A分离.则下列说法中正确的是( C )A.B和A刚分离时,弹簧为原长B.B和A刚分离时,它们的加速度为gC.弹簧的劲度系数等于mg hD.在B与A分离之前,它们做匀加速运动2.如图甲所示,一个质量为3 kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3 s时间内物体的加速度a随时间t的变化规律如图乙所示.则( C )A.F的最大值为12 NB.0~1 s和2~3 s内物体加速度的方向相反C.3 s末物体的速度最大,最大速度为8 m/sD.在0~1 s内物体做匀加速运动,2~3 s内物体做匀减速运动3.如图所示,在倾角为30°的光滑斜面上端系有一劲度系数为20 N/m的轻质弹簧,弹簧下端连接一个质量为2 kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以4 m/s2的加速度沿斜面向下做匀加速运动,g取10 m/s2,则( B )A.小球向下运动0.4 m时速度最大B.小球向下运动0.1 m时与挡板分离C.小球速度最大时与挡板分离D.小球从一开始就与挡板分离4.利用传感器和计算机可以研究快速变化的力的大小.实验时,把图甲中的小球举到绳子的悬点O处,然后将小球由静止释放,同时开始计时,利用传感器和计算机获得弹性绳的拉力随时间的变化如图乙所示.根据图象提供的信息,下列说法正确的是( B )A.t1、t2时刻小球的速度最大B.t2、t5时刻小球的动能最小C.t3、t4时刻小球的运动方向相同D.t4-t3<t7-t65.(多选)如图所示,质量均为m的两个木块P、Q叠放在水平地面上,P、Q接触面的倾角为θ,在Q上施加一水平推力F,使P、Q保持相对静止一起向左做匀加速直线运动.下列说法中正确的是( AC )A.木块Q对地面的压力一定为2mgB.若Q与地面间的动摩擦因数为μ,则μ=F 2mgC.若P、Q之间光滑,则加速度a=g tan θD.若运动中逐渐减小F,则地面与Q间的摩擦力也逐渐减小6.(多选)如图甲所示,水平地面上固定一足够长的光滑斜面,斜面顶端有一理想定滑轮,一轻绳跨过滑轮,绳两端分别连接小物块A和B.保持A的质量不变,改变B的质量m.当B的质量连续改变时,得到A的加速度a随B的质量m变化的图线如图乙所示.设加速度沿斜面向上的方向为正方向,空气阻力不计,重力加速度g取9.8 m/s2,斜面的倾角为θ,下列说法正确的是( BC )A.若θ已知,可求出A的质量B.若θ未知,可求出乙图中a1的值C.若θ已知,可求出乙图中a2的值D.若θ已知,可求出乙图中m0的值7.(多选)将一质量不计的光滑杆倾斜地固定在水平面上,如图甲所示,现在杆上套一光滑的小球,小球在一沿杆向上的拉力F的作用下沿杆向上运动.该过程中小球所受的拉力以及小球的速度随时间变化的规律如图乙、丙所示.g=10 m/s2.则下列说法正确的是( AC )A.在2~4 s内小球的加速度大小为0.5 m/s2B.小球质量为2 kgC.杆的倾角为30°D.小球在0~4 s内的位移为8 m8.从地面上以初速度v0竖直上抛一质量为m的小球,若运动过程中受到的阻力与其速率成正比,小球运动的速率随时间变化的规律如图所示,小球在t1时刻到达最高点后再落回地面,落地速率为v1,且落地前小球已经做匀速运动,已知重力加速度为g,下列关于小球运动的说法中错误的是( D )A.t1时刻小球的加速度为gB.在速度达到v1之前小球的加速度一直在减小C.小球抛出瞬间的加速度大小为(1+v0 v1)gD.小球加速下降过程中的平均速度小于v12[B组·能力题]9. 如图所示,质量为m1和m2的两个材料相同的物体用细线相连,在大小恒定的拉力F作用下,先沿水平面,再沿斜面(斜面与水平面成θ角),最后竖直向上做匀加速运动,不计空气阻力,在三个阶段的运动中,线上拉力的大小( C )A.由大变小B.由小变大C.始终不变且大小为m1m1+m2FD.由大变小再变大10.(多选)(2019·福建将乐县一中月考)如图甲所示,足够长的木板B静置于光滑水平面上,其上表面放置小滑块A.木板B在水平拉力F作用下,其加速度a随拉力F变化的关系图象如图乙所示,最大静摩擦力等于滑动摩擦力,g=10 m/s2,则( AD)A.木板B的质量为1 kgB.小滑块A的质量为3 kgC.AB间动摩擦因素为0.2D.AB间动摩擦因素为0.1解析:设A的质量为M,B的质量为m,当F等于3 N时,加速度为:a=1 m/s2,对整体分析,由牛顿第二定律有:F=(M+m)a,代入数据解得:M+m=3 kg,当F大于3 N时,对B,由牛顿第二定律得:F=Ma+μmg,由图示图象可知,图线的斜率:k=M=1,木板B的质量:M=1 kg,滑块A 的质量为:m=2 kg,故A正确,B错误;由图可知,当F=3 N时,a=1 m/s2,对木板由牛顿第二定律得:F=Ma+μmg,即3=1×1+μ×2×10,解得:μ=0.1,故C错误,D正确.11. 为了测定木板和斜面间的动摩擦因数μ,某同学设计了如图所示的实验,在木板上固定一个弹簧测力计(质量不计),弹簧测力计下端固定一个光滑小球,将木板连同小球一起放在斜面上,用手固定住木板时,弹簧测力计的示数为F1,放手后木板沿斜面下滑,稳定时弹簧测力计的示数为F2,测得斜面倾角为θ,由测得的数据可求出木板与斜面间的动摩擦因数是多少?解析:设小球的质量为m,木板的质量为M.静止时,以小球为研究对象,有F1=mg sin θ.下滑时,以小球为研究对象,有mg sin θ-F2=ma.下滑时,以整体为研究对象,有(M+m)g sin θ-μ(M+m)g cos θ=(M+m)a.联立解得μ=F2F1tan θ.答案:F2F1tan θ12.两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A 上,使A、B由静止开始一起向右做匀加速运动,如图(a)所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图象如图(b)所示.取g=10 m/s2,求:(1)推力F的大小;(2)A物体停止运动的瞬间,物体A、B之间的距离.解析:(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B物体的v-t图象得a=3 m/s2.对于A、B整体,由牛顿第二定律得F-μm A g=(m A+m B)a,代入数据解得F=15 N. (2)设物体A匀减速运动的时间为t,撤去推力F后,A、B两物体分离,A在摩擦力作用下做匀减速直线运动,B做匀速运动,对于A物体有μm A g=m A a A,a A=μg=3 m/s2,v t=v0-a A t=0,解得t=2 s,物体A的位移为x A=v t=v0+02t=6 m,物体B的位移为x B=v0t=12 m,所以,A物体刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6 m. 答案:(1)15 N(2)6 m。

