单摆练习题
4 单摆 习题 高中物理人教版选择性必修第一册

第二章机械振动4单摆1.把单摆的振动看作是简谐运动,需要满足的条件是()A.摆球体积要大B.摆线要粗而结实C.最大摆角不超过5°D.摆球的重心必须在球心上2.关于单摆,下列说法正确的是()A.摆球受到的回复力是它所受的合力B.摆球经过平衡位置时,所受的合力不为零C.摆球的回复力等于重力和摆线拉力的合力D.摆球在任意位置处,回复力都不等于重力和摆线拉力的合力3.如图甲所示,一单摆做小角度摆动,从某次摆球由左向右通过平衡位置开始计时,相对平衡位置的位移x随时间t变化的图像如图乙所示.不计空气阻力,重力加速度g取10 m/s2.对于这个单摆的振动过程,下列说法正确的是()A.单摆的摆长约为2.0 mB.单摆的位移x随时间t变化的关系式为x=8cos(πt) cmC.从t=0.5 s到t=1.0 s的过程中,摆球的重力势能逐渐增大D.从t=1.0 s到t=1.5 s的过程中,摆球所受回复力逐渐增大考点二单摆的周期4.(多选)惠更斯利用摆的等时性发明了带摆的计时器,叫摆钟.摆钟运行时克服摩擦所需的能量由重锤势能提供,运动的速率由钟摆控制.旋转钟摆下端的螺母可以使摆上的圆盘沿摆杆上下移动,如图所示,下列说法正确的是()A .当摆钟不准时需要调整圆盘位置B .摆钟快了应使圆盘沿摆杆上移C .由冬季变为夏季时应使圆盘沿摆杆上移D .把摆钟从广州移到北京应使圆盘沿摆杆上移5.有一摆长为L 的单摆悬点正下方某处有一小钉,摆球经过平衡位置向左摆动时,摆线的上部被小钉挡住,使摆长发生变化.现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程中的闪光照片如图所示(悬点与小钉未被摄入).P 为摆动中的最低点,已知每相邻两次闪光的时间间隔相等,由此可知,小钉与P 点的距离为( )A .L 4B .L 2C .3L 4D .无法确定6.如图所示,小球在光滑的圆槽内做简谐振动,小球的半径很小,可将小球视为质点,为了使小球的振动周期变为原来的2倍,可采取的方法是( )A .使小球的质量减小为原来的一半B .使小球的振幅增大为原来的2倍C .使小球通过平衡位置的速度增大为原来的2倍D .将圆槽半径变为原来的4倍7.(2024年中山期末)如图所示,轻绳的一端系一质量为m 的金属球,另一端悬于O 点,悬点O 到球上端的绳长为L ,球的直径为d .将球拉到A 点后由静止释放(摆角小于 5°),经过最低点C 后,摆到B 点速度减为零.在摆动过程中,设绳子与竖直方向夹角为θ,不计空气阻力.下列说法正确的是( )A.球摆动时的回复力大小为F=mg sin θB.球摆动的周期为T=2πL gC.球摆到最高点时速度为零,绳子拉力也为零D.增大球的摆角(不超过5°),球摆动的周期也变大8.(多选)如图所示,房顶上固定一根长2.5 m的细线沿竖直墙壁垂到窗沿下,细线下端系了一个小球(可视为质点).打开窗子,让小球在垂直于窗子的竖直平面内小幅度摆动,窗上沿到房顶的高度为1.6 m,不计空气阻力,g取10 m/s2,则小球从最左端运动到最右端的时间可能为()A.0.2π s B.0.4π sC.0.6π s D.1.2π s9.如图甲所示,O点为单摆的固定悬点,将力传感器接在摆球与O点之间.t=0时刻在A点释放摆球,摆球在竖直面内的A、C之间来回摆动,其中B点为运动中的最低位置.图乙为细线对摆球的拉力大小F随时间t变化的曲线.已知摆长为1.6 m,A、B之间的最大摆角为θ=5°.(取sin 5°=0.087,cos 5°=0.996)求:(1)当地的重力加速度大小;(2)摆球在A点时回复力的大小;(3)摆球运动过程中的最大动能.答案解析1、【答案】C 【解析】摆球要选用体积较小密度大的金属球,减小空气阻力,故A 错误.摆线应细一些并且结实些,以减小空气阻力,故B 错误.重力沿弧线的分力提供回复力,最大摆角不超过5°,故C 正确.摆球选用体积较小密度大的金属球,减小空气阻力,摆球的重心是否在球心没有定性要求,故D 错误.2.【答案】B 【解析】摆球所受的回复力是重力沿圆弧切线方向的分力,不是摆球所受的合力,故A 错误;摆球经过平衡位置时,回复力为零,但由于摆球做圆周运动,有向心力,合力不为零,方向指向悬点,故B 正确;根据牛顿第二定律可知,摆球在最大位移处时,速度为零,向心加速度为零,重力沿摆线方向的分力等于摆线对摆球的拉力,回复力才等于重力和摆线拉力的合力;在其他位置时,速度不为零,向心加速度不为零,重力沿摆线方向的分力小于摆线对摆球的拉力,回复力不等于重力和摆线拉力的合力,故C 、D 错误.3、【答案】D 【解析】由图乙知,单摆周期为2 s ,由单摆周期公式T =2πL g,可解得单摆的摆长为L ≈1.0 m ,A 错误;单摆的位移x 随时间t 变化的关系式为x =A sin ⎝⎛⎭⎫2πT t =8sin(πt ) cm ,B 错误;从t =0.5 s 到t =1.0 s 的过程中,摆球从最高点回到平衡位置,摆球的重力势能逐渐减小,C 错误;从t =1.0 s 到t =1.5 s 的过程中,摆球从平衡位置回到最高点,位移逐渐增大,回复力与位移成正比,故摆球所受回复力逐渐增大,D 正确.4.【答案】 AC 【解析】调整圆盘位置可改变摆长,从而达到调整周期的作用.若摆钟变快,是因为周期变小,应增大摆长即下移圆盘;由冬季变为夏季,摆杆应变长,应上移圆盘;从广州到北京,g 值变大,周期变小,应增加摆长.A 、C 正确,B 、D 错误.5.【答案】C 【解析】设每相邻两次闪光的时间间隔为t ,则摆球在右侧摆动的周期T 1=8t ,在左侧摆动的周期T 2=4t ,T 1∶T 2=2∶1,则T 1=2πL 1g ,T 2=2πL 2g;两式两边相除得L 2=14L 1,所以小钉与悬点的距离s =L 1-L 2=34L ,故C 正确. 6.