简述气体激光器讲解
气体激光器

气体激光器具有输出光束质量高、转换效率高、结构简单、造价 低廉等优点。被广泛应用于工农业、国防、医励方式
电激励 光激励
气体放电 气体激光器最主要的激励方式 电子束激励
热激励
化学能激励
2
气体放电激励
高压电场下,气体粒子发生电离而导电,在导电过程中,高 速电子与气体粒子(原子、分子、离子)碰撞,使后者激发到高 能级,形成粒子数反转。气体放电分为直流或交流连续放电、射 频放电和脉冲放电等。
作方式,输出功率在100mW以下,多用于检测和干涉计量。
离子激光器:以氩离子激光器为代表,这种激光器可以发射较强
的连续功率激光,功率可达几十瓦,是可见光中的重要激光器件, 多用于扫描,医学及全息学等方面。
5
分子激光器:
以CO2激光器为代表,因红外波长激光的热效应高,故多用于激光 刀,医疗,机械加工方面,还用于测距,通信。
准分子激光器:
特点—发光都在紫外波段。 用途—用于微细加工,光刻及医学。 原理—不是分子固有能级跃迁发光,而是当两种元素的原子被高能量 的电脉冲激励时,两种元素的原子在瞬态结合成的准分子的能级间跃迁 产生的受激发光。发光后,分子很快分解成原子。
6
化学能激励
利用某些工作物质本身发生化学反应所释放的能量来激励工作物质 ,建立粒子数反转而实现受激辐射。采用化学能激励的激光器称为化学 激光器,其最大特点是将化学能直接转换成激光,原则上不需外加电源 或光源最为激励原。
4
气体激光器 —— 原子激光器,离子激光器,分子激光器,准分子
简述气体激光器讲解

简述气体激光器这是一类以气体为工作物质的激光器。
此地方说的气体能够是纯气体,也能够是混淆气体;能够是原子气体,也能够是分子气体;还能够是离子气体、金属蒸气等。
多半采纳高压放电方式泵浦。
最常有的有氦 - 氖激光器、氩离子激光器、二氧化碳激光器、氦 - 镉激光器和铜蒸气激光器等。
氦 - 氖激光器是最早出现也是最为常有的气体激光器之一。
它于 1961 年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万 (Javan) 博士及其同事们发明,工作物质为氦、这是一类以气体为工作物质的激光器。
此地方说的气体能够是纯气体,也能够是混淆气体;能够是原子气体,也能够是分子气体;还能够是离子气体、金属蒸气等。
多半采纳高压放电方式泵浦。
最常有的有氦- 氖激光器、氩离子激光器、二氧化碳激光器、氦 - 镉激光器和铜蒸气激光器等。
氦- 氖激光器是最早出现也是最为常有的气体激光器之一。
它于1961 年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万 (Javan) 博士及其同事们发明,工作物质为氦、氖两种气体按必定比率的混淆物。
依据工作条件的不一样,能够输出 5 种不一样波长的激光,而最常用的则是波长为632.8 纳米的红光。
输出功率在0.5 ~100 毫瓦之间,拥有特别好的光束质量。
氦 - 氖激光器是目前应用最为宽泛的激光器之一,可用于外科医疗、激光美容、建筑丈量、准直指示、照排印刷、激光陀螺等。
许多中学的实验室也在用它做演示实验。
比氦 - 氖激光器晚 3 年由帕特尔 (Patel)发明的二氧化碳激光器是一种能量变换效率较高和输出最强的气体激光器。
目前准连续输出已有 400 千瓦的报道,微秒级脉冲的能量则达到 10 千焦,经适合聚焦,能够产生 1013 瓦/米 2 的功率密度。
这些特征使二氧化碳激光器在众多领域获得宽泛应用。
工业上用于多种资料的加工,包含打孔、切割、焊接、退火、熔合、改性、涂覆等;医学上用于各样外科手术;军事上用于激光测距、激光雷达,以致定向能武器。
气体激光器原理