2020版高考物理总复习3第1讲牛顿第一定律牛顿第三定律课件新人教版

2020版高考物理总复习3第1讲牛顿第一定律牛顿第三定律课件新人教版

典|例|微|探 【例 1】 关于惯性,下列说法正确的是( ) A.抛出去的标枪靠惯性向远处运动 B.完全失重时物体的惯性将消失 C.球由静止释放后加速下降,说明力改变了惯性 D.物体沿水平面滑动,速度越大滑行的时间越长,说明速度大惯性就 大
解析 质量是惯性的唯一量度,抛出去的标枪靠惯向远处运动,A 项正确;完全失重时物体的惯性不会消失,B 项错误;球由静止释放后加 速下落,说明力改变了物体的运动状态,惯性不变,C 项错误;物体沿水 平面滑动,速度越大滑行的时间越长,惯性不变,D 项错误。
(2)意义:①揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定 律也叫 惯性 定律;②揭示了力与运动的关系:力不是 维持 物体运动状态的 原因,而是 改变 物体运动状态的原因,即力是产生 加速度 的原因。
2.惯性:物体具有保持原来 匀速直线运动 状态或 静止 状态的性质,是 物体的固有属性,与物体的 运动 情况和 受力 情况无关。质量 是惯性大小
1.(牛顿第一定律)(2019·天水一中质检)东汉王充在《论衡·状留篇》中 记述了球的运动:“圆物投之于地,东西南北,无之不可;策杖叩动,才 微辄停”。关于运动和力的关系,下列说法中正确的是( )
A.力是维持物体运动的原因 B.力是改变物体惯性大小的原因 C.力是改变物体位置的原因 D.力是改变物体运动状态的原因
2.(多选)关于牛顿第一定律的说法正确的是( ) A.由牛顿第一定律可知,物体在不受外力或合外力为零时始终处于静 止状态或匀速直线运动状态 B.牛顿第一定律只是反映惯性大小的,因此也叫惯性定律 C.牛顿第一定律反映了物体不受外力作用时的运动规律,因此,物体 在不受力时才有惯性 D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运 动状态改变的原因 解析 牛顿第一定律:物体总保持静止状态或者匀速直线运动状态, 直到有外力迫使其改变这种状态为止。所以牛顿第一定律既揭示了物体保 持原有运动状态的原因,又揭示了运动状态改变的原因。综上 A、D 两项 正确。 答案 AD

2020届高考物理复习 第三章《牛顿运动定律》

2020届高考物理复习   第三章《牛顿运动定律》

几种模型的对比:
模型
受外力时 力能 的形变量 否突变
产生拉力 或支持力
质 内部 量 弹力
轻 绳 较大
轻 杆 微小不计
能 不能 不能

只有拉力 没有支持力
只有拉力 没有支持力
不 既可有拉力 计 也可有支持力
处 处 相 等 ??
既可有拉力 也可有支持力
练习:如图所示,在倾角θ =30°的光滑斜面上,物块A、B质 量分别为m和2m,物块A静止在轻弹簧上面,物块B用细线与斜 面顶端相连,A、B紧挨在一起,但A、B之间无弹力,已知重 力加速度为g,某时刻将细线剪断,则剪断细线的瞬间,下列 说法正确的是( ) A.物体B的加速度为g/2 B.物块A、B之间的弹力为mg/3 C.弹簧的弹力为mg/2 D.物块A的加速度为g/3
第2讲 牛顿运动定律的应用
考试要求
知识内容 牛顿运动定律应用 共点力平衡条件及应用
超重与失重
考试要求 d c b
一、动力学两类基本问题
练习:有一个质量为m的小圆环瓷片最高能从h=0.18m高处静止 释放后直接撞击地面而不被摔坏。现让该小圆环瓷片恰好套在 一圆柱体上端且可沿圆柱体下滑,瓷片与圆柱体之间的摩擦力 f=4.5 mg。如图所示,若将该装置从距地面H=4.5m高处从静止 开始下落,瓷片落地恰好没摔坏。已知圆柱体与瓷片所受的空 气阻力都为自身重力的k =0.1倍,圆柱体碰地后速度立即变为 零且保持竖直方向。g =10m/s2 。求: (1)瓷片直接撞击地面而不被摔坏时的最大着地速度v0; (2)瓷片随圆柱体从静止到落地的时间t和圆柱体长度L。
可以是同性质的力,也 可以不是同性质的力
大小 相同点 方向
大小相等、方向相反、作用在一条直线上

