第六章数据的收集与整理单元测试(一)

合集下载

《数据的收集、整理与描述》单元测试题

《数据的收集、整理与描述》单元测试题

维普资讯
5 某 校八 年级 和 九年级 的人 数统计 如 图 , 下列说 法 正确 的是 ( . 则
A. 八年 级女生 比九年级 女生 人数 少 B 八 年级男 生 比九年 级男 生人 数多 . C 九年 级男 女生 比例 为 2: . 3 D 两年 级男生 总人 数 与女生 总人 数 的 比为 1 1 . 1:4
是 — — 年.

人.
1 . 图是 某 空 调 厂 19 2下 99~2 0 07年 产 值 增 长 情 况 统 计 折 线 图 , 则 产 值 增 长 最 快 的 年 份
1. 3 在一 次抽样 调查 中收集 了一 些数据 , 并对 数据进 行分组 , 绘成 了 以下频 数分 布表 :
( ) -4 组 (95 7 .) 2 第 , 6 . 95 的频数是 — ~

, 频率 是 —


1. 4 某文具 店第 一季度 的收入 与支 出统 计如 下图 . 文具店 纯收入 最多 的月价是 该
4 2
_ — —
2 8 2 0
V 1

厂I ]【
第 1 图 4题
第 1 5题 图
A 20 . 0 3年农村 居 民人 均 收入 低于 2 0 0 2年 B 农村 居 民人 均收入 比上年 增长率 低于 9 的有 2年 . % C 农村 居民人 均收 入最多 的是 2 0 . O 4年
D 农 村居 民人均 收入每 年 比上 一年 的增长率 有大 有小 , 农村 居 民人均 收入在 持续增 加 . 但
( ) 年
第 3 图 题

第 4题 图
如 图为某健 身馆 每年底对 新增会 员人 数 的统 计 图 , 则下列说 法错误 的是 (

苏教版二年级下册数学单元测试《数据的收集和整理》(含答案)

苏教版二年级下册数学单元测试《数据的收集和整理》(含答案)

二年级下册数学单元测试-8.数据的收集和整理(一)一、单选题1.下面是某班同学出生的季节的统计表,出生在春季的人数是()。

A. 10B. 12C. 14D. 72.想一想,选不是同类的一个。

()A. B. C.3.下面哪一个物体与其它的不同?A. B. C.二、判断题4.运用分组整理数据的办法,可以了解一组数据的分布情况.5.动物园有5只猴子、3只老虎和8只狼,则猴子和老虎的总数和狼的数量相等6.可以用画“正”字的方法整理原始数据.三、填空题7.小明所在班级要进行投票选举班长,用________记票方式较方便8.看图,填一填。

爷爷、奶奶、弟弟、老师中与其他不同的是________ 。

9.请你对树分类。

A. ;B. ;C. ;D. ;E.按落叶和不落叶分,落叶的有:________ ,不落叶有:________ ;按用途分,提供水果的有:________ ,提供木材的有:________ 。

10.数一数,画一画,填一填。

有________种图形,最少是:________四、解答题11.把每行中不同的用○画一画。

12.气象小组把6月份的天气作了如下记录:晴天:雨天:阴天:1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30(1)把晴天、雨天、阴天的天数分别填在下面的统计表中。

天气名称晴天雨天阴天天数________ ________ ________(2)从上表中可以看出:这个月中________的天数最多,________的天数最少。

(3)这个月中晴天比雨天多________。

(4)你还能提出什么问题并解答?13.请你分一分,然后把不同类的圈出来。

(1)(2)(3)五、应用题14.下面是二年级同学最喜欢的体育活动情况(1)根据调查结果完成统计表(2)你认为学校应该准备哪些体育器材?(3)你还能提成哪些数学问题并解答?参考答案一、单选题1.【答案】C【解析】【解答】出生在春季的人数是14人。

北京第十八中学七年级数学下册第六单元《数据的收集、整理与描述》测试(有答案解析)

北京第十八中学七年级数学下册第六单元《数据的收集、整理与描述》测试(有答案解析)