气体激光器原理
气体激光器是一种常见的激光器类型,它是利用气体放电产生激光的装置。
它的原理是利用气体在电场作用下发生电离放电,产生被激发态分子的能级上升,从而产生激光。
气体激光器的工作原理可以分为四个步骤:激发,扩散,反射和输出。
第一步:激发
在气体激光器中,气体通常被加热或电离来激发其原子或分子的能级。
这种能级激发可以通过不同的方法实现,例如电子束加热、电子激发或光激发等。
第二步:扩散
激发后的气体分子会在激发能级上升并达到临界能级时发射出激光。
这些激光被扩散在气体中,产生激光能量密度与气体浓度的关系。
第三步:反射
激发后的激光被反射回激发器中,再次激发气体分子。
这个过程通常用反射镜实现。
第四步:输出
激光通过输出镜从激光器中输出。
气体激光器的工作过程中,气体的种类、压力、温度、激发方式、激发电极的形状和位置等参数都对激光器的性能和输出功率有重要影响。
同时,气体激光器的输出波长也与气体的种类和激励方式有关。
气体激光器的应用非常广泛,例如在医疗、工业、研究和军事等领域。
其中,CO2激光器是工业生产中应用最广泛的气体激光器之一,可用于切割、焊接、打标和激光切割等领域。
此外,氦氖激光器、氖激光器和氩激光器等也有许多应用。
气体激光器是一种成熟而重要的激光器类型,其原理简单易懂,应用广泛,未来也必将在各个领域中继续发挥重要作用。
气体激光器介绍与原理

气体激光器介绍和原理
图2 He—Ne激光器的基本结构形式
气体激光器介绍和原理
He—Ne激光器工作原理
He-Ne激光器是利用原子中的电子—电子能 级之间的跃迁。它可以在0.6328 m,3.39 m和1.15 m三个中的任何一个波长上实现 激光振荡。
1s22s22p63s23p6,最外层3p6失去一个电 子形成基态氩离子Ar+(3p5),3p5上的一个 电子被激发到更高的电子层上,形成不同 的电子组态,如3p43d、3p44s、3p44p、 3p44d、3p45s等。 荧光谱线可达几百条,图4是与产生激光有 关的能级与跃迁图。
气体激光器介绍和原理
气体激光器介绍和原理
电极
He-Ne激光管的阳极一般用钨棒制成,阴 极多用电子发射率高和溅射率小的铝及其 合金制成。
为了增加电子发射面积和减小阴极溅射, 一般都把阴极做成圆筒状,然后用钨棒引 到管外。
气体激光器介绍和原理
谐振腔
He-Ne激光器由于增益低,谐振腔一般采 用平凹腔,平面镜为输出镜,透过率约 1%~2%,凹面镜为全反射镜。
气体激光器介绍和原理
图7 分段石墨结构氩离子激光器 1.石墨阳极 2. 石墨片 3. 石英环 4. 水冷套 5. 放电管 6. 阴极 7. 保热屏 8. 加热灯丝 9. 布氏窗 10. 磁场11. 储气瓶12. 电磁真空充气阀13. 镇气 瓶14. 波纹管15. 气压检测器
气体激光器介绍和原理
气体激光器介绍和原理
图4 氩离子能级和跃迁
图5氩离子主要激光谱线
气体激光器介绍和原理
常用气体激光器讲解课件

01
气体激光器简介
定义与工作原理
定义
气体激光器是一种利用气体作为工作物质的激光器,通过激发气体中的原子或分子,使其跃迁至激发态,再通过 受激辐射产生光子,从而实现激光输出。
新型激光器件结构
02
通过优化激光器件结构,降低激光器的阈值,提高能量转化效
率,进一步减小激光器的体积和重量。
高效光束质量控制技术
03
发展新型光束质量控制技术,提高气体激光器的光束质量和聚
焦性能,满足高端应用领域的需求。
应用领域的拓展
医疗领域
随着激光技术的不断发展,气体激光器在医疗领域的应用将更加 广泛,如激光美容、激光治疗等。
通过改进光学系统和冷却系统等手段,减小气体 激光器的体积和重量,提高其集成度。
提高效率和稳定性
通过优化气体激光器的结构设计、选用高性能的 气体介质和提高制造工艺水平等手段,提高其光 电转换效率和稳定性。
拓宽波长范围
通过采用新型的气体介质和光学技术,拓宽气体 激光器的波长范围,以满足更多应用领域的需要 。
量子计算
利用单个光子进行量子信息的 传输和处理。
激光雷达
利用激光测量距离和速度,常 用于环境监测和无人驾驶技术 。
教学演示
用于演示光学、量子力学和化 学等领域的基本原理和现象。
06
气体激光器的未来发展前 景
技术创新与突破
新型气体激光材料
01
随着材料科学的进步,将会有更多高效的气体激光材料被发现
和应用,提高激光器的输出功率和稳定性。
应用
c5.2气体激光器