【答案】D 【解析】小球在光滑的圆槽内做简谐振动,可看作单摆,可得小球在光滑的圆槽内做简谐振动时的周期为T =2πR g,则小球的质量、振幅和通过平衡位置的速度均与周期无关,A 、B 、C 错误;将圆槽半径变为原来的4倍,周期变为原来的2倍,故D 正确.7.【答案】A 【解析】由受力分析可得,球摆动时的回复力大小为F =mg sin θ,故A正确;球摆动的周期为T =2πL +12d g,故B 错误;球摆到最高点时速度为零,向心力等于零,绳子拉力不等于零,故C 错误;由单摆周期公式可得,周期与角度无关,故D 错误.8.【答案】BD 【解析】小球的摆动可视为单摆运动,摆长为线长时对应的周期T 1=2πl 1g =π s ,摆长为线长减去墙体长时对应的周期T 2=2πl 1-l 2g=0.6π s ,故小球从最左端到最右端所用的最短时间为t =T 1+T 24=0.4π s ,则小球从最左端到最右端所用时间为T =(2n -1)t (n =1,2,3…),故B 、D 正确.9.解:(1)摆球在一个周期内两次经过最低点,对应两次细线拉力达到最大值,由图乙可知单摆的周期为T =0.8π s =2πL g, 解得当地的重力加速度大小为g =10 m/s 2.(2)摆球在A 点时,细线拉力大小为F min =mg cos θ=0.498 N ,解得mg =0.5 N.摆球在A 点时回复力的大小为F 回=mg sin θ=0.043 5 N.(3)设摆球在B 点时速度为v ,根据牛顿第二定律有F max -mg =m v 2L, 摆球运动过程中的最大动能为E km =12m v 2=12(F max -mg )L =0.003 2 J .。
单摆

单摆一、选择题(每小题4分,共36分)1.A 关于单摆,下列说法不正确的是( )A .单摆的回复力是重力的分力B .单摆的摆角小于5°,可看作简谐振动C .单摆的振幅不论多大,其周期均为gL 2π D .单摆的振动是变加速圆周运动答案:C2.A 将秒摆改为频率1Hz 的摆,应采取() A .摆球质量为原来的41B .振幅减小C .摆长变为原来的4倍D .摆长为原来的41 答案:D 3.A 一个单摆从甲地到乙地,发现振动变快,为调整为原来的快慢,则() A .因为乙甲〉g g ,应缩短摆长B .因为乙甲〉g g ,应加长摆长C .因为乙甲g g <,应缩短摆长D .因为乙甲g g <,应加长摆长答案:D4.A 同一单摆放在甲地的振动频率为f 1,放在乙地的振动频率为f 2,那么甲、乙两地的重力加速度之比为( )A .21f fB .12f fC .2221f fD .2122f f 答案:C5.A 对于单摆振动过程,正确的是( )A .摆球机械能守恒.因为合外力为零B .摆球经过最低点,动能最大,动量值最大C .摆球向最高点摆动时,动能转化为势能,且因为克服重力做功而机械能减小D .摆球到最高点时,动能为零,势能最大答案:BD6.B 一物体在某行星表面受到的万有引力是它在地球表面受到的万有引力的41,在地球上走得很准的摆钟搬到此行星上后,此钟的分针走一整圈所经历的时间实际是() A .h 41 B .h 21 C .2h D .4h答案:C7.B 以平衡位置为坐标原点,单摆摆到平衡位置时,下列说法正确的是( )A .摆球所受的合力为零B .摆球的速度为零C .摆球的回复力为零D .摆球的位移为零答案:CD8.B 用空心铁球内部装水作摆球,若球的正下方有一小孔,水不断流出,从球内装满水到全部流出为止的过程中,其振动周期的大小是( )A .不变B .变大C .先变大后变小D .先变小后变大答案:C9.BA 、B 两个单摆,在同一地点A 全振动N 1次的时间内B 恰好全振动了N 2次,那么A 、B 摆长之比为( )A .2121)N N (B .2112)N N (C .221)N N (D .212)N N ( 答案:D二、填空题(每空8分,共24分)10.B 甲、乙两个单摆,甲的摆长为乙的4倍,甲摆的振幅是乙摆的3倍,甲摆球的质量是乙的2倍,那么甲摆动5次的时间里,乙摆动______次答案:1011.BA 、B 两单摆.当A 摆动20次,B 摆动30次,已知A 摆摆长比B 摆摆长短40cm ,则A 、B 两摆的摆长分别为______cm 和______cm答案:72;32三、计算题(每小题10分,共40分)12.C 如图所示,在O 点悬有一细绳,绳上串有一个小球B ,并能顺着绳子滑下来,在O 点正下方有一半径为R 的光滑圆弧,圆心位置恰好为O 点,在圆弧轨道上接近O ′处有另一小球A ,令A 、B 两球同时开始无初速度释放,若A 球第一次到达平衡位置时正好能够和B 碰上,则B 球与绳之间的摩擦力与B 球重力之比是多少?(计算时π2=10,g =9.8m /s 2)答案:1:513.C 在测量某地的重力加速度时,用了一个摆长为2m 的单摆测得100次全振动时间为284s .这个地方的重力加速度多大?若拿到月球(月球的重力加速度为1.6m /s 2)上去,单摆的周期变为多大?答案:9.8m /s 214.C 如图所示在一个半径为R 的光滑圆弧形轨道的圆心处有一个静止的小球A 在轨道的边缘处有一个小球B 设轨道长度远小于半径R ,让A 、B 两球同时由静止开始运动,通过计算说明哪一个球先到达轨道的最低点答案:A 球15.C (地震仪水平摆的周期)图所示是一种记录地震装置的水平摆,摆球固定在边长为l 、质量可忽略不计的等边三角形的顶点A 上,它的对边BC 跟竖直线成不大的夹角а,摆球可绕固定轴BC 摆动,求摆球微小摆动时的周期.答案:解法一:如图所示,过A 点做BC 的垂线,交BC 于O 点,OA 即为等效摆长,为l 23lsin60l =︒=',摆球在平衡位置时,把摆球的重力G 分解为与BC 平行的分力G 1和与BC 垂直的分力G 2,G 2=mgsin а其等效重力加速度g ′=gsinа,故该摆做微小摆动时的周期为αππ2gsin l 32g l 2T =''=. 解法二:若重力加速度不变时其等效摆长如图所示,αα2sin l 3sin60sin l l =︒='',同理可得αππ2gsin l 32g l 2T =''=。