一、选择题1.下列调查中,适合采用全面调查方式的是()A.对南宁邕江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对市场上某种雪糕质量情况的调查D.对本班45名学生身高情况的调查2.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了100名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是100C.1000名学生是总体D.被抽取的每一名学生称为个体3.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,404.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有50人,则参加人数最多的小组有()A.50人B.70人C.80人D.200人5.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°6.北京市体育中考现场共有三个项目,分为耐力、素质和球类,其中耐力为男子1000米跑,女子800米跑.所有同学都要参加,此外,参加考试的同学需在素质和球类项目中分别选择一项参加考试,选项规则如表1所示:表1:北京市体育中考现场考试选项规则小宇对初三A班40名同学的体育选项情况进行了统计,并根据其中部分信息绘制了表2表2:初三4班体育中考选项情况统计表以下有四个推断①一定有女生选择了实心球②一定有男生同时选择了引体向上和足球绕杆③至少有一名女生同时选择仰卧起坐和足球绕杆④男生中同时选择实心球和篮球绕杆的至多5人所有合理推断的序号是()A.①②B.①③C.②④D.③④7.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④8.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本9.下列调查中,适宜采用全面调查方式的是()A.调查某中学七年级三班学生视力情况B.调查我市居民对“垃圾分类”有关内容的了解程度C.调查某批次汽车的抗撞击能力D.了解一批手机电池的使用寿命10.将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A.24 B.26 C.0.24 D.0.2611.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:()A.0.5 B.0.6 C.5 D.612.某市在2020年“防欺凌,反暴力,预防青少年犯罪”主题教育活动中,为了解甲、乙两所学校学生对生命安全知识掌握情况,小安同学制定了如下方案,你认为最合理的是()A.抽取甲校初二年级学生进行调查B.在乙校随机抽取200名学生进行调查C.随机抽取甲、乙两所学校100名老师进行调查D.在甲、乙两所学校各随机抽取100名学生进行调查二、填空题13.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________14.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答问题:若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为_______人.15.为了解七年级学生对年级设置的4门校本课程的选修情况,年级长对本年级所有七年级学生的课程选修数据进行收集,并绘制成如图的扇形统计图,若参加“七彩数学”的人数为120人,则参加“STEAM课程”的人数是__________.16.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最多的小组有80人,则参加人数最少的小组有_____人.17.小晖统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次201596数)则通话时间不超过10min的频率为____.18.为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:cm)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是____.19.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是_________度.20.为了解某九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测、、、四个等级,绘制成如下不完整的统计图表,根据图表信息,那试成绩分为A B C D么扇形图中表示C的圆心角的度数为____度.三、解答题21.某校学生会为了解同学们每天看课外书的时间,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表:调查结果统计表:组别时间(单位:小时)(每组只含最高值,不含最低值)人数A0.5 1.016B 1.0 1.564C 1.5 2.0aD 2.0 2.5bE 2.5以上8请根据以上图表,解答下列问题:(1)这次被调查的同学共有______人;统计表中a=______;b=______.(2)求扇形统计图中扇形C的圆心角的度数;(3)若该校共有学生1600人,请估计该校每天看课外书的时间在2小时以上的学生数.22.2021年4月21日是重庆一中建校90周年的校庆日,90载砥砺奋进,90年春华秋实.数以万计的学子在重庆一中求学问道,成长成才;一大批高级将领、两院院士、学界泰斗、杏坛大师、商业精英、艺术才俊、企业英雄……各级各类的人才和骨干从重庆一中走出.桃李满五洲,校友遍四海,真可谓“学府一流名高巴渝,贤才万数惠泽千秋”,引得莘莘学子都念想去本部参观,现随机抽取初一年级部分学生进行“你最想打卡重庆一中本部的哪个景点?”的问卷调查,参与调查的学生需从A、B、C、D、E五个选项(A:项家书院;B:校训壁;C:四二一广场;D:红领巾林;E:尊师亭)中任选一项(必选且只选一项).根据调查结果绘制了如下两幅不完整的统计图,请根据图中提供的信息完成以下问题:(1)参加本次调查的一共有_______名学生;在扇形统计图中,“D”所在扇形圆心角的度数是______;(2)请你补全条形统计图;(3)已知重庆一中初一年级共有2400名学生,请你根据调查结果,估计初一年级最想打卡“四二一广场”的学生有多少人?23.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.某市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)求这次调查活动共抽取的人数.(2)直接写出m= ,n= .(3)请将条形统计图补充完整.24.中华鲟是国家一级保护动物,它是大型洄游性鱼类,生在长江,长在海洋,受生态环境的影响,数量逐年下降.中华鲟研究所每年定期通过人工养殖放流来增加中华鲟的数量,每年放流的中华鲟中有少数体内安装了长效声呐标记,便于检测它们从长江到海洋的适应情况,这部分中华鲟简称为“声呐鲟”,研究所收集了它们到达下游监测点A的时间t(h)的相关数据,并制作如图不完整统计图和统计表.已知:今年和去年分别有20尾“声呐鲟”在放流的96小时内到达监测点A今年落在24<t≤48内的“声呐鲟”比去年多1尾,今年落在48<t≤72内的数据分别为49,60,68,68,71.关于“声呐鲟”到达监测点A所用时间t(h)的统计表平均数中位数众数方差去年64.26873715.6今年56.2m68629.7=;=°(2)中华鲟到达海洋的时间越快,说明它从长江到海洋的适应情况就越好,请根据上述信息,选择一个统计量说明去年和今年中哪一年中华鲟从长江到海洋的适应情况更好;(3)去年该放流点放流2000尾中华鲟,请根据以上统计数据估计在去年放流72小时内共有多少尾中华鲟通过监测站A.25.某校为了解学生安全意识强弱,在全校范围内随机抽取了部分学生进行问卷调查.将调查结果汇总分析,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)求扇形统计图中,“较强”层次所占扇形的圆心角度数;(3)若该校有1900名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要接受强化安全教育的学生人数.26.我校为了开阔学生的视野,积极组织学生参加课外读书活动,随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)请计算“表示文学类”扇形圆心角的度数______度.(4)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.对南宁邕江水质情况的调查适合抽样调查;B.对端午节期间市场上粽子质量情况的调查适合抽样调查;C.对市场上某种雪糕质量情况的调查适合抽样调查;D.对本班45名学生身高情况的调查适合全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.B解析:B【分析】根据全面调查与随机抽样调查、样本容量、总体、个体的定义逐项判断即可得.【详解】A、此次调查属于随机抽样调查,此项错误;B、样本容量是100,此项正确;C、1000名学生的视力是总体,此项错误;D、被抽取的每一名学生的视力称为个体,此项错误;故选:B.【点睛】本题考查了全面调查与随机抽样调查、样本容量、总体、个体,熟练掌握统计调查的相关概念是解题关键.3.B解析:B【解析】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.4.C解析:C【分析】根据题意和统计图中的数据可以求得总的人数,进而求得参加人数最多的小组的人数.【详解】解:由题意可得,参加体育兴趣小组的人数一共有:50÷25%=200(人),∴参加人数最多的小组的有:200×(1-25%-35%)=200×40%=80(人),故选C.【点睛】本题考查了扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.C解析:C【解析】试题分析:根据汽车的人数和百分比可得:被调查的学生数为:21÷35%=60人,故A正确;步行的人数为60×(1-35%-15%-5%)=27人,故B正确;全校骑车上学的学生数为:2560×35%=896人,故C错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确,则本题选C.6.B解析:B【分析】本题主要考察统计表的读取.其中①②③④每个选项都需在读懂题目,并判断出各个项目人数的前提下进行判断,因此本题的重难点在于判断各个项目的人数多少.【详解】解:本题各个项目人数的多少,解题的关键在于球类里面.通过排球垫球,我们可以得知,女生是16人,合计是16人,因此没有男生选择排球垫球.同理,没有女生选择足球垫球.又因为每位同学均需要在球类中选择一项,对于男同学而言,因为没有选择排球垫球的,因此全部男同学都选择了篮球绕杆和足球绕杆,因此该班男生共有20+2=22人,其中选择篮球绕杆20人,足球绕杆2人.同理,因为全班共有40名同学,因此女生共有18人,其中选择排球垫球16人,因此篮球绕杆有2人.对于素质项目,因为全班共有40人,出去仰卧起坐17人,引体向上15人,还剩余8人选择实心球.又因为仰卧起坐只能女生选择,选择仰卧起坐的人数为17人,因此18名女生中,有1人选择实心球.实心球中有7名是男生,另外15名男生选择的引体向上.下面我们分析选项:①一定有女生选择了实心球,正确,有1名女生选择.