物理试题 人教版 高考专题复习练习题3-牛顿运动定律

物理试题 人教版 高考专题复习练习题3-牛顿运动定律

第1讲牛顿第一定律、牛顿第三定律知识巩固练1.(2020年湖北部分重点中学联考)伽利略和牛顿都是物理学发展史上最伟大的科学家,巧合的是牛顿就出生在伽利略去世后第二年.下列关于力和运动关系的说法中,不属于他们观点的是( ) A.自由落体运动是一种匀变速直线运动B.力是使物体产生加速度的原因C.物体都具有保持原来运动状态的属性,即惯性D.力是维持物体运动的原因【答案】D2.(2020届黄山质检)关于物体的惯性,下列说法正确的是( )A.骑自行车的人,上坡前要快速蹬几下,是为了增大惯性冲上坡B.子弹从枪膛中射出后在空中飞行,速度逐渐减小,因此惯性也减小C.物体惯性的大小,由物体质量的大小决定D.物体由静止开始运动的瞬间,它的惯性最大【答案】C3.(2020年成都外国语学校模拟)下列说法正确的是( )A.凡是大小相等、方向相反,分别作用在两个物体上的两个力必定是一对作用力和反作用力B.凡是大小相等、方向相反,作用在同一物体上的两个力必定是一对作用力和反作用力C.即使大小相等、方向相反,作用在同一直线上且分别作用在两个物体上的两个力也不一定是一对作用力和反作用力D.相互作用的一对力究竟称哪一个力是反作用力不是任意的【答案】C4.火车在长直的水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为 ( )A.人跳起后,车厢内空气给他一向前的力,带着他随同火车一起向前运动B.人跳起的瞬间,车厢的底板给他一向前的力,推动他随同火车一起向前运动C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已D.人跳起后直到落地,在水平方向上始终具有和车相同的速度【答案】D5.如图所示的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是 ( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮【答案】A6.(多选)一根轻质弹簧竖直悬挂在天花板上,下端悬挂一小球,弹簧和小球的受力如图所示,下列说法正确的是( )A.F1的施力者是弹簧B.F2的反作用力是F3C.F3的施力者是小球D.F4的反作用力是F1【答案】BC7.水平放置的密闭玻璃管内充有水,它的中间有一气泡,如图所示,当玻璃管由静止开始向右沿水平方向运动时,气泡相对于玻璃管将要( )A.向右运动B.向左运动C.保持不动D.无法判断【答案】A 【解析】管中的气泡和相同体积水相比,其质量很小,气泡的惯性要比管中的水的惯性小的多,当玻璃管由静止开始向右沿水平方向运动时,玻璃管中的水由于惯性,仍然要保持原来的静止状态,使水涌向管的左端,气泡由于惯性较小,则相对于管子向右运动,故A正确.8.(2020年保定模拟)(多选)如图,一个人站在水平地面上的长木板上用力F向右推箱子,木板、人、箱子均处于静止状态,三者的质量均为m,重力加速度为g,则( )A.箱子对木板的摩擦力方向向右B.木板对地面的摩擦力方向向左C.木板对地面的压力大小为3mgD.若人用斜向下的力推箱子,则木板对地面的压力会大于3mg【答案】AC 【解析】以箱子为研究对象,水平方向上木板对箱子的摩擦力与人推箱子的力平衡,所以,木板对箱子的摩擦力方向向左,根据牛顿第三定律,箱子对木板的摩擦力方向向右,A正确;以整体为研究对象,地面对木板的支持力与整体所受的重力平衡,所以地面对木板的支持力为3mg,根据牛顿第三定律,木板对地面的压力大小为3mg,C正确,D错误;以整体为研究对象,地面对木板的摩擦力为0,所以木板对地面的摩擦力为0,B错误.综合提升练9.如图所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态时,弹簧的长度L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小.(g取10 N/kg)解:对A受力分析如图所示,由平衡条件,得k(L-L0)-mg-F=0,解得F=-4 N,故B对A的作用力大小为4 N,方向竖直向上.由牛顿第三定律得A对B的作用力F′=-F=4 N,方向竖直向下.对B受力分析如图所示,由平衡条件,得F N-mg-F′=0,解得F N=9 N.由牛顿第三定律得B对地面的压力大小为9 N.第2讲 牛顿第二定律、两类动力学问题知识巩固练1.由牛顿第二定律表达式F =ma 可知( ) A .质量m 与合外力F 成正比,与加速度a 成反比 B .合外力F 与质量m 和加速度a 都成正比 C .物体的加速度的方向总是跟它速度的方向一致D .物体的加速度a 跟其所受的合外力F 成正比,跟它的质量m 成反比 【答案】D2.(2020届沈阳四校联考)如图所示,当小车向右加速运动时,物块M 相对车厢静止于竖直车厢壁上,当车的加速度增大时 ( )A .M 受静摩擦力增大B .M 对车厢壁的压力减小C .M 仍相对于车厢静止D .M 受静摩擦力减小【答案】C3.(2020年上海浦东新区一模)如图所示,小球沿不同倾角θ的光滑斜面滑下,小球的加速度a 及对斜面的压力N ,与各自最大值的比值y 随θ变化的图像分别对应y -θ图中的( )A .①和②B .①和④C .②和③D .③和④【答案】A 【解析】对小球进行受力分析,根据牛顿第二定律得a =mgsin θm =gsin θ,当θ=90°时,加速度最大为g ,则比值为y =ag =sin θ,随着θ的增大,y 增大,对应①;支持力N =mgcos θ,支持力的最大值为mg ,则有y =mgcos θmg=cos θ,随着θ的增大,y 减小,对应②.A 正确.4.一质量为m 的物块在倾角为θ的足够长斜面上匀减速下滑.现对物块施加一个竖直向下的恒力F ,如图所示,则物块减速为零的时间将( )A .变大B .变小C .不变D .不能确定【答案】B5.中国载人深潜器“蛟龙”号7 000 m 级海试中下潜深度达7 062 m ,再创中国载人深潜纪录.设潜水器在下潜或上升的过程中只受重力、海水浮力和海水阻力作用,已知海水浮力大小为F ,设海水阻力与潜水器的速率成正比.当潜水器的总质量为m 时恰好匀速下降,若使潜水器以同样速率匀速上浮,则需要抛弃物体的质量为(重力加速度为g)( )A .2Fg -mB .2⎝ ⎛⎭⎪⎫m -F g C .m -FgD .2m -Fg【答案】B6.(2020年保定安国中学月考)(多选)如图,小球在水平轻绳和轻弹簧拉力作用下静止,弹簧与竖直方向夹角为θ.设重力加速度为g ,下列正确的是( )A .剪断弹簧OA 瞬间,小球的加速度大小为g ,方向竖直向下B .剪断弹簧OA 瞬间,小球的加速度大小为gcos θ,方向与竖直方向成θ角斜向右下 C .剪断OB 绳瞬间,小球的加速度大小为gsin θ,方向与OA 垂直斜向左下 D .剪断OB 绳瞬间,小球的加速度大小为gtan θ,方向水平向左【答案】AD 【解析】剪断弹簧OA 瞬间,绳的拉力变为零,小球只受重力,由牛顿第二定律得a =g ,方向竖直向下,故A 正确,B 错误;以球为研究对象,由平衡条件得F OB -F OA sin θ=0,F OA cos θ-mg =0,联立解得F OB =mgtan θ.剪断轻绳OB 瞬间,弹簧的弹力没有变化,小球所受的合外力是重力与弹力的合力,与原来细绳的拉力大小相等,方向相反,由牛顿第二定律得a =mgtan θm =gtan θ,方向水平向左,故C错误,D 正确.综合提升练7.(2020年山东山师大附中月考)(多选)如图所示,一折杆固定在小车上,∠A =θ,B 端固定一个质量为m 的小球,设小车向右的加速度为a ,AB 杆对小球的作用力大小为F ,则下列说法正确的是( )A .当a =0时,F =mgcos θ,方向沿AB 杆B .当a =gtan θ时,F =mgcos θ,方向沿AB 杆C .无论a 取何值,F 都等于m g 2+a 2,方向都沿AB 杆D .无论a 取何值,F 都等于m g 2+a 2,方向与AB 杆所在直线无关【答案】BD 【解析】对小球受力分析,小球一共受两个力:重力和杆对球的弹力;因为小车和球相对静止,小车有向右的加速度,小球也有向右的加速度.设弹力与竖直方向夹角为α,画出小球的受力示意图如图,则Fcos α=mg 、Fsin α=ma ,解得F =mg2+ma2、tan α=ag.当a =0时,F =mg 、α=0,即力F 的方向竖直向上,故A 错误.当a =gtan θ时,F =mg 2+ma2=mgcos θ、α=θ,即力F 的方向沿AB 杆,故B 正确;无论a 取何值,F 都等于mg2+ma 2,方向与a 取值大小有关,与AB 杆所在直线无关,故C 错误,D 正确.8.(2020年天津滨海七校联考)一辆货车运载着圆柱形光滑的空油桶.在车厢底,一层油桶平整排列,相互紧贴并被牢牢固定.上一层只有一只桶C ,自由地摆放在A 、B 之间,和汽车一起保持静止,如图所示,当C 与车共同向左加速时( )A .A 对C 的支持力变大B .B 对C 的支持力不变 C .当向左的加速度达到32g 时,C 将脱离A D .当向左的加速度达到33g 时,C 将脱离A 【答案】D 【解析】对C 进行受力分析,如图所示.设B 对C 的支持力与竖直方向的夹角为θ,根据几何关系可得sin θ=R 2R =12,所以θ=30°;同理可得,A 对C 的支持力与竖直方向的夹角也为30°.