2.4 单摆 练习题(解析版)

第二章机械振动2.4 单摆一、单选题:1.关于单摆,下列说法正确的是()A.摆球做匀速圆周运动B.摆球摆动到最低点时加速度为零C.摆球速度变化的周期等于振动周期D.摆球振动的频率与振幅有关C[摆球在摆动中速度大小是变化的,不是匀速圆周运动,A错误;摆球摆动到最低点时加速度不为零,受向上的合外力,故加速度竖直向上,B错误;摆球速度变化的周期以及位移变化的周期均等于振动周期,C正确;摆球振动的频率与振幅无关,只取决于摆长和当地的重力加速度,D错误.]2.有一个正在摆动的秒摆(T=2 s),若取摆球正从平衡位置向左运动时开始计时,那么当t=1.6 s时,以下对摆球的运动情况及其切向加速度变化情况正确的是()A.正在向左做减速运动,加速度正在增大B.正在向右做减速运动,加速度正在增大C.正在向右做加速运动,加速度正在减小D.正在向左做加速运动,加速度正在减小D[秒摆的周期是2 s,则摆球从平衡位置向左运动时开始计时,那么当t=1.6秒时,摆球从最右端向平衡位置做加速运动,由于位移在变小,故切向加速度也在变小.故D正确.]3.单摆做小角度摆动,其振动图像如图所示,以下说法正确的是()A.t1时刻摆球速度最大,摆球的回复力最大B.t2时刻摆球速度为零,悬线对它的拉力最小C .t 3时刻摆球速度为零,摆球的回复力最小D .t 4时刻摆球速度最大,悬线对它的拉力最大D [由图知t 1时刻小球处在最大位移处,速度为零,回复力最大,拉力最小,A 项错误;t 2时刻摆球处在平衡位置,其速度最大,回复力为零,拉力最大,故B 错误;t 3时刻摆球在最大位移处,速度为零,回复力最大,拉力最小,故C 项错误;t 4时刻摆球在平衡位置处,速度最大,回复力为零,但小球有竖直向上的加速度,处于超重状态,悬线对它的拉力最大,故D 正确.]4.将秒摆的周期由2 s 变为1 s ,下列措施可行的是( ) A .将摆球的质量减半 B .将振幅减半 C .将摆长减半D .将摆长减为原来的14D [秒摆的周期由2 s 变为1 s ,周期变为原来的12,由单摆周期公式T =2πlg可知,应将摆长减为原来的14,秒摆的周期与摆球的质量、振幅无关,故选项D 正确.]5.地球表面的重力加速度约为9.8 m/s 2,月球表面的重力加速度是地球表面的16,将走时准确的摆钟从地球放到月球上去,在地球上经过24 h ,该钟在月球上显示经过了( )A .4 hB .9.8 hC .12 hD .58.8 h B [由单摆的周期公式T =2πlg ,得T 地T 月=g 月g 地=16,即T 月=6T 地,则摆钟在月球上单位时间内完成的全振动的次数为在地球上的66,所以在地球上经过24 h ,该钟在月球上显示经过的时间为24×66h =4 6 h≈9.8 h ,选项B 正确.] 6.把在北京调准的摆钟,由北京移到赤道上时,摆钟的振动( ) A .变慢了,要使它恢复准确,应增加摆长 B .变慢了,要使它恢复准确,应缩短摆长 C .变快了,要使它恢复准确,应增加摆长 D .变快了,要使它恢复准确,应缩短摆长B [把标准摆钟从北京移到赤道上,重力加速度g 变小,则周期T =2πlg>T 0,摆钟显示的时间小于实际时间,因此变慢了.要使它恢复准确,应缩短摆长,B 项正确.]7.要将秒摆的周期由2 s 变为4 s ,下列措施可行的是( ) A .只将摆球质量变为原来的14B .只将振幅变为原来的2倍C .只将摆长变为原来的4倍D .只将摆长变为原来的16倍C [单摆的周期与摆球的质量和振幅均无关,A 、B 项均错误;对秒摆,T 0=2πl 0g=2 s ,对周期为4 s 的单摆,T =2πlg=4 s ,故l =4l 0,故C 项正确,D 项错误.] 8.利用盛砂的漏斗演示简谐运动,如果考虑漏斗里砂子逐渐减少,则砂摆的频率将( ) A .逐渐增大 B .逐渐减小 C .先增大后减小D .先减小后增大D [砂子逐渐减少,砂子和漏斗的重心将逐渐降低,砂子漏完后重心又升高,所以摆长先变长后变短,根据单摆周期公式T =2πlg知周期先变大后变小,频率先减小后增大,故选项D 正确.] 9.如图所示,曲面AO 是一段半径为2 m 的光滑圆弧面,圆弧与水平面相切于O 点,AO 弧长10 cm.现将一小球先后从曲面的顶端A 和AO 弧的中点B 由静止释放,到达底端O 的速度分别为v 1和v 2,所经历的时间分别是t 1和t 2,那么( )A .v 1<v 2,t 1<t 2B .v 1>v 2,t 1=t 2C .v 1=v 2,t 1=t 2D .上述三种都有可能B [因为AO 弧长远小于半径,所以小球从A 、B 处沿圆弧滑下可等效成小角度的单摆振动,即做简谐运动,其等效摆长为2 m ,单摆周期与振幅无关,因此t 1=t 2,又由于小球运动过程中机械能守恒,有mgh =12mv 2,解得v =2gh ,知v 1>v 2.]10.如图所示的几个相同单摆在不同条件下,关于它们的周期关系,其中判断正确的是( )(1) (2) (3) (4)A .T 1>T 2>T 3>T 4B .T 1<T 2=T 3<T 4C .T 1>T 2=T 3>T 4D .T 1<T 2<T 3<T 4C [题图(1)中,当摆球偏离平衡位置时,重力沿斜面的分力mg sin θ为等效重力,即单摆的等效重力加速度g 1=g sin θ;题图(2)中两个带电小球的斥力总与运动方向垂直,不影响回复力;题图(3)为标准单摆;题图(4)中摆球处于超重状态,等效重力增大,故等效重力加速度增大,g 4=g +a .由单摆振动的周期公式T =2πlg,知T 1>T 2=T 3>T 4,选项C 正确.] 二.多选题:11.如图所示,长度为l 的轻绳上端固定在O 点,下端系一小球(小球可以看成质点).在O 点正下方,距O 点3l4处的P 点固定一个小钉子.现将小球拉到点A 处,轻绳被拉直,然后由静止释放小球.点B 是小球运动的最低位置,点C (图中末标出)是小球能够到达的左侧最高位置.