②一定有男生同时选择引体向上和足球绕杆,无法判断,可能有.但是因为选择足球绕杆的男生只有2人,这2人完全可以选择实心球,这种情况下②就不对.③因为女生只有1人选择实心球,而选择篮球绕杆的女生为2人,因此另外1人就既选择了篮球绕杆,又选择了仰卧起坐.选项正确.④无法判断.不一定至多是5人,假如选择实心球的7名男生全部选择了篮球,此时同时选择实心球和篮球绕杆的就有7人.选项错误.综上,正确选项为①③,故选:B.【点睛】本题考查统计表的读取分析能力,重点在于读懂统计表后,找出各个项目人数的多少,再根据人数的多少判断①②③④各个选项是否正确,需要一定的逻辑思维,对逻辑思维有一定的锻炼.7.B解析:B【解析】根据全面调查和抽样调查的定义可知:①②可进行抽样调查,③④⑤可进行全面调查,故选B.8.C解析:C【分析】根据总体:所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【详解】为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.9.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查某中学七年级三班学生视力情况,人数不多,应采用全面调查,故此选项符合题意;B、调查我市居民对“垃圾分类”有关内容的了解程度,人数众多,应采用抽样调查,故此选项不合题意;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项不合题意;D、了解一批手机电池的使用寿命,具有破坏性,应采用抽样调查,故此选项不合题意;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.C解析:C【解析】试题分析:根据表格中的数据,得:第4组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.故选C.考点:1.频数与频率;2.图表型.11.B解析:B【分析】首先正确数出在64.5~67.5这组的数据;再根据频率、频数的关系:频率=频数数据总和,进行计算.【详解】解:其中在64.5~67.5组的有65,67,66,65,67,66共6个,则64.5~67.5这组的频率是:60.6 10.故选择:B .【点睛】本题考查频率、频数的关系,解题的关键是熟记求频率的公式.12.D解析:D【分析】根据抽样调查的具体性和代表性解答即可.【详解】解:为了解甲、乙两所学校学生对生命安全知识掌握情况,在甲、乙两所学校各随机抽取100名学生进行调查最具有具体性和代表性,故选:D .【点睛】此题考查抽样调查,关键是理解抽样调查的具体性和代表性.二、填空题13.32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数设该组频数为x 根据圆心角度数的计算公式求解【详解】设该组频数为xx=32故答案为:32【点睛】此题考查圆心角度数的计算公式正确解析:32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.14.1020【分析】先用条形统计图中达到基本了解程度的人数除以扇形统计图中其所占百分比求出抽取的人数然后用达到非常了解和基本了解程度的人数之和除以抽取的人数再乘以1800即得答案【详解】解:抽取的人数为解析:1020【分析】先用条形统计图中达到“基本了解”程度的人数除以扇形统计图中其所占百分比求出抽取的人数,然后用达到“非常了解”和“基本了解”程度的人数之和除以抽取的人数再乘以1800即得答案.【详解】解:抽取的人数为:30÷50%=60(人),所以可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为4301800102060+⨯=(人).故答案为:1020.【点睛】本题考查了条形统计图、扇形统计图和利用样本估计总体,属于常考题型,正确理解题意、读懂图象信息是解题的关键.15.160【分析】先根据参加七彩数学的人数为120人占被调查人数的30求出被调查的总人数再用总人数乘以参加STEAM课程的人数对应的百分比即可得【详解】∵参加七彩数学的人数为120人占被调查人数的30∴解析:160【分析】先根据参加“七彩数学”的人数为120人,占被调查人数的30%求出被调查的总人数,再用总人数乘以参加“STEAM课程”的人数对应的百分比即可得.【详解】∵参加“七彩数学”的人数为120人,占被调查人数的30%,∴被调查的总人数为120÷30%=400(人),∴参加“STEAM课程”的人数是400×40%=160(人),故答案为:160人.【点睛】本题考查了扇形统计图,解答本题的关键是明确题意,明确扇形统计图的特点,利用数形结合的思想解答.16.【分析】根据扇形统计图中的数据可以计算出参加乒乓球的学生所占的百分比再根据参加人数最多的小组有80人即可计算出参加体育锻炼的人数然后即可计算出参加人数最少的小组的人数【详解】解:由扇形统计图可得参加解析:【分析】根据扇形统计图中的数据,可以计算出参加乒乓球的学生所占的百分比,再根据参加人数最多的小组有80人,即可计算出参加体育锻炼的人数,然后即可计算出参加人数最少的小组的人数.【详解】解:由扇形统计图可得,参加乒乓球的学生所占的百分比为:1﹣35%﹣25%=40%,∵参加人数最多的小组有80人,∴参加体育兴趣小组的学生有:80÷40%=200(人),∴参加人数最少的小组有200×25%=50(人),故答案为:50.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.17.7【分析】根据频数分布表中的数据可以计算出通话时间不超过10min的频率本题得以解决【详解】由表格可得:通话时间不超过10min的频率为:07故答案为:07【点睛】本题考查频数分布表解答本题的关键是解析:7.【分析】根据频数分布表中的数据,可以计算出通话时间不超过10min的频率,本题得以解决.【详解】由表格可得:通话时间不超过10min的频率为:2015201596+=+++0.7.故答案为:0.7.【点睛】本题考查频数分布表,解答本题的关键是明确题意,计算出相应的频率.18.15【分析】根据频率=频数÷总数计算可得【详解】解:根据题意知该组的人数为:6÷40=015故答案为:015【点睛】本题主要考查频数与频率解题的关键是掌握频率=频数÷总数解析:15【分析】根据“频率=频数÷总数”计算可得.【详解】解:根据题意知该组的人数为:6÷40=0.15,故答案为:0.15.【点睛】本题主要考查频数与频率,解题的关键是掌握频率=频数÷总数.19.8【分析】根据扇形统计图中的数据可以计算出图中表示中国的扇形的圆心角的度数【详解】解:由题意可得图中表示中国的扇形的圆心角是:360°×43=1548°故答案为:1548【点睛】本题考查扇形统计图解解析:8.【分析】根据扇形统计图中的数据可以计算出图中表示“中国”的扇形的圆心角的度数.【详解】解:由题意可得,图中表示“中国”的扇形的圆心角是:360°×43%=154.8°,故答案为:154.8.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,求出相应的圆心角的度数.20.36【分析】先由B等级人数及其所占百分比求出总人数再根据各等级人数之和等于总人数求出C等级人数x最后用360°乘以C等级人数所占比例即可得【详解】∵被调查的总人数为10÷25=40(人)∴C等级人数解析:36【分析】先由B等级人数及其所占百分比求出总人数,再根据各等级人数之和等于总人数求出C等级人数x,最后用360°乘以C等级人数所占比例即可得.【详解】∵被调查的总人数为10÷25%=40(人),∴C等级人数x=40-(24+10+2)=4(人),则扇形图中表示C的圆心角的度数为43603640︒⨯=︒,故答案为:36.【点睛】本题主要考查扇形统计图,解题的关键是结合扇形统计图与频数分布表得出被调查的总人数.三、解答题21.(1)200,80,32;(2)144︒;(3)320人【分析】(1)用B组的人数除以它的占比得到总人数,用总人数乘以D组的占比得到b的值,用总人数减去其他组的人数得到a的值;(2)用360︒乘以C组人数的占比得到圆心角度数;(3)用全校总人数乘以D组和E组的占比和得出结果.【详解】解:(1)6432%200÷=(人),20016%32b=⨯=,200166432880a=----=故答案是:200,80,32;(2)80360144200⨯=︒︒;(3)3281600320200+⨯=(人).【点睛】本题考查统计,解题的关键是掌握频数分布图,扇形统计图的特点,用样本估计总体的方法.22.(1)150,48;(2)作图见解析;(3)720人【分析】(1)根据题意,得A 类的人数及占比,根据条形统计图和扇形统计图的性质计算,即可得到答案;(2)结合题意,首先计算得C 类学生人数,再计算B 类学生人数,根据条形统计图的性质作图,即可完成求解;(3)根据用样本估计总体的性质计算,即可得到答案.【详解】(1)根据题意得:A 类学生人数为:30人,A 类学生占比为:20%∴加本次调查的学生总人数为:3030515020=⨯=% ∵D 类学生人数为:20∴“D ”所在扇形圆心角的度数2036048150=⨯= 故答案为:150,48;(2)∵“C ”所在扇形圆心角的度数为108 ∴C 类学生人数为:10815045360⨯= ∴B 类学生人数为:1503045203025----= 条形统计图如下图:(3)根据题意得:452400720150⨯=(人) ∴初一年级最想打卡“四二一广场”的学生大约有:720人.【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握条形统计图、扇形统计图、用样本估计总体的性质,从而完成求解.23.(1)200人;(2)86,27;(3)图见解析.【分析】(1)从统计图中可知:1次及以下的频数为20,占调查人数的10%,可求出抽查人数;(2)3次的占调查人数的43%,可求出3次的频数,确定m 的值,进而求出4次以上的频数,求出n 的值;(3)求出2次的频数,即可补全条形统计图.【详解】(1)2010%200÷=(人),所以这次调查活动共抽取200人.(2)20043%86⨯=(人),5420027%÷=,即86m =,27n =,故答案为:86,27;(3)200×20%=40,补全条形统计图如下:【点睛】本题考查的条形统计图,扇形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解答本题的关键.24.(1)64,18;(2)答案不唯一,合理即可(例:选择平均数,由表知,去年“声呐鲟”到达下游监测点的平均时间为64.2小时,而今年“声呐鲟”到达下游监测点的平均时间为56.2小时,缩短了8小时,所以今年中华鲟从长江到海洋的适应情况更好);(3)1100尾.【分析】(1)先求出去年落在48<t ≤72内的数据个数,从而根据“今年落在24<t ≤48内的“声呐鲟”比去年多1尾”得到今年落在48<t ≤72内的数据个数,继而根据各时间段的数据和为20求出24<t ≤48内的数据个数,从而补全图形,最后根据中位数的概念求解即可,用360°减去另外三个扇形对应的圆心角度数即可.(2)从平均数上看去年“声呐鲟”到达下游监测点的平均时间为64.2小时,而今年“声呐鲟”到达下游监测点的平均时间为56.2小时,缩短了8小时,答案不唯一,合理即可. (3)用总数量乘以去年放流72小时内通过监测站A 的对应的百分比即可.【详解】解:(1)去年落在48<t ≤72内的数据有72204360⨯=(个), ∴今年落在48<t ≤72内的数据为5,则今年24<t ≤48内的“声呐鲟”的数量为20-(5+5+7)=3,。