原来C 处于静止状态,根据平衡条件可得N B sin 30°=N A si n 30°;令C 的加速度为a ,根据正交分解以及牛顿第二定律有N B ′sin 30°-N A ′sin 30°=ma ,可见A 对C 的支持力减小、B 对C 的支持力增大,故A 、B 错误;当A 对C 的支持力为零时,根据牛顿第二定律可得mgtan 30°=ma ,解得a =33g ,故C 错误,D 正确. 9.为研究运动物体所受的空气阻力,某研究小组的同学找来一个倾角可调、斜面比较长且表面平整的斜面体和一个滑块,并在滑块上固定一个高度可升降的风帆,如图甲所示.他们让带有风帆的滑块从静止开始沿斜面下滑,下滑过程帆面与滑块运动方向垂直.假设滑块和风帆总质量为m.滑块与斜面间的动摩擦因数为μ,帆受到的空气阻力与帆的运动速率成正比,即F f =kv.(1)写出滑块下滑过程中加速度的表达式;(2)求出滑块下滑的最大速度,并指出有哪些措施可以减小最大速度;(3)若m =2 kg ,斜面倾角θ=30°,g 取10 m/s 2,滑块从静止下滑的速度图像如图乙所示,图中的斜线为t =0时v -t 图线的切线,由此求出μ、k 的值.(结果保留2位有效数字)甲 乙解:(1)由牛顿第二定律,有 mgsin θ-μmgcos θ-kv =ma , 解得a =gsin θ-μgcos θ-kvm .(2)当a =0时速度最大 v m =mg sin θ-μcos θk,减小最大速度的方法:适当减小斜面倾角θ(保证滑块能静止下滑);风帆升起一些. (3)当v =0时,a =gsin θ-μgcos θ=3 m/s 2, 解得μ=2315≈0.23.最大速度v m =2 m/s ,即v m =mgsin θ-μcos θk=2 m/s解得k =3.0 N·s/m .第3讲牛顿运动定律的应用知识巩固练1.(2020年济南期末)在升降机底部安装一个加速度传感器,其上放置了一个质量为m小物块,如图甲所示.升降机从t=0时刻开始竖直向上运动,加速度传感器显示加速度a随时间t变化如图乙所示.取竖直向上为正方向,重力加速度为g,以下判断正确的是( )A.在0~2t0时间内,物块先处于失重状态,后处于超重状态B.在t0~3t0时间内,物块先处于失重状态,后处于超重状态C.t=t0时刻,物块所受的支持力大小为mgD.t=3t0时刻,物块所受的支持力大小为2mg【答案】D 【解析】由乙图可知,在0~2t0时间内,物块的加速度方向向上,先处于超重状态,A 错误;由乙图可知,在t0~3t0时间内,物块的加速度方向向上,处于超重状态,B错误;由乙图可知,t =t0时刻,物块的加速度a=g,根据牛顿第二定律N-mg=mg,得N=2mg,C错误;由乙图可知,t=3t0时刻,物块的加速度a=g,根据牛顿第二定律N-mg=mg,得N=2mg,D正确.2.a、b两物体的质量分别为m1、m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,如图所示,则( )A.x1一定等于x2B.x1一定大于x2C.若m1>m2,则x1>x2D.若m1<m2,则x1<x2【答案】A 【解析】当用恒力F竖直向上拉着a时,先用整体法,有F-(m1+m2)g=(m1+m2)a1,再隔离b,有kx1-m2g=m2a1,联立得x1=m2Fk m1+m2.当沿水平方向拉着a时,先用整体法,有F=(m1+m2)a2,再隔离b,有kx2=m2a2,联立得x2=m2Fk m1+m2,故x1=x2,故A正确.3.如图所示,质量为M的长木板位于光滑水平面上,质量为m的物块静止在长木板上,两者之间的动摩擦因数为μ,现对物块m施加水平向右的恒力F,若恒力F超过某一临界数值,长木板与物块将出现相对滑动.已知重力加速度大小为g ,物块与长木板之间的最大静摩擦力等于两者之间的滑动摩擦力,则恒力F 的临界数值为( )A .μmgB .μMgC .μmg ⎝ ⎛⎭⎪⎫1+m MD .μmg ⎝ ⎛⎭⎪⎫1+M m 【答案】C 【解析】以物块m 为研究对象,根据牛顿第二定律,有F -μmg=ma 1,以长木板M 为研究对象,根据牛顿第二定律,有μmg=Ma 2,若两者出现相对滑动应有a 1≥a 2,联立解得F≥μmg ⎝ ⎛⎭⎪⎫1+m M ,故C 正确.4.(2020年湖南师大附中月考)如图所示,一同学用双手(手未画出)水平对称地用力将两长方体课本夹紧,且同时以加速度a 竖直向上匀加速捧起.已知课本A 质量为m ,课本B 质量为2m ,手的作用力大小为F ,书本A 、B 之间动摩擦因数为μ,用整体法与隔离法可分析出此过程中,书A 受到书B 施加的摩擦力大小为( )A .μFB .2μFC .12m(g +a) D .m(g +a)【答案】C5.(2020年顺县二中期末)(多选)如图所示,在光滑平面上有一静止小车,小车质量为M =5 kg ,小车上静止地放置着质量为m =1 kg 的木块,和小车间的动摩擦因数为μ=0.2,用水平恒力F 拉动小车,下列关于木块的加速度a m 和小车的加速度a M 可能正确的有( )A .a m =1 m/s 2,a M =1 m/s 2B .a m =1 m/s 2,a M =2 m/s 2C .a m =2 m/s 2,a M =4 m/s 2D .a m =3 m/s 2,a M =5 m/s 2【答案】AC 【解析】当拉力较小时,两物体一起加速度运动;当拉力增大到一定值时,两物体发生相对滑动,此后m 受到的是滑动摩擦力,故其加速度恒定为a =μmg m =2 m/s 2,因此当系统加速度小于等于2 m/s 2时,两物体一起运动,加速度相同,故A 正确,B 错误;发生相对滑动后,m 的加速度大小恒为2m/s 2且a m <a M ,故C 正确,D 错误.6.如图所示,质量为m 1=2 kg 的物体A 经跨过定滑轮的轻绳与质量为M =5 kg 的箱子B 相连,箱子底板上放一质量为m 2=1 kg 的物体C ,不计定滑轮的质量和一切阻力,在箱子加速下落的过程中,g 取10 m/s 2,下列说法正确的是( )A .物体A 处于失重状态,加速度大小为10 m/s 2B .物体A 处于超重状态,加速度大小为20 m/s 2C .物体C 处于失重状态,对箱子的压力大小为5 ND .轻绳对定滑轮的作用力大小为80 N 【答案】C7.粗糙水平面上放有P 、Q 两个木块,它们的质量依次为m 1、m 2,与水平面的动摩擦因数依次为μ1、μ2.分别对它们施加水平拉力F ,它们的加速度a 随拉力F 变化的规律如图所示.下列判断正确的是( )A .m 1>m 2,μ1>μ2B .m 1>m 2,μ1<μ2C .m 1<m 2,μ1>μ2D .m 1<m 2,μ1<μ2【答案】B 【解析】根据牛顿第二定律可知,加速度a 与拉力F 变化的规律,即为F -μmg=ma ,则a 与F 图像的斜率表示1m ,图像与横坐标的含义为摩擦力的大小,因此则有m 1>m 2,而μ1m 1g <μ2m 2g ,所以μ1<μ2,故B 正确,A 、C 、D 错误.综合提升练8.(2021年广东一模)(多选)研究“蹦极”运动时,在运动员身上系好弹性绳并安装传感器,可测得运动员竖直下落的距离及其对应的速度大小.根据传感器收集到的数据,得到如图所示的“速度—位移”图像.若空气阻力和弹性绳的重力可以忽略,根据图像信息,下列说法正确的有( )A.弹性绳原长为15 mB.当运动员下降10 m时,处于失重状态C.当运动员下降15 m时,绳的弹性势能最大D.当运动员下降20 m时,其加速度方向竖直向上【答案】BD 【解析】15 m时速度最大,此时加速度为零,合外力为零,弹力不为零,弹力等于重力,弹性绳处于伸长状态,故A错误;当运动员下降10 m时,速度向下并且逐渐增大,处于失重状态,故B 正确;当运动员下降15 m时,速度不为零,运动员继续向下运动,弹性绳继续伸长,弹性势能继续增大,故C错误;当运动员下降20 m时,运动员向下减速运动,其加速度方向竖直向上,故D正确.9.(2020年中山纪念学校质检)(多选)如图所示,质量分别为m1、m2的A、B两个滑块放在斜面上,中间用一个轻杆相连,A、B与斜面间的动摩擦因数分别为μ1、μ2,它们在斜面上加速下滑.关于杆的受力情况,下列分析正确的是( )A.若μ1>μ2,m1=m2,则杆受到压力B.若μ1=μ2,m1>m2,则杆受到拉力C.若μ1<μ2,m1<m2,则杆受到压力D.若μ1=μ2,m1≠m2,则杆不受到作用力【答案】AD 【解析】假设杆无弹力,滑块受重力、支持力和滑动摩擦力,根据牛顿第二定律,有m1gsin θ-μ1m1gcos θ=m1a1,解得a1=g(sin θ-μ1cos θ),同理a2=g(sin θ-μ2cos θ),若μ1>μ2,则a1<a2,B加速度较大,则杆受到压力,故A正确;若μ1=μ2,则a1=a2,两个滑块加速度相同,说明无相对滑动趋势,故杆无弹力,故B错误,D正确;若μ1<μ2,则a1>a2,A加速度较大,则杆受到拉力,故C错误.10.(2020届赣州名校一模)(多选)如图所示,传送带与水平面之间的夹角θ=30°,传送带两端A、B间的距离l=5 m,传送带在电动机的带动下以v=1 m/s的速度沿顺时针方向匀速运动,现将一质量m=10 kg的小物体(可视为质点)轻放在传送带上的A点,已知小物体与传送带之间的动摩擦因数μ=32,在传送带将小物体从A点输送到B点的过程中(g取10 m/s2)( )A.小物体在传送带上运动的时间为5 sB.