已知点A 与点B 之间的高度差为h ,h ≪l .A 、B 、P 、O 在同一竖直平面内,当地的重力加速度为g ,不计空气阻力,下列说法正确的是( )A .点C 与点B 高度差小于h B .点C 与点B 高度差等于h C .小球摆动的周期等于3π2l g D .小球摆动的周期等于3π4l gBC [不计空气阻力,小球在整个运动过程中机械能守恒,故运动到左侧最高点C 与A 等高,与B 相差h ,A 错误,B 正确.当小球从A 点开始,再回到A 点时为一个周期,是两个半周期之和,即T =12T 1+12T 2=12×2πl g +12×2π×l 4g=πl g +π2l g =3π2lg,故C 正确,D 错误.] 12.一个单摆做小角度摆动,其振动图象如图所示,以下说法正确的是( )A .t 1时刻摆球速度为零,悬线对它的拉力最小B .t 2时刻摆球速度最大,但加速度不为零C .t 3时刻摆球速度为零,悬线对它的拉力最大D .t 4时刻摆球速度最大,悬线对它的拉力最大E .t 4时刻摆球所受合力为零解析:由振动图象可知:t 1和t 3时刻摆球偏离平衡位置的位移最大,此时摆球速度为零,悬线对摆球的拉力最小;t 2和t 4时刻摆球位移为零,正在通过平衡位置,速度最大,悬线对摆球的拉力最大.故正确答案为A 、B 、D.答案:ABD13.如图所示,用绝缘细丝线悬挂着的带正电的小球在匀强磁场中做简谐运动,则( )A .当小球每次通过平衡位置时,动能相同 B.当小球每次通过平衡位置时,速度相同C .当小球每次通过平衡位置时,丝线拉力不相同D .磁场对摆的周期无影响E .撤去磁场后,小球摆动周期变大解析:小球在磁场中运动时,由于洛伦兹力不做功,所以机械能守恒.运动到最低点,球的速度大小相同,但方向可能不同,A 项正确,B 项错误.小球从左、右两方向通过最低点时,向心力相同,洛伦兹力方向相反,所以拉力不同,C 项正确.由于洛伦兹力不提供回复力,因此有无磁场,不影响振动周期,D 项正确,E 项错误.答案:ACD 三.非选择题:14.若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减小为原来的12,则单摆摆动的频率________,振幅变________. 解析:单摆的周期和频率由摆长和当地的重力加速度决定,与摆球的质量和速度无关;另外由机械能守恒定律可知,摆球经过平衡位置的速度减小了,则摆动的最大高度减小,振幅减小.答案:不变 小15.把在北京调准的摆钟,由北京移到赤道上时,摆钟的振动变________了,要使它恢复准确,应________摆长.解析:把标准摆钟从北京移到赤道上,重力加速度g 变小,则周期T =2πlg>T 0,摆钟显示的时间小于实际时间,因此变慢了,要使它恢复准确,应缩短摆长.答案:慢 缩短16.在月球上周期相等的弹簧振子和单摆,把它们放到地球上后,弹簧振子的周期为T 1,单摆的周期为T 2,则T 1和T 2的关系为________.解析:弹簧振子的周期与重力加速度无关,故其周期不变;单摆的周期为T =2πLg,由于g 的增大,故单摆的周期减小,故有T 1>T 2.答案:T 1>T 217.摆长为l 的单摆做简谐运动,若从某时刻开始计时(即取作t =0),当振动至t =3π2lg时,摆球恰具有负向最大速度,画出单摆的振动图象.解析:t =3π2l g =34T ,最大速度时,单摆应在平衡位置,y =0,v 方向为-y ,沿y 轴负方向.答案:18.将秒摆的周期变为4 s,应怎样调摆长?解析:单摆的周期与摆球的质量和振幅均无关,对秒摆,T0=2πl0g=2 s,对周期为4 s的单摆,T=2πlg=4 s,故l=4l0.答案:将单摆的摆长变为原来的4倍19.图甲是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右方向运动为正方向.图乙是这个单摆的振动图像.根据图像回答:甲乙(1)单摆振动的频率是多大?(2)开始时刻摆球在何位置?(3)若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少.[解析](1)由乙图知周期T=0.8 s,则频率f=1T=1.25 Hz.(2)由乙图知,0时刻摆球在负向最大位移处,因向右为正方向,所以在B点.(3)由T=2πLg得L=gT24π2=0.16 m.[答案](1)1.25 Hz(2)B点(3)0.16 m20.将一测力传感器连接到计算机上就可以测量快速变化的力.如图甲中O点为单摆的固定悬点,现将小摆球(可视为质点)拉至A点,此时细线处于张紧状态,释放摆球,则摆球将在竖直平面内的A、B、C之间来回摆动,其中B点为运动中的最低位置,≪AOB=≪COB=α,α小于10°且是未知量.图乙是由计算机得到的细线对摆球的拉力大小F 随时间t 变化的曲线,且图中t =0时刻为摆球从A 点开始运动的时刻.试根据力学规律和题中(包括图中)所给的信息,求:(g 取10 m/s 2)甲 乙(1)单摆的振动周期和摆长; (2)摆球的质量;(3)摆球运动过程中的最大速度.[解析] (1)由题图乙可知单摆的周期T =0.4π s ,由T =2πl g, 得摆长l =T 2g4π2=0.4 m.(2)在B 点拉力的最大值为F max =0.510 N.F max -mg =mv 2l.在A 、C 两点拉力最小F min =0.495 N ,F min =mg cos α, A →B 过程机械能守恒,即mgl (1-cos α)=12mv 2,由以上各式解得m =0.05 kg. (3)由F max -mg =mv 2maxl可得,v max ≈0.283 m/s.[答案] (1)0.4π s 0.4 m (2)0.05 kg (3)0.283 m/s。
《单摆》典型例题