(人教版)苏州市七年级数学下册第六单元《数据的收集、整理与描述》检测题(有答案解析)

(人教版)苏州市七年级数学下册第六单元《数据的收集、整理与描述》检测题(有答案解析)

一、选择题1.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,402.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.963.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形图中,公务员部分所对应的圆心角为72°4.“三农问题”是指农业、农村、农民这三个问题。

随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是40000元和60000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.1万D.前年年收入不止①②③三种农作物的收入5.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生-的人数最少③这次调查阅读所用时间在2.53h-的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③6.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力7.为了解七年级4000名学生参加数学统测成绩的情况,从中随机抽取200名学生的数学成绩进行分析.下列说法正确的是()A.样本容量是200名B.每名学生是个体C.200名学生的数学成绩是总体的一个样本D.4000名学生是总体8.下列调查活动中,适合采用全面调查的是()A.某种品牌插座的使用寿命B.为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离C.了解某校学生课外阅读经典文学著作的情况D.调查“厉害了,我的国”大型记录电影在线收视率9.如图是某校七年级学生到校方式的条形图,下列说法错误的是()A.步行人数占七年级总人数的60%B.步行、骑自行车、坐公共汽车人数的比为2∶3∶5C.坐公共汽车的人数占七年级总人数的50%D.这所学校七年级共有300人10.下列调查适合进行普查的是()A.对和新冠肺炎患者同一车厢的乘客进行医学检查B.了解全国手机用户对废手机的处理情况C.了解全球男女比例情况D.了解某市中小学喜欢的体育运动情况11.如果整个地区的观众中青少年、成年人、老年人的人数比为3:4:3,要抽取容量为1000的样本,则成年人抽取()合适A.300B.400C.500D.100012.为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班有50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A.2个B.0个C.1个D.3个二、填空题13.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 0 1 2 3 4 相应户数10141871__________户.14.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________15.小欢为一组数据制作频数表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4,为了使数据不落在边界上,他应将这组数据分成__________组. 16.小夏同学从家到学校有A ,B 两条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 频数 公交车路线2530t ≤≤ 3035t <≤ 3540t <≤4045t <≤总计A59 151 166 124 500 B4357149251500据此估计,早高峰期间,乘坐B 线路“用时不超过35分钟”的概率为__________,若要在40分钟之内到达学校,应尽量选择乘坐__________(填A 或B )线路.17.经调查,某班学生上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据时,“公交车”对应扇形的圆心角是__________. 18.抗击“新冠肺炎”线上学习期间,某校为了解学校1000名九年级学生一周体育锻炼时间的情况,随机调查了50名九年级学生,并绘制成如图所示的条形统计图,根据图中数据,估计该校1000名九年级学生一周的体育锻炼时间不少于7小时的人数是_____人.19.为落实“停课不停学”,某校在线上教学时,要求学生因地制宜开展体育锻炼.为了解学生居家体育锻炼情况,学校对学生四月份平均每天开展体育锻炼的时长情况随机抽取了部分同学进行问卷调查,将调查结果进行了统计分析,并绘制如下两幅不完整的统计图: (A 类:时长10≤分钟;B 类:10分钟<时长20≤分钟;C 类:20分钟<时长30≤分钟;D 类:30分钟<时长40≤分钟;E 类:时长40>分钟).该校共有学生2000人,请根据以上统计分析,估计该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生约有________人.20.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中16粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为______粒.三、解答题21.我市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物,厨余垃圾,有害垃圾和其他垃圾四类.现随机抽取m吨垃圾,将结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=________,n=_________;(2)根据以上信息直接补全条形统计图;(3)求扇形统计图中“厨余垃圾”所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.22.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了_________名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为_________;(3)将条形统计图补充完整;(4)如果该校共有1500名学生,请你估计该校B类学生约有多少人?23.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A.B.C.D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了_____名同学的体育测试成绩,扇形统计图中B级所占的百分比b ___,D级所在小扇形的圆心角的大小为______;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C级)的人数24.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.某市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)求这次调查活动共抽取的人数.(2)直接写出m= ,n= .(3)请将条形统计图补充完整.25.2019年11月是全国消防安全月,市南区各学校组织了消防演习和消防知识进课堂等一系列活动,为更好的普及消防知识,了解本次系列活动的持续效果,学校团委在活动启动前以及活动结束后,分别对全校2000名学生进行了两次消防知识竞答活动,并随机抽取部分学生的答题情况,绘制成统计图表(部分)如图所示:根据调查的信息分析:(1)补全条形统计图;(2)活动启动前抽取的部分学生答对题数的中位数为_________;(3)请估计活动结束后该校学生答刘9道(含9道)以上的人数;(4)选择适当的统计量分析两次调查的相关数据,评价该校消防安全月系列活动的效果.系列活动结束后知识竞答活动答题情况统计表答对题数(道)78910学生数(人)23102526.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭做一次简单的随机抽样调查.()1此次调查中,一共抽取了户,此次调查的样本是()2本次抽样调查发现:接受调查的家庭中都有过期药品,现将有关数据制成两幅不完整的统计图如图:①m=,n=.②补全条形统计图,并求出“送回收点”所在扇形所对的圆心角度数.()3家庭过期药品的处理方式是送回收点,若该市有180万户人,请估计大约有多少万户家庭处理过期药品的方式是送回收点.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.2.C解析:C【详解】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6⨯,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.3.C解析:C【解析】A.被调查的学生数为40÷20%=200(人),故此选项正确,不符合题意;B.根据扇形图可知喜欢医生职业的人数为:200×15%=30人,则被调查的学生中喜欢教师职业的有:200﹣30﹣40﹣20﹣70=40(人),故此选项正确,不符合题意; C .被调查的学生中喜欢其他职业的占:70200×100%=35%,故此选项错误,符合题意; D .“公务员”所在扇形的圆心角的度数为:(1﹣15%﹣20%﹣10%﹣35%)×360°=72°,故此选项正确,不符合题意. 故选C .4.C解析:C 【分析】根据扇形统计图中各项目的圆心角即可得到每部分占总体的百分比,据此对各选项逐一判断即可得到答案. 【详解】A 、前年①的收入为40000×117360=13000,去年①的收入为60000×117360=19500,此选项错误;B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C 、去年②的收入为60000×126360=21000=2.1(万元),此选项正确; D 、前年年收入即为①②③三种农作物的收入,此选项错误, 故选:C . 【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.5.A解析:A 【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案. 【详解】这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故②正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故③正确; 这次调查阅读所用时间在1 1.5h -的人数占比为802=2005,即40%,故④正确; 故选:A .