传送带对小物体做的功为255 JC.电动机做的功为255 JD .小物体与传送带间因摩擦产生的热量为15 J【答案】BD 【解析】物体刚放上A 点时,受到的滑动摩擦力沿传送带向上,物体做匀加速直线运动,此时a 1=μmgcos θ-mgsin θm =g(μcos θ-sin θ)=2.5 m/s 2,假设物体能与皮带达到相同的速度,则物体加速上滑的位移x 1=v 22a 1=0.2 m<l =5 m ,假设成立,物体加速到v =1 m/s ,用时t 1=va 1=0.4 s ,因为μmgcos θ>mgsin θ,故之后小物体将向上做匀速运动,运动的时间t 2=l -x 1v =4.8 s ,故运动的总时间t =t 1+t 2=5.2 s ,故A 错误;小物体运动到B 点的速度为1 m/s ,从A 到B ,由动能定理,有W 传-mgLsin θ=12mv 2-0,解得W 传=255 J ,故B 正确;在相对滑动时,s 相=vt 1-x 1=0.2 m ,则物体与传送带间因摩擦产生的热量Q =μmgcos θ·s 相=15 J ,故D 正确;由功能关系,可知电动机做的功等于物体增加的机械能和因滑动摩擦而产生的热量,则W 电=W 传+Q =270 J ,故C 错误.11.(2020届重庆南开中学期末)如图所示,质量M =1 kg 的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m =1 kg 、大小可以忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g 取10 m/s 2,在铁块上加一个水平向右的拉力,则:(1)F 增大到多少时,铁块能在木板上发生相对滑动?(2)若木板长L =1 m ,水平拉力恒为8 N ,经过多长时间铁块运动到木板的右端?解:(1)设F =F 1时,铁块、木板恰好保持相对静止,此时两者的加速度相同,两者间的静摩擦力达到最大.对木板,根据牛顿第二定律,得 μ2mg -μ1(m +M)g =Ma , 解得a =2 m/s 2.以铁块和木板整体为研究对象,根据牛顿第二定律,有 F 1-μ1(m +M)g =(m +M)a , 解得F 1=6 N.(2)铁块的加速度大小a 1=F -μ2mg m =4 m/s 2,木板的加速度大小a 2=μ2mg -μ1m +M g M =2 m/s 2,设经过时间t 铁块运动到木板的右端,则有 12a 1t 2-12a 2t 2=L , 解得t =1 s.实验4 验证牛顿运动定律知识巩固练1.在利用打点计时器和小车来做“验证牛顿运动定律”的实验时,下列说法错误的是 ( ) A.平衡摩擦力时,应将砝码盘及盘内砝码通过定滑轮拴在小车上B.连接砝码盘和小车的细绳应跟长木板保持平行C.平衡摩擦力后,长木板的位置不能移动D.小车释放前应靠近打点计时器,且应先接通电源再释放小车【答案】A2.在验证牛顿第二定律的实验中,如图所示分别是甲、乙、丙、丁四个实验小组根据实验数据画出的图像.对于这四个图像,分析正确的是( )甲乙丙丁A.甲未平衡摩擦力B.乙平衡摩擦力过度C.丙是小车质量太大了D.丁是不满足m≪M的条件【答案】D 【解析】甲平衡摩擦力时倾角过大,乙平衡摩擦力时倾角过小,丁图出现弯曲是由于砝码质量过大,不满足m≪M的条件.3.某同学设计了如图所示的装置来探究加速度与力的关系,弹簧测力计固定在一合适的木块上,桌面的右边缘固定一个光滑的定滑轮,细绳的两端分别与弹簧测力计的挂钩和矿泉水瓶连接.在桌面上画出两条平行线P、Q,并测出间距d.开始时将木块置于P处,现缓慢向瓶中加水,直到木块刚刚开始运动为止,记下弹簧测力计的示数F0,以此表示滑动摩擦力的大小.再将木块放回原处并按住,继续向瓶中加水后,记下弹簧测力计的示数F,然后释放木块,并用秒表记下木块从P运动到Q处所用的时间t.(1)木块的加速度可以用d和t表示为a=________.(2)改变瓶中水的质量重复实验,确定加速度a与弹簧测力计示数F的关系.下图中能表示该同学实验结果的是________.A B C D(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是________. A .可以改变滑动摩擦力的大小 B .可以更方便地获取更多组实验数据 C .可以更精确地测出摩擦力的大小 D .可以获得更大的加速度以提高实验精度 【答案】(1)2dt2 (2)C (3)BC4.如图所示为“验证牛顿第二定律”的实验装置示意图.沙和沙桶的总质量为m ,小车和砝码的总质量为M.实验中用沙和沙桶总重力的大小作为细线对小车拉力的大小.(1)实验中,为了使细线对小车的拉力等于小车所受的合外力,先调节长木板一端滑轮的高度,使细线与长木板平行.接下来还需要进行的一项操作是( )A .将长木板水平放置,让小车连着已经穿过打点计时器的纸带,给打点计时器通电,调节m 的大小,使小车在沙和沙桶的牵引下运动,从打出的纸带判断小车是否做匀速运动B .将长木板的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去沙和沙桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动C .将长木板的一端垫起适当的高度,撤去纸带、沙和沙桶,轻推小车,观察判断小车是否做匀速运动(2)实验中要进行质量m 和M 的选取,以下最合理的一组是( ) A .M =200 g ;m =10 g,15 g,20 g,25 g,30 g,40 g B .M =200 g ;m =20 g,40 g,60 g,80 g,100 g,120 g C .M =400 g ;m =10 g,15 g,20 g,25 g,30 g,40 g D .M =400 g ;m =20 g,40 g,60 g,80 g,100 g,120 g(3)如图是实验中得到的一条纸带,A 、B 、C 、D 、E 、F 、G 为7个相邻的计数点,相邻计数点之间还有4个点未画出.量出相邻计数点之间的距离分别为x AB =4.22 cm ,x BC =4.65 cm ,x CD =5.08 cm ,x DE =5.49 cm ,x EF =5.91 cm ,x FG =6.34 cm.已知打点计时器的工作频率为50 Hz ,则小车的加速度a =________m/s 2(结果保留2位有效数字).【答案】(1)B (2)C (3)0.42综合提升练5.如图为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M ,重物的质量m ,用游标卡尺测量遮光片的宽度d ,用米尺测量两光电门之间的距离s ;②调整轻滑轮,使细线水平;③让物块从光电门A 的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A 和光电门B 所用的时间Δt A 和Δt B ,求出加速度a ;④多次重复步骤③,求a 的平均值a ; ⑤根据上述实验数据求出动摩擦因数μ. 回答下列问题:(1) 测量d 时,某次游标卡尺(主尺的最小分度为1 mm)的示数如图所示.其示数为________cm.(2)物块的加速度a 可用d ,s ,Δt A 和Δt B 表示为a =________________. (3)动摩擦因数μ可用M ,m ,a 和重力加速度g 表示为μ=________________.(4)如果细线没有调整到水平,由此引起的误差属于________(填“偶然误差”或“系统误差”). 【答案】见解析【解析】(1)d =0.9 cm +12×0.05 mm=0.9 cm +0.060 cm =0.960 cm . (2)因为v A =d Δt A ,v B =d Δt B ,又由2as =v 2B -v 2A ,解得a =12s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫d Δt B 2-⎝ ⎛⎭⎪⎫d Δt A 2.(3)设细线上的拉力为F T ,则 mg -F T =m a ,F T -μMg=M a , 两式联立,解得μ=mg -M +ma Mg.(4)由实验装置引起的误差为系统误差.6.某实验小组应用如图所示装置“探究加速度与物体受力的关系”,已知小车的质量为M ,砝码及砝码盘的总质量为m ,所使用的打点计时器所接的交变电流的频率为50 Hz.实验步骤如下:A .按图所示安装好实验装置,其中与定滑轮及弹簧测力计相连的细线竖直;B.调节长木板的倾角,轻推小车后,使小车能沿长木板向下匀速运动;C.挂上砝码盘,接通电源后,再放开小车,打出一条纸带,由纸带求出小车的加速度;D.改变砝码盘中砝码的质量,重复步骤C,求得小车在不同合力作用下的加速度.根据以上实验过程,回答以下问题:(1)对于上述实验,下列说法正确的是________.A.小车的加速度与砝码盘的加速度大小相等B.实验过程中砝码盘处于超重状态C.与小车相连的轻绳与长木板一定要平行D.弹簧测力计的示数应为砝码和砝码盘总重力的一半E.砝码和砝码盘的总质量应远小于小车的质量(2)实验中打出的一条纸带如图所示,由该纸带可求得小车的加速度为________m/s2.(结果保留2位有效数字)(3)由本实验得到的数据作出小车的加速度a与弹簧测力计的示数F的关系图像,与本实验相符合的是________.A B C D【答案】(1)C (2)0.16 (3)A。