《单摆》典型例题例1:关于单摆的说法,正确的是()A.单摆摆球从平衡位置运动到正的最大位移处时的位移为A(A为振幅),从正的最大位移处运动到平衡位置时的位移为-A.B.单摆摆球的回复力等于摆球所受的合外力C.单摆摆球的回复力是摆球重力沿运动轨迹切线方向的分力D.单摆摆球经过平衡位置时加速度为零出题目的:此题主要考查单摆摆动中的回复力掌握情况.解析:简谐运动中的位移是以平衡位置作为起点,摆球在正向最大位移处时位移为A,在平衡位置时位移应为零,摆球的回复力由合外力沿圆弧切线方向的分力(等于重力沿圆弧切线方向的分力)提供,合外力在摆线方向的分力提供向心力,摆球经最低点(振动的平衡位置)时回复力为零,但向心力不为零,所以合外力不为零,(摆球到最高点时,向心力为零,回复力最大,合外力也不为零).正确选项为C.例2:如图所示,MN为半径较大的光滑圆弧轨道的一部分,把小球A放在MN的圆心处,再把另一小球B放在MN上离最低点C很近的B处,今使两球同时自由释放,则在不计空气阻力时有().A.A球先到达C点B.B球先到达C点C.两球同时到达C点D.无法确定哪一个球先到达C点出题目的:此题考查单摆周期公式的灵活运用情况.解析:做自由落体运动,到C所需时间,R为圆弧轨道的半径.因为圆弧轨道的半径R很大,B球离最低点C又很近,所以B球在轨道给它的支持力和重力的作用下沿圆弧作简谐运动(等同于摆长为R的单摆),则运动到最低点C所用的时间是单摆振动周期的,即,所以A球先到达C点.例3:如图所示为一双线摆,它是在一水平天花板上用两根等长细线悬挂一小球而构成,每根摆线的长均为l,摆线与天花板之间的夹角为,当小球在垂直纸面的平面内做简谐运动时,其振动的周期是多少?出题目的:此题主要考查振动周期公式中摆长的实际确定.解析:双线摆可等效为摆长为的单摆,利用单摆振动的周期公式得双线摆的周期为。
例4:北京地区重力加速度,南京地区重力加速度。
单摆练习和详解

单摆练习题和详解1.判断下列说法的正误.(1)单摆运动的回复力是重力和摆线拉力的合力.(×)(2)单摆经过平衡位置时受到的合力为零.(×)(3)制作单摆的摆球越大越好.(×)(4)若单摆的振幅变为原来的一半,则周期也将变为原来的一半.(×)(5)一个单摆在月球上摆动的周期大于其在地球上摆动的周期.(√)2.一个理想的单摆,已知其周期为T.如果由于某种原因重力加速度变为原来的2倍,振幅变为原来的3倍,摆长变为原来的8倍,摆球质量变为原来的2倍,2T它的周期变为_____3.(多选)单摆是为研究振动而抽象出的理想化模型,其理想化条件是() A.摆线质量不计B.摆线不可伸缩C.摆球的直径比摆线长度小得多D.只要是单摆的运动就是一种简谐运动答案ABC解析单摆由摆线和摆球组成,摆线只计长度不计质量,摆球只计质量不计大小,且摆线不可伸缩.只有在摆角很小(θ≤5°)的情况下才能视单摆运动为简谐运动.故正确答案为A、B、C.4(单选)关于单摆,下列说法中正确的是()A.摆球运动的回复力是它受到的合力B.摆球在运动过程中经过轨迹上的同一点,加速度是不变的C.摆球在运动过程中加速度的方向始终指向平衡位置D.摆球经过平衡位置时,加速度为零答案 B解析摆球的回复力为重力沿轨迹切线方向的分力,A错误;摆球经过最低点时,回复力为0,但合力提供向心力,C、D错误;由简谐运动特点知B正确.5.(多选)关于单摆的运动,下列说法中正确的是()A.单摆的回复力是摆线的拉力与重力的合力B.单摆的回复力是重力沿摆球运动轨迹切向的分力C.摆球做匀速圆周运动D.单摆做简谐运动的条件是最大偏角很小,如小于5°答案BD解析单摆的回复力是重力沿摆球运动轨迹切向的分力,千万不要误认为是摆球所受的合外力,所以A错误,B正确;单摆在摆动过程中速度大小是变化的,不是匀速圆周运动,C错误;在摆角很小时,单摆近似做简谐运动,D正确.6(单选)图中O点为单摆的固定悬点,现将摆球(可视为质点)拉至A点,此时细线处于张紧状态,释放摆球,摆球将在竖直平面内的A、C之间来回摆动,B 点为运动中的最低位置,则在摆动过程中( D )A.摆球在A点和C点处,速度为零,合力也为零B.摆球在A点和C点处,速度为零,回复力也为零C.摆球在B点处,速度最大,回复力也最大D.摆球在B点处,速度最大,细线拉力也最大解析摆球在摆动过程中,最高点A、C处速度为零,回复力最大,合力不为零,在最低点B处,速度最大,回复力为零,细线的拉力最大.7(单选)如图所示,α<5度,单摆的周期为T,则下列说法正确的是( C )A.把摆球质量增加一倍,其它条件不变,则单摆的周期变小B.把摆角α变小,其它条件不变,则单摆的周期变小C.将此摆从地球移到月球上,其它条件不变,则单摆的周期将变长D.将单摆摆长增加为原来的2倍,其它条件不变,则单摆的周期将变为2T解析根据单摆的周期公式T =2πlg知,周期与摆球的质量和摆角无关,摆长增加为原来的2倍,周期变为原来的2倍,故A、B、D错误;月球表面的重力加速度小于地球表面的重力加速度,由周期公式T=2πlg知将此摆从地球移到月球上,单摆的周期将变长,C正确.8(单选)如图5所示,三根细线在O点处打结,A、B端固定在同一水平面上相距为l的两点上,使△AOB成直角三角形,∠BAO=30°,已知OC线长也是l,下端C点系着一个小球,下列说法正确的是(以下皆指小角度摆动,重力加速度为g) ( A )A.让小球在纸面内振动,周期T=2πl gB.让小球在垂直纸面内振动,周期T=2π3l 2gC.让小球在纸面内振动,周期T=2π3l 2gD.让小球在垂直纸面内振动,周期T=2πl g9.(对单摆回复力的理解)(多选)一单摆做小角度摆动,其振动图象如图所示,以下说法正确的是 ( C D )A.t1时刻摆球速度为零,摆球的合外力为零B.t2时刻摆球速度最大,悬线对它的拉力最小C.t3时刻摆球速度为零,摆球的回复力最大D.t4时刻摆球速度最大,悬线对它的拉力最大解析 由题图读出t1时刻位移最大,说明摆球在最大位移处,速度为零,回复力最大,合外力不为零,故A 错误;t2时刻位移为零,说明摆球在平衡位置,摆球速度最大,悬线对它的拉力最大,故B 错误;t3时刻位移最大,说明摆球在最大位移处,速度为零,回复力最大,故C 正确; t4时刻位移为零,说明摆球在平衡位置,摆球速度最大,悬线对它的拉力最大,故D 正确.10.