【点睛】本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解.6.D解析:D【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.【详解】A. 了解某班学生的身高情况,范围较小,容易操作,适合普查,故该选项错误;B. 选出某校短跑最快的学生参加全市比赛,要求比较严格,适合普查,故该选项错误;C. 了解全班同学每周体育锻炼的时间,范围较小,容易操作,适合普查,故该选项错误;D. 调查某批次汽车的抗撞击能力,破坏性大,适合抽样调查,故本选项正确.故选:D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.7.C解析:C【分析】根据总体、个体、样本、样本容量的定义即可判断.【详解】解:A.样本容量是200,故本选项不合题意;B.每名学生的数学成绩是个体,故本选项不合题意;C.200名学生的数学成绩是总体的一个样本,故本选项符合题意;D.4000名学生的数学成绩是总体,故本选项不合题意.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的定义,总体是我们把所要考察的对象的全体,个体是把组成总体的每一个考察对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位.8.B解析:B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、某种品牌插座的使用寿命,适合采用抽样调查;B 、为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离,适合采用全面调查;C 、了解某校学生课外阅读经典文学著作的情况,适合采用抽样调查;D 、调查“厉害了,我的国”大型记录电影在线收视率,适合采用抽样调查;故选:B .【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.A解析:A【解析】观察条形统计图可知:步行人数有60人,骑自行车的人数有90人,坐公共汽车的人数有150人.即可得这所学校七年级共有60+90+150=300人;坐公共汽车的人数占七年级总人数的50%;步行、骑自行车、坐公共汽车人数的比为60:90:150=2∶3∶5;步行人数占七年级总人数的20%(60100%20%300⨯= ),所以四个选项中只有选项A 错误,故选A. 10.A解析:A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A 、对和新冠肺炎患者同一车厢的乘客进行医学检查,需要得到准确的结果,适合采用全面调查,故本选项符合题意;B 、了解全国手机用户对废手机的处理情况,总体容量很大,适合抽样调查,故本选项不合题意;C 、了解全球男女比例情况,总体容量大,适合抽样调查,故本选项不合题意;D 、了解某市中小学喜欢的体育运动情况,适合抽样调查,故本选项不合题意. 故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 11.B解析:B【分析】青少年、成年人、老年人的人数比约为3:4:3,所以成年人的人数所占总人数的423435=++,则根据这个条件就可以求出成年人的人数.【详解】解:因为样本容量为1000,某地区青少年、成年人、老年人的人数比约为3:4:3,所以成年人的人数所占总人数的42 3435=++,故成年人应抽取1000×25=400,故选:B.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.C解析:C【分析】①根据乒乓球的人数和所占的百分比求出总人数;②用总人数减去其它项目的人数,求出篮球的人数;③用360°乘以跳绳人数所占的百分比即可得出答案;④用360°乘以足球人数所占的百分比即可得出答案.【详解】解:①该班学生数是:12÷90360︒︒=48(名),故本选项错误;②篮球有:48﹣16﹣12﹣8=12(人),故本选项错误;③跳绳人数所占扇形圆心角为360°×848=60°,故本选项错误;④足球人数所占扇形圆心角为360°×1648=120°,故本选项正确;这四种说法中正确的有1个,故选:C.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二、填空题13.2600【分析】用5000乘以拥有1部以上手机的家庭数的比例即可得到答案【详解】=2600(户)故答案为:2600【点睛】此题考查用样本的概率估计总体的概率求总体中某数据的个数正确理解样本的概率代表解析:2600【分析】用5000乘以拥有1部以上手机的家庭数的比例即可得到答案.【详解】1810075005++⨯=2600(户), 故答案为:2600.【点睛】 此题考查用样本的概率估计总体的概率,求总体中某数据的个数,正确理解样本的概率代表总体概率是解题的关键.14.32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数设该组频数为x 根据圆心角度数的计算公式求解【详解】设该组频数为xx=32故答案为:32【点睛】此题考查圆心角度数的计算公式正确解析:32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.15.7【分析】根据极差与组距的关系可知这组数据的组数【详解】解:∵这组数据的最大值是40最小值是16分组时取组距为4∴极差=40-16=24∵24÷4=6又∵数据不落在边界上∴这组数据的组数=6+1=7解析:7【分析】根据极差与组距的关系可知这组数据的组数.【详解】解:∵这组数据的最大值是40,最小值是16,分组时取组距为4.∴极差=40-16=24.∵24÷4=6,又∵数据不落在边界上,∴这组数据的组数=6+1=7组.故答案为:7【点睛】本题中注意要考虑数据不落在边界上,因而不要错误的认为是分为6组.16.2A【分析】根据题意用用时不超过35分钟的人数除以总人数即可求得概率并且分别求出乘坐B路线用时不超过40分的概率进行比较判断即可【详解】解:乘坐路线用时不超过35分钟的概率为若乘坐路线用时不超过40解析:2 A【分析】根据题意用“用时不超过35分钟”的人数除以总人数即可求得概率,并且分别求出乘坐A、B路线“用时不超过40分”的概率进行比较判断即可.【详解】解:乘坐B路线“用时不超过35分钟”的概率为43571000.2500500+===,若乘坐A路线“用时不超过40分”的概率591511660.752500++==,若乘坐B路线“用时不超过40分”的概率43571490.498500++==,故若40分之内到达学校,应尽量选择乘坐A路线.故答案为:0.2;A.【点睛】本题考查用频率估计概率的知识,能够读懂图以及掌握概率计算公式是解答本题的关键. 17.108°【分析】根据已知条件知公交车占30所以公交车所在扇形的圆心角度数即是360°×30求解即可【详解】解:公交车对应扇形的圆心角度数是360°×30=108°故答案为:108°【点睛】本题考查的解析:108°【分析】根据已知条件知公交车占30%,所以“公交车”所在扇形的圆心角度数即是360°×30%,求解即可.【详解】解:公交车”对应扇形的圆心角度数是360°×30%=108°.故答案为:108°.【点睛】本题考查的是扇形统计图的知识,在扇形统计图中,注意掌握每部分占的圆心角度数等于360°和该部分所占总体的百分比的乘积.18.400【分析】用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可【详解】该校1000名学生一周的课外阅读时间不少于7小时的人数是1000×=400人故答案为:400【点睛】本题考查了用样解析:400【分析】用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.【详解】该校1000名学生一周的课外阅读时间不少于7小时的人数是1000×15+550=400人,故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.19.【分析】根据条形统计图和扇形统计图对应求出本次参与调查的总人数求出BD组人数求出平均每天体育锻炼时长超过分钟且不超过分钟的学生在本次调查中的比例再用全校人数乘以此比例即可【详解】由图可知:A组人数为解析:1040【分析】根据条形统计图和扇形统计图对应,求出本次参与调查的总人数,求出B,D组人数,求出平均每天体育锻炼时长超过20分钟且不超过40分钟的学生在本次调查中的比例,再用全校人数乘以此比例即可.【详解】由图可知:A组人数为12人,A组比例为12%,∴本次参与调查人数人:1212%100÷=(人)B组人数为:100⨯30%=30(人)D组人数为:100123042610----=(人)∴本次调查中该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生比例为:421052% 100+=∴该校2000人中,四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生的人数为:200052%⨯=1040(人)故答案为:1040.【点睛】本题考查了从统计图中读取信息的能力,同时考查了频数,频率,总体之间的关系,熟知以上运算是解题的关键.20.625【分析】设瓶子中有豆子x粒根据去除100粒刚好有记号的16粒列出算式再进行计算即可【详解】设瓶子中有豆子x粒根据题意得:解得x=625粒即估计瓶子中的豆子数量约为625粒故答案为:625【点睛解析:625【分析】设瓶子中有豆子x粒,根据去除100粒刚好有记号的16粒列出算式,再进行计算即可.【详解】设瓶子中有豆子x粒,根据题意得:x10010016=,解得x=625粒,即估计瓶子中的豆子数量约为625粒,故答案为:625.【点睛】本题考查用样本估计总体.根据样本和总体的关系,列方程进行计算即可.三、解答题21.(1)100,60;(2)见解析;(3)108°;(4)1200吨【分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)先求出厨余垃圾在总体中所占的百分比,然后可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)利用样本估计总体,先求出可回收物在样本中所占的百分比,然后再计算出该市2000吨垃圾中约有多少吨可回收物.【详解】解:(1)m=8÷8%=100,n%=1003028100---×100%=60%,故答案为:100,60;(2)可回收物有:100-30-2-8=60(吨),补全完整的条形统计图如图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.【点睛】。