磁场:
为了提高氩离子激光器的输出功率及寿命,一般要加上几十 到100毫特斯拉左右的轴向磁场。磁场通常由套在放电管外 面的螺线管产生。
5.2.3 Ar+离子激光器
2. Ar+激光器的激发机理
Ar+激光器与激光辐射有关的能级结构如图(9-15)所示 ◇ 激光上能级3P44P,下能级3P44S ◇ 激发过程: 气体放电后,高速电子与中性氩原子碰 撞,使之电离,形成处于基态3P5上的 氩离子; 基态Ar+离子再与高速电子碰撞,被激 发到高能态,形成反转粒子数,产生激 光。 ◇ 激光能级有不同的电子态,激光输 出谱线丰富,最强谱线为0.4880m、 0.5145m。
第五章 典型激光器介绍
§5.1 固体激光器 §5.2 气体激光器 §5.3 染料激光器 §5.4 半导体激光器 §5.5 其他激光器
1
§5.2 气体激光器
气体激光器的特点:
激光谱线丰富,波长覆盖了从真空紫外到远红外 范围。
气态工作物质的光学均匀性比固体好,易于获得 高斯光束,方向性好。 气体工作物质的谱线宽度远比固体小,激光单色 性好。 气体的激活粒子密度远小于固体,需要较大体积 的工作物质才能获得足够的功率输出,体积一般 比较庞大。
5.2.1 氦-氖(He-Ne)激光器
1960年末最早研制成功的气体激 光器。 属于惰性气体原子激光器。 工作物质是氦氖混合气体,发射 激光的是Ne原子,He为辅助气体 ,作用为改善气体放电特性,提 高激光器输出功率。 主要波段在可见光到近红外区。
多采用连Hale Waihona Puke 工作方式(输出几毫 瓦到几十毫瓦)。
图(5-11) 不同充气压强下输出功率与放电电流的 关系曲线
5.2.2 二氧化碳激光器
气体激光器

气体激光器化学激光器是另一类特殊的气体激光器,即是一类利用化学反应释放的能量来实现工作粒子数布居反转(简称粒子数反转)的激光器。
化学反应产生的原子或分子往往处于激发态,在特殊情况下,可能会有足够数量的原子或分子被激发到某个特定的能级,形成粒子数反转,以致出现受激发射而引起光放大作用。
化学激光器有脉冲和连续两种工作方式。
脉冲装置首先于1965年发明,连续器件则于4年后问世。
其中氟化氢和氟化氘激光器由于可以获得非常高的连续功率输出,其潜在军事应用很快引起人们的兴趣。
在“星球大战”计划的推动下,美国于80年代中期以3.8微米波长、2.2兆瓦功率的氟化氘激光器为基础,研制出“中红外先进化学激光装置”,在战略防御倡议局1988年提交国会的报告中,称其为当时“自由世界能量最大的高能激光系统”。
而氧碘激光器则在材料加工中得到应用,并可望用于受控热核聚变反应。
化学激光器最近的发展方向包括以数十兆瓦为目标进一步增加连续器件的输出功率;努力提高氟化氢激光的光束质量和亮度;并探索由氟化氢激光器获得1.3微米左右短波长输出的可能性。
1964年G.C.皮门塔尔等首先实现碘和氯化氢化学激光,80年代已发展按下列各种类型运转的化学激光。
光解离型这类体系(例如CF3I或C3F7I)主要靠外界紫外线提供能量,被激励为激发态分子(CF3I*或C3F7I*),然后通过它本身的单分子解离反应,获得激发态I*原子,并且实现粒子数反转而产生激光。
原子态激励型为了保证化学激励进行得足够快,使之不落后于碰撞弛豫过程,必须利用自由原子(或自由基)参加的元反应作为激光泵反应,这是此类体系的主要特点。
它依靠外界电、光、热等能源(例如电弧加热、闪光光解、横向放电或电子束引发)得到所需要的自由原子(氟、氢、氯或氧);然后,这些自由原子与第二种分子反应物(例如氢、氟、二硫化碳或臭氧)发生元反应,获得反应产物的粒子数反转而产生激光。
纯化学型这种运转方式要比上述的原子态激励型更为先进和实用。
二氧化碳气体激光器的工作原理