(单摆的周期公式)(多选)图为甲、乙两单摆的振动图象,则 ( BD )A.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比l甲∶l 乙=2∶1B.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比l甲∶l 乙=4∶1C.若甲、乙两单摆摆长相同,且在不同的星球上摆动,则甲、乙两单摆所在星球的重力加速度之比g 甲∶g 乙=4∶1D.若甲、乙两单摆摆长相同,且在不同的星球上摆动,则甲、乙两单摆所在星球的重力加速度之比g 甲∶g 乙=1∶4解析 由题图可知T 甲∶T 乙=2∶1,根据公式单摆周期公式T =2πl g . 若两单摆在同一地点,则两单摆摆长之比为L 甲∶L 乙=4∶1,故A 错误,B 正确;若两单摆摆长相等,则所在星球的重力加速度之比为g 甲∶g 乙=1∶4,故C 错误,D 正确.11.(多选)如图1所示为单摆的振动图象,取g =10 m/s 2,根据此振动图象能确定的物理量是( )图1解析 让小球在纸面内振动,在偏角很小时,单摆做简谐运动,摆长为l ,周期T =2πlg ;让小球在垂直纸面内振动,在偏角很小时,单摆做简谐运动,摆长为(34l +l ),周期T ′=2π(34+1)l g ,A 正确,B 、C 、D 错误.A.摆长B.回复力C.频率D.振幅答案ACD解析由题图知,单摆的周期为T=2 s,由单摆的周期公式T=2πlg得摆长l≈1m,振幅为A=3 cm,频率f=1T=0.5 Hz,摆球的回复力F=-xl mg,由于摆球的质量未知,无法确定回复力,A、C、D正确.12单选.做简谐运动的单摆,其摆长不变,若摆球的质量增加为原来的94倍,摆球经过平衡位置的速度减为原来的23,则单摆振动的()A.周期不变,振幅不变B.周期不变,振幅变小C.周期改变,振幅不变D.周期改变,振幅变大答案 B解析由单摆的周期公式T=2πlg可知,当摆长l不变时,周期不变,故C、D错误;由能量守恒定律可知12m v2=mgh,其摆动的高度与质量无关,因平衡位置的速度减小,则最大高度减小,即振幅减小,选项B正确,A错误.13.(多选)如图3甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x随时间t变化的图象如图乙所示.不计空气阻力,g取10 m/s2.对于这个单摆的振动过程,下列说法中正确的是()图3A.单摆的位移x随时间t变化的关系式为x=8sin (πt) cm B.单摆的摆长约为1 mC.从t=2.5 s到t=3 s的过程中,摆球的重力势能逐渐增大D.从t=2.5 s到t=3 s的过程中,摆球所受绳子拉力逐渐减小答案AB解析由振动图象可读出周期T=2 s,振幅A=8 cm,由ω=2πT得到圆频率ω=π rad/s,则单摆的位移x随时间t变化的关系式为x=A sin ωt=8sin (πt) cm,故A正确.由公式T=2πlg,代入得到l≈1 m,故B正确.从t=2.5 s到t=3s的过程中,摆球从最高点运动到最低点,重力势能减小,摆球的位移减小,回复力减小,速度增大,所需向心力增大,绳子的拉力增大,故C、D错误.14小明家从广州搬到北京去,搬家时把家中的大摆钟也带到北京去了.问:1.这个摆钟到北京后是否还准时?2.若不准,是偏慢还是偏快?3.如须调整应该怎样调节?1不准时,重力加速度变大了,周期改变2纬度升高g变大,T变小,偏快3由公式T=2πlg可知,摆长变长些。
单摆实验题练习题

金榜教育单摆实验题练习题1. 在探究影响单摆周期的因素的实验中(1)同学甲有如下操作,请判断是否恰当(填 “是”或“否”)。
增大而增大。
(2)同学乙实验时,为了将人工记录振动次数改为自动记录振动次数,设计如 图 A 所示的装置,若摆球在垂直纸面的平面内摆动,在摆球运动最低点的左、右两侧 变化图线如图 B 所示,则该单摆的振动周期为 。
若保持悬点到小球顶点的绳长不变,改用直径是原小球直径一半的另一小球进行实验,则该单摆的周期将 (填“变大”、“不变”或“变小”) 。
1013分别放置一激光 光源与光敏电阻 与某一自动记录 仪相连,该仪器 显示的光敏电阻 阻值 R 随时间 t①把单摆从平衡位置拉开约 5°释放;②在摆球经过最低点时启动秒表计时;③把秒表记录摆球一次全振动的时间作为周期。
市)乙甲2. 在“用单摆测定重力加速度”的实验中,将一单摆装置竖直悬于某一深度为 h (未 知)且开口向下的固定小筒中 (单摆的下部分露于筒外),如图甲所示。
将悬线拉离平衡位置 一个小角度后由静止释放, 设单摆摆动过程中悬线不会碰到筒壁。
如果本实验的长度测量工 具只能测量出筒下端口到摆球球心之间的距离 l ,并通过改变 l 而测出对应的摆动周期 T ,再以 T 2为纵轴、l 为横轴,作出T2 - l 图象,则可以由此图象得出我们想要测量的物理量。
(1)现有如下测量工具:A.时钟;B.秒表;C.天平;D.毫米刻度尺,本实验所需的测量工具有____________ 。
(2)如果实验中所得到的T 2- l 关系图象如图乙所示,那么真正的图象应该是a、b、c 中的。
________(3)由图象可知,小筒的深度 h =______________cm;当地重力加速度1金榜教育3. 某同学利用如右图所示的装置测量当地的重力加速度。
实验步骤如下:A .按装置图安装好实验装置;B .用三角尺测量小球的直径 d ;C .用米尺测量悬线的长度 l ;D .让小球在竖直平面内小角度摆动。
(完整word版)单摆习题及答案