最新人教版初中数学七年级数学下册第六单元《数据的收集、整理与描述》检测卷(有答案解析)

最新人教版初中数学七年级数学下册第六单元《数据的收集、整理与描述》检测卷(有答案解析)

一、选择题1.一次数学测试后,某班80名学生的成绩被分为5组,第一至第四组的频数分别为8、10、16、14,则第五组的频率是()A.0.1 B.0.2 C.0.3 D.0.42.下列调查中,适合采用全面调查的是()A.对中学生目前睡眠质量的调查B.开学初,对进入我校人员体温的测量C.对我市中学生每天阅读时间的调查D.对我市中学生在家学习网课情况的调查3.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°4.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.调查某校九年级一班50名同学的身高情况5.如图是一个扇形统计图,那么以下从图中得出的结论:①A占总体的25%;②表示B的扇形的圆心角是18 ;③C和D所占总体的百分比相等;④分别表示A、B、C的扇形的圆心角的度数之比为5:1:7.正确的有()A.1个B.2个C.3个D.4个6.小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25% B.20% C.50% D.33%7.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是()A.6~7 B.10~11 C.8~9 D.12~138.某地区经过两年的产业扶贫后,经济总收入增加了一倍.为更好地了解该地区的经济收入变化情况,统计了产业扶贫前后的经济收入相关数据,得到下列统计图:下面结论不正确的是()A.经过产业扶贫后.养殖收入增加了一倍B.经过产业扶贫后,种植收入减少了C.经过产业共贫后,养殖收入与第二产业收人的总和超过了经济收入的一半D.经过产业扶贫后.其他收入增加了一倍以上9.党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图分别反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是()A.2012﹣2019年,全国农村贫困人口逐年递减B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C.2012﹣2019年,全国农村贫困人口数累计减少9348万D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%10.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查11.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:()A.0.5 B.0.6 C.5 D.612.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300是()A.总体B.个体C.样本D.样本容量二、填空题13.如图所示,是幸福村农作物统计图,看图回答问题:(1)在扇形统计图中的括号内填上适当的数据:___;(2)棉花的扇形圆心角是144°,表示它占百分数是___;(3)水稻种了240公顷,那么棉花种了___公顷;(4)该村的农作物总种植面积是___.14.田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________.15.某灯具厂从1万件同批次产品中随机抽取了1000件进行质检,发现其中有50件不合格,估计该厂这1万件产品中合格品约为______件.16.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉200只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量约为_______只.17.福建省森林覆盖率连续40多年保持全国第一,所占百分比如图,是全国生态环境、水、空气质量均为优的省份.福建省面积12.4万平方千米,则福建省森林面积为__________万平方千米(精确到0.01).18.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)19.某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,则养鸡的数量占鸡、鸭、鹅总数的百分比为____.20.为落实“停课不停学”,某校在线上教学时,要求学生因地制宜开展体育锻炼.为了解学生居家体育锻炼情况,学校对学生四月份平均每天开展体育锻炼的时长情况随机抽取了部分同学进行问卷调查,将调查结果进行了统计分析,并绘制如下两幅不完整的统计图: (A 类:时长10≤分钟;B 类:10分钟<时长20≤分钟;C 类:20分钟<时长30≤分钟;D 类:30分钟<时长40≤分钟;E 类:时长40>分钟).该校共有学生2000人,请根据以上统计分析,估计该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生约有________人.三、解答题21.在新冠肺炎疫情期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤12020(1)本次被抽取的教职工共有名;(2)表中a=,扇形统计图中“C”部分所占百分比为 %;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为 °;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?22.全民健身运动已成为一种时尚,为了解宝鸡市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数是多少?(3)宝鸡市团结公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加体育公园“暴走团”的大约有多少人?23.“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)求调查中“非常了解”校园安全知识的学生人数,并补全条形统计图;(2)在扇形统计图中,求“基本了解”所对应的扇形的圆心角的度数;(3)若某区有学生及学生家长共计30万人,请估计这其中有多少人对校园安全知识课非常了解.24.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<308B30≤t<5016C50≤t<70aD70≤t<9032E90≤t<1104根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)扇形统计图中扇形D的圆心角的度数为;(3)若该校有2000名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?25.七年三班的小雨同学想了解本校七年级学生对第二课堂哪门课程感兴趣,随机抽取了部分七年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了______名学生,m的值是______.(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是______度;(4)若该校七年级共有1200名学生,根据抽样调查的结果,请你估计该校七年级学生中有多少名学生对数学感兴趣.26.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数.(2)请补全条形统计图.(3)请估计该市这一年(365天)达到优和良的总天数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出第5组的频数,再利用频率=频数总数即可求解.【详解】解:第5组的频数为80810161432----=,∴第5组的频率为320.480=,故选:D.【点睛】本题考查求频率,掌握频率=频数总数是解题的关键.2.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对中学生目前睡眠质量的调查,调查范围广适合抽样调查,故A不符合题意;B、对进入我校人员体温的测量,人数较少也为确保安全必须进行全面调查,故B符合题意;C、对我市中学生每天阅读时间的调查,调查范围广适合抽样调查,故C不符合题意;D、对我市中学生在家学习网课情况的调查,调查范围广适合抽样调查,故D不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C解析:C【解析】试题分析:根据汽车的人数和百分比可得:被调查的学生数为:21÷35%=60人,故A正确;步行的人数为60×(1-35%-15%-5%)=27人,故B正确;全校骑车上学的学生数为:2560×35%=896人,故C错误;乘车部分所对应的圆心角为360°×15%=54°,故D正确,则本题选C.4.D解析:D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解全国中学生的视力情况的调查适宜采用抽样调查方式;B.调查某批次日光灯的使用寿命的调查适宜采用抽样调查方式;C.调查市场上矿泉水的质量情况的调查适宜采用抽样调查方式;D.调查某校九年级一班50名同学的身高情况适宜采用全面调查方式;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.D解析:D【分析】①根据A的圆心角是90°,即可得到结论;②用360°×5%即可得到结论;③根据C和D所占总体的百分比得到结论;④A、B、C的扇形的圆心角的度数即可得到结论.【详解】解:①90360×100%=25%;故符合题意;②表示B的扇形的圆心角是360°×5%=18°,故符合题意;③∵C所占总体的百分比=1-5%-25%-35%=35%,故符合题意;④表示A、B、C的扇形的圆心角的度数分别为90°,18°,126°,∴表示A、B、C的扇形的圆心角的度数之比为5:1:7,故符合题意;故选:D.【点睛】本题考查了扇形统计图,正确的识别图形是解题的关键.6.B解析:B【分析】先在统计图找到4月份、5月份的用水量,再根据增长率的定义即可求解.【详解】由图可知4月份、5月份的用水量分别为5、6吨,故5月份的用水量比4月份增加的百分率为(6-5)÷5×100%=20%,故选B【点睛】此题主要考查统计图的应用,解题的关键是熟知增长率的定义.7.D解析:D【分析】分别计算出各组的频数,再除以20即可求得各组的频率,看谁的频率等于0.2.【详解】A中,其频率=2÷20=0.1;B中,其频率=6÷20=0.3;C中,其频率=8÷20=0.4;D中,其频率=4÷20=0.2.故选D.【点睛】首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.8.B解析:B【分析】根据统计表信息,依次判断各选项即可.【详解】设扶贫前总收入为a,则扶贫后总收入为2aA中,扶贫前后养殖收入都占总收入的30%,但扶贫后总收入增加了一倍,故扶贫后养殖收入也相应增加了一倍,A中说法正确;B中,扶贫前种植收入为:60%a,扶贫后种植总收入为37%×2a=74%a,故B中说法错误;C中,扶贫后养殖收入和第二产业收入占总和为:30%+28%=58%,超过了一半,C中说法正确;D中,扶贫前其他收入为:4%a,扶贫后为5%×2a=10%a,增加了一倍以上,D中说法正确故选:B.