二氧化碳气体激光器的工作原理
二氧化碳气体激光器的工作原理可以简单概括为三个步骤:能级激发、能级跃迁和光放大。
首先,通过电子激发或其他外部能量输入,将二氧化碳气体中的分子激发到高能级。
这个过程需要提供足够的能量,以克服分子内部的束缚力,使分子中的电子跃迁到高能级。
接着,激发到高能级的二氧化碳分子会在非常短的时间内经历自发辐射的过程,即能级跃迁。
在这个过程中,激发态的电子会从高能级跃迁回到低能级,释放出能量。
最后,通过在激发态和基态之间建立的光学谐振腔,将激发态返回基态的过程中释放出的能量进行放大。
这个过程发生在由两个反射镜构成的光学谐振腔内,其中一个镜子是部分透明的,使得一部分光线可以逃逸出来,形成激光输出。
二氧化碳激光器的典型能级跃迁路径是从振动激发态到振动基态。
由于二氧化碳分子的能级结构,二氧化碳激光器通常在10.6微米的波长范围内工作。
此外,交变电场可以使CO2分子发生共振吸收,吸收的能量被转化为分子内振转和振动能,从而提高CO2分子的内能,达到激发的目的。
程控装置可以根据需要调整激发电流的频率和脉冲宽度,以控制激光输出的功率和作用时间。
二氧化碳气体激光器的工作原理涉及到能级激发、能级跃迁、光放大和共振吸收等过程,通过这些过程产生高能量、高度聚焦的激光束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述气体激光器
这是一类以气体为工作物质的激光器。
此处所说的气体可以是纯气体,也可以是混合气体;可以是原子气体,也可以是分子气体;还可以是离子气体、金属蒸气等。
多数采用高压放电方式泵浦。
最常见的有氦-氖激光器、氩离子激光器、二氧化碳激光器、氦-镉激光器和铜蒸气激光器等。
氦-氖激光器是最早出现也是最为常见的气体激光器之一。
它于1961年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万(Javan)博士及其同事们发明,工作物质为氦、
这是一类以气体为工作物质的激光器。
此处所说的气体可以是纯气体,也可以是混合气体;可以是原子气体,也可以是分子气体;还可以是离子气体、金属蒸气等。
多数采用高压放电方式泵浦。
最常见的有氦-氖激光器、氩离子激光器、二氧化碳激光器、氦-镉激光器和铜蒸气激光器等。
氦-氖激光器是最早出现也是最为常见的气体激光器之一。
它于1961年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万(Javan)博士及其同事们发明,工作物质为氦、氖两种气体按一定比例的混合物。
根据工作条件的不同,可以输出5种不同波长的激光,而最常用的则是波长为632.8纳米的红光。
输出功率在0.5~100毫瓦之间,具有非常好的光束质量。
氦-氖激光器是当前应用最为广泛的激光器之一,可用于外科医疗、激光美容、建筑测量、准直指示、照排印刷、激光陀螺等。
不少中学的实验室也在用它做演示实验。
比氦-氖激光器晚3年由帕特尔(Patel)发明的二氧化碳激光器是一种能量转换效率较高和输出最强的气体激光器。
目前准连续输出已有400千瓦的报导,微秒级脉冲的能量则达到10千焦,经适当聚焦,可以产生1013瓦/米2的功率密度。
这些特性使二氧化碳激光器在众多领域得到广泛应用。
工业上用于多种材料的加工,包括打孔、切割、焊接、退火、熔合、改性、涂覆等;医学上用于各种外科手术;军事上用于激光测距、激光雷达,乃至定向能武器。
与发明二氧化碳激光器同年,发明了几种惰性气体离子激光器,其中最常见的是氩离子激光器。
它以离子态的氩为工作物质,大多数器件以连续方式工作,但也有少量脉冲运转。
氩离子激光器可以有35条以上谱线,其中25条是波长在408.9~686.1纳米范围的可见光,10条以上是 275~363.8纳米范围的紫外辐射,并以488.0纳米和514.5纳米的两条谱线为最强,连续输出功率可达100瓦。
氩离子激光器的主要应用领域包括眼疾治疗、血细胞计数、平版印刷及作为染料激光器的泵浦源。
1968年发明的氦-镉激光器以镉金属蒸气为发光物质,主要有两条连续谱线,即波长为325.0纳米的紫外辐射和441.6纳米的蓝光,典型输出功率分别为1~25毫瓦和1~100毫瓦。
主要应用领域包括活字印刷、血细胞计数、集成电路芯片检验及激光诱导荧光实验等。
另一种常见的金属蒸气激光器是1966年发明的铜蒸气激光器。
一般通过电子碰撞激励,两条主要的工作谱线是波长510.5纳米的绿光和 578.2纳米的黄光,
典型脉冲宽度10~50纳秒,重复频率可达100千赫。
当前水平一个脉冲的能量为1毫焦左右。
这就是说,平均功率可达100瓦,而峰值功率则高达100千瓦。
铜蒸气激光器发明后过了15年才进入商品化阶段,其主要应用领域为染料激光器的泵浦源。
此外,还可用于高速闪光照相、大屏幕投影电视及材料加工等。