单摆习题及答案1 •如图所示是、乙两个单摆做简谐运动的图象,贝U下列说法中正确的是()A•甲、乙两单摆的振幅之比为2: 1B. t=2s时,甲单摆的重力势能最大,乙单摆的动能为零C•甲、乙两单摆的摆长之比为4: 1D.甲、乙两单摆摆球在最低点时向心加速度大小一定相等2. 在同一地点,两个单摆的摆长之比为4: 1,摆球的质量之比为1: 4,则它们的频率之比为A. 1 : 1B. 1: 2C. 1: 4D. 4: 13. 在同一地点,关于单摆的周期,下列说法正确的是()A. 摆长不变,离地越高,周期越小B.摆长不变,摆球质量越大,周期越小C•摆长不变,振幅越大,周期越大D.单摆周期的平方与摆长成正比4. 在用单摆测定重力加速度”的实验中,有同学发现他测得重力加速度的值偏大,其原因可能是()A. 悬点未固定紧,振动中出现松动,使摆线增长了B•单摆所用摆球质量太大C•把(n+1)次全振动时间误当成n次全振动时间D.开始计时时,秒表过迟按下5. 如图所示,一单摆在做简谐运动.下列说法正确的是()A. 单摆的振幅越大,振动周期越大B.摆球质量越大,振动周期越大C. 若将摆线变短,振动周期将变大D. 若将单摆拿到月球上去,振动周期将变大6. —单摆的摆长为90cm,摆球在t=0时刻正从平衡位置向右运动,(g取10m/s2),则在t=1s时摆球的运动情况是()A. 正向左做减速运动,加速度正在增大B.正向左做加速运动,加速度正在减小C.正向右做减速运动,加速度正在增大D.正向右做加速运动,加速度正在减小7.在用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F随时间t变化的图象如图所示,已知单摆的摆长为1, V v则重力加速度g为()f It M10. 一位同学做 用单摆测定重力加速度”的实验。
(1) 下列是供学生自主选择的器材。
除了铁架台和相关配件,你认为还应选用的器材 是 _______ 0 (填写器材的字母代号) A.约1m 长的细线B .约0.3m 长的铜丝C .约0.8m 长的橡皮筋D .直径约1cm 的实心木球 E.直径约1cm 的实心钢球 F .秒表 G.天平H .米尺(2) 该同学在安装好实验装置后,测得单摆的摆长为 L ,然后让小球在竖直平面内小角度摆 动。
(完整版)单摆习题及答案

单摆习题及答案1.如图所示是、乙两个单摆做简谐运动的图象,则下列说法中正确的是()A.甲、乙两单摆的振幅之比为2:1B.t=2s时,甲单摆的重力势能最大,乙单摆的动能为零C.甲、乙两单摆的摆长之比为4:1D.甲、乙两单摆摆球在最低点时向心加速度大小一定相等2.在同一地点,两个单摆的摆长之比为4:1,摆球的质量之比为1:4,则它们的频率之比为A.1:1B.1:2C.1:4D.4:13.在同一地点,关于单摆的周期,下列说法正确的是()A.摆长不变,离地越高,周期越小B.摆长不变,摆球质量越大,周期越小C.摆长不变,振幅越大,周期越大D.单摆周期的平方与摆长成正比4.在“用单摆测定重力加速度”的实验中,有同学发现他测得重力加速度的值偏大,其原因可能是()A.悬点未固定紧,振动中出现松动,使摆线增长了B.单摆所用摆球质量太大C.把(n+1)次全振动时间误当成n次全振动时间D.开始计时时,秒表过迟按下5.如图所示,一单摆在做简谐运动.下列说法正确的是()A.单摆的振幅越大,振动周期越大B.摆球质量越大,振动周期越大C.若将摆线变短,振动周期将变大D.若将单摆拿到月球上去,振动周期将变大6.一单摆的摆长为90cm,摆球在t=0时刻正从平衡位置向右运动,(g取10m/s2),则在t=1s时摆球的运动情况是()A.正向左做减速运动,加速度正在增大B.正向左做加速运动,加速度正在减小C.正向右做减速运动,加速度正在增大D.正向右做加速运动,加速度正在减小7.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F随时间t变化的图象如图所示,已知单摆的摆长为l,则重力加速度g为()A.B.C.D.8.如图所示,一摆长为l的单摆,在悬点的正下方的P处固定一光滑钉子,P与悬点相距l﹣l′,则这个摆做小幅度摆动时的周期为()A.2πB.2πC.π(+)D.2π9.将秒摆的周期变为4s,下面哪些措施是正确的()A.只将摆球质量变为原来的B.只将振幅变为原来的2倍C.只将摆长变为原来的4倍D.只将摆长变为原来的16倍10.一位同学做“用单摆测定重力加速度”的实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单摆练习题
姓名 _________
1用细线悬挂一小球,上端固定,如果悬挂小球的细线的 ______ 和 _____ 可以忽略,线
长又比球的直径 _____ ,这样的装置叫做单摆•单摆是 ______________ 模型
2、 单摆的回复力为摆球重力沿 _____________ 方向的分力•单摆做简谐运动的条件是最大
摆角 ________ ,所受回复力与偏离平衡位置的位移大小成 ___________ ,而方向指向 _________ 3、 单摆的周期公式 T = _____________ ;单摆的等时性是指周期与 ______________ 无关•单摆 的摆长L 是指从 _____ 到 _____ 的距离。
4、 单摆做简谐运动的图象是 _______________________ 曲线。
5、提供单摆做简谐运动的回复力的是 ( )
A .摆球的重力 C.摆线的拉力 B.摆球重力沿圆弧切线的分力
D .摆球重力与摆线拉力的合力
6、 对单摆的振动,以下说法中正确的是(
) A. 单摆摆动时,摆球受到的向心力大小处处相等 B. 单运动的回复力是摆球所受合力
C. 摆球经过平衡位置时所受回复力为零
D. 摆球经过平衡位置时所受合外力为零
7、 做简谐振动的单摆,在摆动的过程中 ( )
A. 只有在平衡位置时,回复力才等于重力和细绳拉力的合力
B. 只有在最高点时,回复力才等于重力和细绳拉力的合力
C. 小球在任意位置处,回复力都等于重力和细绳拉力的合力
D. 小球在任意位置处,回复力都不等于重力和细绳拉力的合力
&用空心铁球内部装满水做摆球,球正下方有一小孔,水不断从孔中流出,从球内装满 水到水流完为止的过程中,其周期的变化是()