2020年高考物理一轮复习考点归纳:专题(03)牛顿运动定律(含答案)

2020年高考物理一轮复习考点归纳:专题(03)牛顿运动定律(含答案)

2020年高考一轮复习知识考点专题03 《牛顿运动定律》第一节牛顿第一、第三定律【基本概念、规律】一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.2.表达式:F=-F′.特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.(2)作用力和反作用力的关系与物体的运动状态无关.【重要考点归纳】考点一牛顿第一定律1.明确了惯性的概念.2.揭示了力的本质.3.揭示了不受力作用时物体的运动状态.4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.考点二牛顿第三定律的理解与应用1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.相互作用力与平衡力的比较【思想方法与技巧】用牛顿第三定律转换研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.第二节牛顿第二定律两类动力学问题【基本概念、规律】一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.特别提示:利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.【重要考点归纳】考点一用牛顿第二定律求解瞬时加速度1.求解思路求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两种”模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.4.解决瞬时加速度问题的关键是弄清哪些力发生了突变,哪些力瞬间不变,正确画出变化前后的受力图.考点二动力学两类基本问题1.求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.2.(1)解决两类动力学基本问题应把握的关键①一个桥梁——加速度是联系运动和力的桥梁.②两类分析——受力分析和运动过程分析.(2)解决动力学基本问题时对力的两种处理方法①合成法:物体受2个或3个力时,一般采用“合成法”.②正交分解法:物体受3个或3个以上的力时,则采用“正交分解法”.(3)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行受力分析和运动过程分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.考点三动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况.(2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图景中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.3.数形结合解决动力学问题(1)物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.【思想方法与技巧】传送带模型中的动力学问题1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图甲、乙、丙所示.2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.根据物体与传送带的相对速度方向判断摩擦力方向.两者速度相等是摩擦力突变的临界条件.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.3.解答传送带问题应注意的事项(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况.(2)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.(3)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v物=v传.第三节牛顿运动定律的综合应用【基本概念、规律】一、超重和失重1.超重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.二、解答连接体问题的常用方法1.整体法当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度.2.隔离法当求解系统内物体间相互作用力时,常把物体从系统中“隔离”出来进行分析,依据牛顿第二定律列方程.3.外力和内力(1)外力:系统外的物体对研究对象的作用力;(2)内力:系统内物体之间的作用力.【重要考点归纳】考点一超重和失重现象1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.5.超重和失重现象的判断方法(1)从受力的大小判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的方向判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.考点二整体法和隔离法解决连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.考点三分解加速度求解受力问题在应用牛顿第二定律解题时,通常不分解加速度而分解力,但有一些题目要分解加速度.最常见的情况是与斜面模型结合,物体所受的作用力是相互垂直的,而加速度的方向与任一方向的力不同向.此时,首先分析物体受力,然后建立直角坐标系,将加速度a分解为a x和a y,根据牛顿第二定律得F x=ma x,F y=ma y,使求解更加便捷、简单.【思想方法与技巧】“滑块——滑板”模型的分析1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.模型分析解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)滑块是否会从滑板上掉下的临界条件是:滑块到达滑板一端时两者共速.(3)滑块不能从滑板上滑下的情况下,当两者共速时,两者受力、加速度发生突变.动力学中的临界条件及应用一、临界状态物体在运动状态变化的过程中,相关的一些物理量也随之发生变化.当物体的运动变化到某个特定状态时,相关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态.二、临界状态的判断1.若题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.3.临界状态的问题经常和最大值、最小值联系在一起,因此,若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.4.若题目中有“最终”、“稳定”等文字,即是求收尾速度或加速度. 三、处理临界问题的思路 1.会分析出临界状态的存在.2.要抓住物体处于临界状态时的受力和运动特征,找出临界条件,这是解决问题的关键. 3.能判断物体在不满足临界条件时的受力和运动情况. 4.利用牛顿第二定律结合其他规律列方程求解. 四、力学中常见的几种临界条件 1.接触物体脱离的临界条件: 接触面间的弹力为零,即F N =0. 2.绳子松弛的临界条件: 绳中张力为0,即F T =0. 3.相对滑动的临界条件: 静摩擦力达到最大值,即f 静=f m . 4.滑块在滑板上不滑下的临界条件: 滑块滑到滑板一端时,两者速度相同.实验四 验证牛顿运动定律一、实验目的1.学会用控制变量法研究物理规律. 2.探究加速度与力、质量的关系. 3.掌握灵活运用图象处理问题的方法. 二、实验原理(见实验原理图)1.保持质量不变,探究加速度跟合外力的关系. 2.保持合外力不变,探究加速度与质量的关系. 3.作出a -F 图象和a -1m图象,确定其关系.三、实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.四、实验步骤 1.测量:用天平测量小盘和砝码的质量m ′和小车的质量m . 2.安装:按照如实验原理图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力)3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑. 4.操作:(1)小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,取下纸带编号码. (2)保持小车的质量m 不变,改变砝码和小盘的质量m ′,重复步骤(1). (3)在每条纸带上选取一段比较理想的部分,测加速度a . (4)描点作图,作a -F 的图象.(5)保持砝码和小盘的质量m ′不变,改变小车质量m ,重复步骤(1)和(3),作a -1m图象.一、数据处理1.保持小车质量不变时,计算各次小盘和砝码的重力(作为小车的合力)及对应纸带的加速度,填入表(一)中.表(一)2.入表(二)中.表(二)3.4.以a为纵坐标,F为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a与F成正比.5.以a为纵坐标,1m为横坐标,描点、连线,如果该线过原点,就能判定a与m成反比.二、注意事项1.平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着打点的纸带匀速运动.2.不重复平衡摩擦力.3.实验条件:m≫m′.4.一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达定滑轮前按住小车.5.作图象时,要使尽可能多的点在所作直线上.不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当.各量需采用国际单位.三、误差分析1.系统误差:本实验用小盘和砝码的总重力m′g代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.2.偶然误差:摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.。

(通用版)2020高考物理三轮冲刺高考热点排查练热点:3牛顿运动定律(含解析)

(通用版)2020高考物理三轮冲刺高考热点排查练热点:3牛顿运动定律(含解析)