【点睛】本题考查根据扇形图信息判断对错,需要注意扶贫前后的经济总量是不同的.9.D解析:D【分析】观察统计图可得,2012﹣2019年,全国农村贫困人口逐年递减,可判断A;2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,可判断B;2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,可判断C;2019年,全国各省份的农村贫困发生率有可能超过0.6%,可判断D.【详解】观察统计图可知:A、2012﹣2019年,全国农村贫困人口逐年递减,正确;B、2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,正确;C、2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,正确;D、2019年,全国各省份的农村贫困发生率有可能超过0.6%,错误.故选:D.【点睛】本题考查了折线统计图、条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.10.B解析:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A.了解全班同学每周体育锻炼的时间,适合全面调查;B.对市场上某一品牌电脑使用寿命的调查,有破坏性,适合抽样调查;C.对旅客上飞机前的安检,需要全面调查;D. 对“神州十一号”运载火箭发射前的零部件质量状况的调查,需要全面调查;【点睛】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.11.B解析:B【分析】首先正确数出在64.5~67.5这组的数据;再根据频率、频数的关系:频率=频数数据总和,进行计算.【详解】解:其中在64.5~67.5组的有65,67,66,65,67,66共6个,则64.5~67.5这组的频率是:60.6 10.故选择:B.【点睛】本题考查频率、频数的关系,解题的关键是熟记求频率的公式.12.D解析:D【分析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.【详解】根据样本及样本容量的定义可知,题目中300是样本容量.故选:D.【点睛】本题难度较低,主要考查学生对总体、个体、样本、样本容量.理清概念是关键.二、填空题13.4840200500公顷【分析】(1)用1-棉花的百分比-玉米的百分比即可;(2)用圆心角度数除以360°即可;(3)用水稻的数量除以百分比求出农作物总数再乘以棉花的百分比即可;(4)用水稻的数量除解析:48% 40% 200 500公顷.【分析】(1)用1-棉花的百分比-玉米的百分比即可;(2)用圆心角度数除以360°即可;(3)用水稻的数量除以百分比求出农作物总数,再乘以棉花的百分比即可;(4)用水稻的数量除以百分比求出农作物总数.【详解】解:(1)水稻所占百分比=1﹣40%﹣12%=48%;(2)棉花所占百分比为144÷360°=40%;(3)农作物总数为240÷48%=500公顷,所以棉花为500×40%=200公顷;(4)农作物总数为240÷48%=500公顷.故答案为:48%、40%、200、500公顷.【点睛】此题考查扇形统计图,读懂统计图,得到相应的数据,还应掌握求百分比的计算公式,求总数的计算公式.14.3000【分析】设鱼塘中估计有鱼条第一次捞出200条并将每条鱼做上记号再放入水中当做了记号完全混于鱼群中又捞出300条发现带有记号的鱼有20条由此根据样本估计总体的思想可以列出方程解方程即可求解【详解析:3000【分析】设鱼塘中估计有鱼条,第一次捞出200条,并将每条鱼做上记号再放入水中,当做了记号完全混于鱼群中,又捞出300条,发现带有记号的鱼有20条,由此根据样本估计总体的思想可以列出方程300:20:200x ,解方程即可求解.【详解】解:∵20÷300=115 ∴200÷115=3000. 故答案为:3000【点睛】本题考查的是概率问题,利用样本估计总体的思想,理解题意找到相等关系是解题关键. 15.9500【分析】首先可以求出样本的合格率然后利用样本估计总体的思想即可求出这一万件产品中合格品约为多少件【详解】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检发现其中有5件不合格合格的 解析:9500【分析】首先可以求出样本的合格率,然后利用样本估计总体的思想即可求出这一万件产品中合格品约为多少件.【详解】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,合格的产品数为100-5=95件∴合格率为:95÷100=95%,∴估计该厂这一万件产品中合格品为10000×95%=9500件.故答案为:9500.【点睛】此题主要考查了利用样本估计总体的思想,解题时首先求出样本的合格率,然后利用样本估计总体的思想即可解决问题.16.5000【分析】由题意可知:重新捕获200只其中带标记的有2只可以知道在样本中有标记的占到而在总体中有标记的共有50只根据比例即可解答【详解】根据题意得:50÷=5000(只)答:估计这片山林中雀鸟解析:5000【分析】由题意可知:重新捕获200只,其中带标记的有2只,可以知道,在样本中,有标记的占到2100.而在总体中,有标记的共有50只,根据比例即可解答. 【详解】根据题意得:50÷2100=5000(只),答:估计这片山林中雀鸟的数量约为5000只;故答案为:5000.【点睛】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.17.28【分析】福建省森林面积应该等于福建省面积乘以森林覆盖率即可得到结果【详解】解:124×(1-332)=82832≈828(万平方千米)故答案为:828【点睛】此题主要考查了学生获取信息以及计算的解析:28【分析】福建省森林面积应该等于福建省面积乘以森林覆盖率即可得到结果.【详解】解:12.4×(1-33.2%)=8.2832≈8.28(万平方千米),故答案为:8.28.【点睛】此题主要考查了学生获取信息以及计算的能力,熟练掌握运算法则是解答此题的关键.18.抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来具体问题具体分析普查结果准确所以在要求精确难度相对不大实验无破坏性的情况下应选择普查方式当考查的对象很多或考查会给被调查对象解析:抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:了了解全省人民参观山西地质博物馆的情况,人数多,范围广,故为抽样调查.故答案为:抽样调查.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据抽样调查和全面调查的优缺点再结合实际情况去分析.19.25【分析】用扇形图中鸡对应的圆心角除以周角度数即可得【详解】养鸡的数量占鸡鸭鹅总数的百分比为100=25故答案为:25【点睛】本题主要考查扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形的大小解析:25%.【分析】用扇形图中鸡对应的圆心角除以周角度数即可得.【详解】养鸡的数量占鸡、鸭、鹅总数的百分比为90360⨯100%=25%.故答案为:25%.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.【分析】根据条形统计图和扇形统计图对应求出本次参与调查的总人数求出BD组人数求出平均每天体育锻炼时长超过分钟且不超过分钟的学生在本次调查中的比例再用全校人数乘以此比例即可【详解】由图可知:A组人数为解析:1040【分析】根据条形统计图和扇形统计图对应,求出本次参与调查的总人数,求出B,D组人数,求出平均每天体育锻炼时长超过20分钟且不超过40分钟的学生在本次调查中的比例,再用全校人数乘以此比例即可.【详解】由图可知:A组人数为12人,A组比例为12%,∴本次参与调查人数人:1212%100÷=(人)B组人数为:100⨯30%=30(人)D组人数为:100123042610----=(人)∴本次调查中该校四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生比例为:421052% 100+=∴该校2000人中,四月份平均每天体育锻炼时长超过20分钟且不超过40分钟的学生的人数为:200052%⨯=1040(人)故答案为:1040.【点睛】本题考查了从统计图中读取信息的能力,同时考查了频数,频率,总体之间的关系,熟知以上运算是解题的关键.三、解答题21.(1)50;(2)4,32;(3)144;(4)21600【分析】(1)利用B部分的人数÷B部分人数所占百分比,即可算出本次被抽取的教职工人数;(2)a=被抽取的教职工总数−B部分的人数−C部分的人数−D部分的人数,扇形统计图中“C”部分所占百分比=C部分的人数÷被抽取的教职工总数;(3)D部分所对应的扇形的圆心角的度数=360°×D部分人数所占百分比;(4)利用样本估计总体的方法,用30000×被抽取的教职工总数中志愿服务时间多于60小时的教职工人数所占百分比.【详解】(1)本次被抽取的教职工共有:10÷20%=50(名),故答案为:50;(2)a=50−10−16−20=4,扇形统计图中“C”部分所占百分比为:16÷50×100%=32%,故答案为:4,32;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为:360°×2050=144°.故答案为:144;(4)30000×162050+=21600(人).答:志愿服务时间多于60小时的教职工大约有21600人.【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.22.(1)150,45,36;(2)A类所对应的扇形圆心角的度数是28.8︒;(3)估计该社区参加“暴走团”的大约有450人.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)总人数乘以样本中C人数所占比例.【详解】(1)接受问卷调查的共有:30÷20%=150人,m=150-(12+30+54+9)=45,n%=54÷150×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×12150=28.8°;(3)1500×45150=450(人),答:估计该社区参加“暴走团”的大约有450人.【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(1)62人,补全统计图见解析;(2)135°;(3)10.875万人【分析】(1)先根据不了解的部分的百分比和人数求出被调查的总人数,再求出“非常了解”中学生的人数,即可补全条形统计图:(2)样本中,“基本了解”的人数占得总人数的7377400+,因此圆心角占360°的7377400+就是“基本了解”所对应的圆心角度数;(3)用样本中非常了解部分的人数除以被调查的总人数,再乘以该区总人数30万人,可得结果.【详解】 解:(1)(16+4)÷5%=400人,400-83-73-77-54-31-16-4=62人,补全统计图如下:(2)7377360400+⨯︒=135°, ∴“基本了解”所对应的扇形的圆心角为135°; (3)304362008+⨯=10.875万人, ∴有10.875万人对校园安全知识课非常了解.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)100,40,8;(2)115.2°;(3)1520人【分析】(1)根据B 组的频数和所占的百分比,可以求出这次被调查的学生总数,用被调查的学生总数乘以C 组所占的百分比可得到a 的值,用A 组人数除以被调查的学生总数,即可得到m ;(2)用360°乘以D 组所占百分比即可得到D 的圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人数所占的百分比即可.。