9、某一单摆的周期为 2s,现要将该摆的周期变为 4s,下面措施中正确的是( )
A. 将摆球质量变为原来的 1/4 B .将振幅变为原来
的 2倍
C.将摆长变为原来的 2倍 D .将摆长变为原来的 4倍
11、单摆摆长为98cm,开始计时时摆球经过平衡位置向右运动
,当t=时,对单摆运动描述正 确的是(
)
A .不变
B .变大
C.先变大后变小回到原值
D .先变小后变大回到原值
10、A 、B 两个单摆,在同一地点A 全振动N i 次的时间内
B 恰好全振动了 N 2次,那么A 、 C.时仁「
A.正在向左做减速运动,加速度正在增大
B.正在向左做加速运动,加速度正在减小
C.正在向右做减速运动,加速度正在增大
D.正在向右做加速运动,加速度正在增大
12、同一单摆放在甲地的振动频率为f i,放在乙地的振动频率为f2,那么甲乙两地的重力加速度之比为()
f2 f l f22D. f22/f l2
13、摆长为L的单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至时,
摆球
具有
负向
最大
速
度,
则单
摆的
振动图象是图中的()
14、一绳长为L的单摆,在悬点正下方摆的周期是()
B.T=2n L'
V g
15、对于单摆振动过程,正确的是()
A.摆球机械能守恒,因为合外力为零
B.摆球经过最低点,动能最大,动量值最大
C.摆球向最高点摆动时,动能转化为势能,且因为克服重力做功而机械能减小
D.摆球到最高点时,动能为零,势能最大
16、将秒摆改为频率1Hz的摆,应采取()
A.摆球质量为原来的1/4
B.振幅减小
C.摆长变为原来的4倍
D.摆长为原来的1/4
17、同一地点的甲、乙两单摆的振动图象如图所示,
A.甲乙两单摆的摆长相等
B.甲摆的机械能比乙摆小
C.甲的最大速率比乙小
4周期振子具有正向加速度的是乙18、一个摆
钟从甲地拿到乙地,它的钟摆摆动加快了,对此现象的分析及调准方法的叙述正确的是()
A. g甲〉g乙,将摆长适当增长
B. g甲〉g乙,将摆长适当缩短
C. g甲v g乙,将摆长适当增长
D. g甲v g乙,将摆长适当缩短19、已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m •则两单摆摆长l a与l b分别为()
(L—L')处的P处有一个钉子,如图所示,这个
A.T =
A. l a= 2.5 m, l b= 0.9 m
B. I a= 0.9 m , l b= 2.5 m
C. l a= 2.4 m,l b = 4.0 m
D. l a= 4.0 m , l b= 2.4 m
25、有一摆长为L 的单摆,在悬点正下方有一小钉,使摆球每次经过最低点 P 时,摆长
均发生变化,现用频闪照相的办法拍下小球从左边最高点 M 开始运动后的振动情况 (悬点和小钉未被拍入),如图 3为拍得的照片,已知 M 点与N 点等高,则小钉距
悬点的距离为()
4 2
C. 3L/4
D.条件不足,无法判断
20、如图是甲、乙两个单摆做简谐运动的图象,以向右的方向作为摆球偏离平衡位置位
移的正方向,从t = 0时刻起,当甲第一次到达右方最大位移处时 ( )
A. 乙在平衡位置的左方,正向右运动
B. 乙在平衡位置的左方,正向左运动
C. 乙在平衡位置的右方,正向右运动
D. 乙在平衡位置的右方,正向左运动
21、如图所示,A 、B 分别为单摆做简谐振动时摆球的不同位置•其中,位置
A 为摆球摆 动的最高位置,虚线为过悬点的竖直线•以摆球最低位置为重力势能零点,则摆球在 摆动过程中( )
A .位于
B 处时动能最大
B .位于A 处时势能最大 C.在位置A 的势能大于在位置 B 的动能
D .在位置B 的机械能大于在位置 A 的机械能
22、若单摆的摆长不变,摆球的质量增加为原来的
小为原来的1/2,则单摆振动的 () 4倍,摆球经过平衡位置时的速度减
A.频率不变,振幅不变
B.频率不变,振幅改变
C.频率改变,振幅改变
D.频率改变,振幅不变
23、细长轻绳下端拴一小球构成单摆, 在悬点正下方一半摆长处有一能挡住摆线的钉子
如图所示,现将单摆向左方拉开一个小角度,然后无初速释放,对于以后的运动,
下列说法正确的是()
A. 摆球运动往返一次的周期比无钉子时的单摆周期小
B. 摆球在左右两侧上升的最大高度一样
C. 摆球在平衡位置左右两侧走过的最大弧长相等
D. 摆线在平衡位置右侧的最大摆角是左侧的两倍
24、左图所示是演示简谐运动图象的装置, 当盛沙漏斗下面的薄木板 N 被匀速地拉出时,
摆动着的漏斗中漏出的沙在板上形成的曲线显示摆的位移随时间变化的关系,板上 的直线OO i 代表时间轴。
右图所示是两个摆中的沙在各自木板上形成的曲线,若板
N i 和N 2拉动的速度 V i 和V 2的关系为V 2=2 V i ,则板N i 、N 2上曲线所代表的振动的 周期T i 和T 2的关系为()
A. T 2 = T i
B. T 2 = 2T i
C. T 2 = 4T i
26、为估算某山顶高度,某同学爬到该座山顶,他用单摆测出其周期为T,然后他把此单
摆拿到海平面处测得周期为T o,他查表得知地球的半径为R,由此他估算出山顶到海平面的高度。
27、甲,乙两单摆在同一地点,甲摆振动35次的时间内乙摆振动了21次,如果甲单摆
的摆长为45厘米,则乙的摆长为多少
28、将一水平木板从一沙摆(可视为简谐运动的单摆) 下面以a=0.2 m/s2的加速度匀加速地水平抽出,板上留下的沙迹如图11-4-2所示,量得OQ2 =4 cm,O2O3=9 cm,O3O4=14 cm,试求沙摆的振动周期和摆长.(g=10 m/s2)
图11-4-2
29、如图11-4-4所示,光滑的半球壳半径为R,0点在球心的正下方,一小球由距0点很近的A点由静止放开,同时在O点正上方有一小球自由落下,若运动中阻力不计,为使
两球在o点相碰,小球由多高处自由落下( 11■ << R).。