热点3 牛顿运动定律1.(2019·吉林长春市第二次监测)如图1所示,水平面上的小车内固定一个倾角为30°的光滑斜面,平行于斜面的细绳一端固定在车上,另一端系着一个质量为m 的小球,小球和小车均处于静止状态.如果小车在水平面上向左加速且加速度大小不超过a 1时,小球仍能够和小车保持相对静止;如果小车在水平面上向右加速且加速度大小不超过a 2时,小球仍能够和小车保持相对静止.则a 1和a 2的大小之比为( )图1A.∶1 B.∶333C .3∶1D .1∶3答案 D 解析 由题意可知:a 1=g tan30°,a 2=,得a 1∶a 2=1∶3,故选项D 正确.gtan30°2.(2019·江苏扬州中学下学期开学考)如图2所示,小球A 质量为m ,木块B 质量为2m ,两物体通过竖直轻弹簧连接放置在水平面上静止.现对A 施加一个竖直向上的恒力F ,使小球A 在竖直方向上运动,经弹簧原长时小球A 的速度恰好最大,已知重力加速度为g ,则在木块B 对地面压力为零时,小球A 的加速度大小为( )图2A .3gB .2.5gC .2gD .1.5g答案 C解析 经弹簧原长时小球A 速度恰好最大,此时小球加速度为零,则恒力F =mg ;木块B 对地面压力为零时,由平衡条件知弹簧的弹力为2mg ,又由牛顿第二定律得:F -mg -2mg =ma ,解得小球A 的加速度a =-2g ,方向竖直向下,故C 正确.3.(2019·河南示范性高中上学期期终)如图3所示,A 、B 两相同的木箱(质量不计)用水平细绳连接放在水平地面上,当两木箱内均装有质量为m 的沙子时,用水平力F 拉A 木箱,使两木箱一起做匀加速直线运动,细绳恰好不被拉断.在不改变拉力的情况下,为使两木箱一次能运送更多的沙子,下列方法可行的是(加沙子后两木箱均能被拉动)( )图3A .只在A 木箱内加沙子B .只在B 木箱内加沙子C .A 木箱内加入质量为m 的沙子,B 木箱内加入质量为2m 的沙子D .A 木箱内加入质量为2m 的沙子,B 木箱内加入质量为3m 的沙子答案 A解析 对整体由牛顿第二定律:F -μ(m A +m B )g =(m A +m B )a ;对木箱B :F T -μm B g =m B a ;解得F T =F ,可知当A 木箱内加入沙子的质量大于B 木箱内加入沙子的质量时,细绳的拉m Bm A +m B 力减小,故选项A 正确,B 、C 、D 错误.4.(多选)如图4所示,质量为3kg 的物体A 静止在竖直的轻弹簧上面,质量为2kg 的物体B 用细线悬挂,A 、B 间相互接触但无压力.取g =10m/s 2.某时刻将细线剪断,则细线剪断瞬间( )图4A .B 对A 的压力大小为12NB .弹簧弹力大小为20NC .B 的加速度大小为4m/s 2D .A 的加速度为零答案 AC解析 剪断细线前,A 、B 间无压力,则弹簧的弹力F =m A g =30N ,剪断细线的瞬间,弹簧弹力不变,对A 、B 整体分析,整体加速度:a ==m/s 2=4 m/s 2(m A +m B )g -F m A +m B (3+2)×10-303+2隔离对B 分析有:m B g -F N =m B a ,解得:F N =(20-2×4) N =12N ,由牛顿第三定律知B 对A 的压力大小为12N ,故A 、C 正确,B 、D 错误.5.(多选)(2019·江西南昌市二模)如图5所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过小光滑定滑轮连接着一质量也为m 的物体Q ,开始时,用手抓住物体Q ,使物体P 、Q 均静止,此时AB 和BC 两绳中拉力大小分别为F T1、F T2,把手放开瞬间,AB 和BC 两绳中拉力大小分别为F T1′、F T2′.已知P 、Q 均可看成质点,A 、B 、C 处于同一竖直平面内,绳子间连接的夹角如图.则( )图5A.F T1∶F T1′=1∶1B.F T1∶F T2=1∶23C.F T2∶F T2′=2∶3D.F T1′∶F T2′=∶1答案 AC解析 用手抓住物体Q时,以物体P为研究对象,物体P受力平衡,有:F T1=mg cos30°①F T2=mg sin30°②把手放开瞬间,设Q加速度为a,则P在瞬间沿BC方向加速度也为a,根据牛顿第二定律,对Q:mg-F T2′=ma③对P,在BC方向:F T2′-mg cos60°=ma④在AB方向:F T1′=mg sin60°⑤3联立①②③④⑤得:F T1∶F T1′=1∶1,F T1∶F T2=∶1F T2∶F T2′=2∶3,F T1′∶F T2′=2∶.36.如图6所示为质量m=75kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,则( )图6A .滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速直线运动B .t =0时刻运动员的加速度大小为2m/s 2C .动摩擦因数μ为0.25D .比例系数k 为15kg/s答案 C解析 由v -t 图象可知,滑雪运动员开始时做加速度减小的加速直线运动,最后做匀速直线运动,故A 错误;在t =0时刻,图线切线的斜率即为该时刻的加速度,故有a 0=m/s 2=4 12-03-0m/s 2,故B 错误;在t =0时刻开始加速时,v 0=0,由牛顿第二定律可得mg sin θ-kv 0-μmg cos θ=ma 0,最后匀速时有:v m =10 m/s ,a =0,由平衡条件可得mg sin θ-kv m -μmg cos θ=0,联立解得:μ=0.25,k =30 kg/s ,故C 正确,D 错误.7.(多选)(2019·江西上饶市重点中学六校第一次联考)如图7所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度μ4为g ,现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是( )图7A .a =0B .a =2μg 3C .a =D .a =-μg 2F 2m μg 4答案 ACD解析 若F 较小时,木板和物块均静止,则木板的加速度为零,选项A 正确;若物块和木板一起运动且不发生相对滑动,对木板和物块的整体,根据牛顿第二定律可得:F -μ·2mg =142ma ,解得:a =-μg ,选项D 正确;若物块和木板之间发生相对滑动,对木板,水平方F 2m 14向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -μ·2mg =ma ,解得:a =μg ,故1412选项B 错误,C 正确.8.(多选)(2019·天一大联考上学期期末)如图8甲所示,一滑块置于长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示,设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10m/s 2,则下列说法正确的是( )图8A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24sD .木板的最大加速度为2m/s 2答案 ACD解析 由题图知,滑块与木板之间的滑动摩擦力为8N ,则滑块与木板间的动摩擦因数为μ==F fm mg =0.4,选项A 正确;由题图可知t 1时刻木板相对地面开始滑动,此时滑块与木板相对静820止,则木板与水平地面间的动摩擦因数为μ′===0.1,选项B 错误;t 2时刻,滑块F f ′2mg 440与木板将要产生相对滑动,滑块与木板间的摩擦力达到最大静摩擦力F fm=8N,此时两物体的加速度相等,且木板的加速度达到最大,则对木板:F fm-μ′·2mg=ma m,解得a m=2m/s2,对滑块:F-F fm=ma m,解得F=12N,则由F=0.5t(N)可知,t2=24s,选项C、D正确.。

2020版600冲刺一轮高考物理山东专用优选课件:3章 牛顿运动定律

2020版600冲刺一轮高考物理山东专用优选课件:3章 牛顿运动定律

v-t图像
根据图像的斜率判断加速度的大小和方向,进而根据牛顿第二定律求解 合外力
F-a图像
首先要根据具体的物理情景,对物体进行受力分析,然后根据牛顿第二 定律推导出两个量间的函数关系式,根据函数关系式结合图像,明确图
像的斜率、截距或面积的意义,从而由图像给出的信息求出未知量
a-t图像 F-t图像
要注意加速度的正负,正确分析每一段的运动情况,然后结合物体受力 情况根据牛顿第二定律列方程
✓(2)实重、视重的关系
①视重等于实重:物体处于 平衡状态 时,物体对弹簧测力计或台秤的拉力
或压力的大小(视重)等于物体所受重力的大小,即FN测=G。
②当物体有竖直方向的加速度,或有其他方向的加速度,但在竖直方向上有
加 叫 叫 叫 时速失完F超度N测重全重分=失量现现0重时象象,。,,,做视此此自重时时由就落FmN不g测体--等运Fm于Ng动测=物=和m体ma人a的造;;实卫当当重星加加了中速 速。的度度当物向向加体下下速都时且度处,大向于视小上完重等时全于小,失于g时视重实,重状大重视态于,重,为此实零重,,
【答案】B
【易错警示】误区一:误认为运动的物体有惯性,静止的物体没有惯性;误区二:误认为运动速 度大的物体惯性大;误区三:误认为重力越小,惯性越小;误区四:误认为惯性是一种特殊的 力.
方法2 作用力、反作用力与平衡力的比较
例2
(多选)甲、乙两队用一条轻绳进行拔河比赛,甲队胜,在比赛过程中( )
A.甲队拉绳子的力大于乙队拉绳子的力 B.甲队与地面间的摩擦力大于乙队与地面间的摩擦力 C.甲、乙两队与地面间的摩擦力大小相等、方向相反 D.甲、乙两队拉绳子的力大小相等、方向相反
• 公式a=是一个矢量式,合外力F和加速度a均为矢量,加速度的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核心考点考纲要求牛顿运动定律及其应用超重和失重ⅡⅠ网络知识解密考点考点1 动力学中的图象问题必备知识物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点。

1.常见的图象有:v –t 图象,a –t 图象,F –t 图象,F –x 图象,F –a 图象等。

2.图象间的联系:加速度是联系v –t 图象与F –t 图象的桥梁。

3.图象的应用(1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况。

(2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况。

(3)通过图象对物体的受力与运动情况进行分析。

4.解题策略(1)弄清图象斜率、截距、交点、拐点的物理意义。

(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断。

5.分析图象问题时常见的误区(1)没有看清纵、横坐标所表示的物理量及单位。

(2)不注意坐标原点是否从零开始。

(3)不清楚图线的点、斜率、面积等的物理意义。

(4)忽视对物体的受力情况和运动情况的分析。

典例分析(2019·四川绵阳中学)水平地面上质量为m =6 kg 的物体,在大小为12 N 的水平拉力F 的作用下做匀速直线运动,从x =2.5 m 位置处拉力逐渐减小,力F 随位移x 变化规律如图所示,当x =7 m 时拉力减为零,物体也恰好停下,取,下列结论正确的是210m/s gA .物体与水平面间的动摩擦因数为0.5B .合外力对物体所做的功为57 JC.物体在减速阶段所受合外力的冲量为12 N•S D .物体匀速运动时的速度为3 m/s 【参考答案】D【试题解析】匀速时应有:F=f=μmg ,解得动摩擦因数μ=0.2,故A 错误;根据W=Fs 可知,F –s 图象与s 轴所夹图形的面积即为F 做的功,可求出力F 对物体所做的功为,摩擦力做功为,所以合外力做的功为:,故B 错误;对全过程由动能定理应有:,解得:,故D 正确;根据动量定理可得物体在减速阶段所受合外力的冲量为,故C 错误。

跟踪练习1.如图1所示,一个静止在光滑水平面上的物块,在t =0时给它施加一个水平向右的作用力F ,F 随时间t 变化的关系如图2所示,则物块速度v 随时间t 变化的图象是A .B .C .D .【答案】C03m/s v考点2 动力学中整体法与隔离法的应用必备知识1.方法概述(1)整体法是指对物理问题的整个系统或过程进行研究的方法。

(2)隔离法是指从整个系统中隔离出某一部分物体,进行单独研究的方法。

2.涉及隔离法与整体法的具体问题类型(1)涉及滑轮的问题若要求绳的拉力,一般都必须采用隔离法。

例如,绳跨过定滑轮连接的两个物体虽然加速度大小相同,但方向不同,故采用隔离法。

(2)水平面上的连接体问题①这类问题一般多是连接体(系统)中各物体保持相对静止,即具有相同的加速度。

解题时,一般采用先整体、后隔离的方法。

②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度。

(3)斜面体与上面物体组成的连接体问题当物体具有沿斜面方向的加速度,而斜面体相对于地面静止时,解题时一般采用隔离法分析。

3.解题思路(1)分析所研究的问题适合应用整体法还是隔离法。

(2)对整体或隔离体进行受力分析,应用牛顿第二定律确定整体或隔离体的加速度。

(3)结合运动学方程解答所求解的未知物理量。

典例分析(2019·湖南溆浦圣达学校)如图,小球A的质量为2m,小球B和C的质量均为m,B、C两球到结点P的轻绳长度相等,滑轮摩擦不计。

开始系统处于静止状状,现让B、C两球以某角速度ω在水平面内做圆锥摆运动时,A球将A.向上做加速运动B.向下做加速运动C.保持平衡状态D.做匀速圆周运动【参考答案】C【试题解析】B球、C球和两根细线整体受重力和细线向上的拉力,设整体下降的加速度为a,根据牛顿第二定律,有:2mg–T=2m·a;对A球受力分析,受重力和拉力,根据牛顿第二定律,有:T–2mg=2ma;联立解得:a=0,即A球将保持静止,处于平衡状态;故选C。

跟踪练习1.如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与斜面平行,A、B、C都处于静止状态。

则A.B受到C的摩擦力一定不为零B.C受到水平面的摩擦力一定为零C.不论B、C间摩擦力大小、方向如何,水平面对C的摩擦力方向一定向左D.水平面对C的支持力与B、C的总重力大小相等【答案】C考点3 用牛顿第二定律解决瞬时加速度问题必备知识1.在分析瞬时对应关系时应注意区分动力学中的几种模型。

受外力时的形变量力能否突变产生拉力或压力轻绳微小不计可以只有拉力没有压力轻橡皮绳较大不能只有拉力没有压力轻弹簧较大不能既可有拉力;也可有压力轻杆微小不计可以既可有拉力;也可有压力2.分析瞬时问题的注意要点:(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。

(2)分析物体的瞬时问题,关键是分析瞬时前后的受力情况和运动情况,再由牛顿第二定律求出瞬时加速度。

(3)分析此类问题应特别注意绳或线类、弹簧或橡皮绳类模型的特点。

(4)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。

典例分析m如图所示,吊篮A、物体B、物体C的质量均为,B和C分别固定在竖直弹簧两端,弹簧的质量不计。

整个系统在轻绳悬挂下处于静止状态。

现将悬挂吊篮的轻绳剪断,在轻绳刚断的瞬间A.物体B的加速度大小为gB.物体C的加速度大小为2gC.吊篮A的加速度大小为3gD.A、C间的弹力大小为0.5mg【参考答案】D【试题解析】在轻绳刚断的瞬间,弹簧的弹力不能突变,则物体B受力情况不变,故物体B的加速度大小为零,选项A错误。

将C和A看成一个整体,根据牛顿第二定律得,,即A、C的加速度均为1.5g,故B、C错误。

剪断细线的瞬间,A受到重力和C对A的作用力,对A:F C+mg=ma。

得:F C=ma–mg=0.5mg,故D正确。

跟踪练习1.(2019·福建泉州三中)如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m的小球,小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为A.g B.C.0 D.【答案】D()M m gm-()M m gm+考点4 动力学中的临界问题必备知识1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件。

用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键。

2.临界或极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;(4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。

3.产生临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T=0。

(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。

当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值。

典例分析如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时,B与A分离,下列说法正确的是A.B和A刚分离时,弹簧长度等于原长B.B和A刚分离时,它们的加速度为gC.弹簧的劲度系数等于D.在B和A分离前,它们做匀加速直线运动【参考答案】C【试题解析】A、B分离前,A、B共同做加速运动,由于F是恒力,而弹力是变力,故A、B做变加速直线运动,当两物体要分离时,F AB=0对B:F–mg=ma对A:kx–mg=ma即F=kx时,A、B分离,此时弹簧处于压缩状态由F=mg,拉B前设弹簧压缩量为x0,则2mg=kx0,h=x0–x解以上各式得综上所述,只有C项正确跟踪练习1.如图所示,左右带有固定挡板的长木板放在水平桌面上,物体M放于长木板上静止,此时弹簧对物体的压力为3 N,物体的质量为0.5 kg,物体与木板之间无摩擦,现使木板与物体M一起以6 m/s2的加速度向左沿水平方向做匀加速运动时A.物体对左侧挡板的压力等于零B.物体对左侧挡板的压力等于3 NmghmgkhC .物体受到4个力的作用D.弹簧对物体的压力等于6 N【答案】A考点5 传送带模型问题必备知识1.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题。

(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断。

判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等。

物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。

如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。

当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。

2.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带足够长时,滑块还要被传送带传回右端。

其中v0>v 返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速3.思维模板4.分析传送带问题的关键是判断摩擦力的方向。

相关文档
最新文档