第六章 数据的收集与整理(单元测试)(解析版)(1)

第六章 数据的收集与整理(单元测试)(解析版)(1)

第六章数据的收集与整理单元测试参考答案与试题解析一、单选题1.(2021·河北迁安·八年级期末)某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是( )A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策【答案】C【详解】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.2.(2020·全国·七年级课时练习)要调查同学们对所在班级数学老师讲课的满意程度,应采取的恰当调查方式是()A.查阅资料B.问卷调查C.媒体调查D.网上调查【答案】B【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.全面调查要注意可操作性和需要.【详解】本题中调查某班级的学生对数学老师的喜欢程度,数量不多,可操作性强,可直接进行问卷调查.故选B【点睛】考核知识点:调查方式选择.根据实际情况选择合适调查方式是关键.3.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为()A.1000只B.10000只C.5000只D.50000只【答案】B【分析】由题意可知:重新捕获500只,其中带标记的有5只,可以知道,在样本中,有标记的占到5500.而在总体中,有标记的共有100只,根据比例即可解答.【详解】解:100÷5500=10000只.故选B.【点睛】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.4.(2021·全国·七年级单元测试)下列调查中,适合用全面调查方式的是( )A.了解一批iPad的使用寿命B.了解电视栏目《朗读者》的收视率C.疫情期间,了解全体师生入校时的体温情况D.了解滇池野生小剑鱼的数量【答案】C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、了解一批iPad的使用寿命适合用抽样调查,故本选项不符合题意;B、了解电视栏目《朗读者》的收视率适合抽样调查,故本选项不符合题意;C、疫情期间,了解全体师生入校时的体温情况适合用全面调查方式,故本选项符合题意;D、了解滇池野生小剑鱼的数量适合用抽样调查,故本选项不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.为了描述某支股票的价格在一段时间内的涨跌情况,以下最合适的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.频数直方图【答案】C【解析】【分析】条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图比较清楚地反映出部分与部分、部分与整体之间的数量关系;据此进行解答即可.【详解】根据折线统计图的特点可知:反映某种股票的涨跌情况,最好选择折线统计图;故选C.【点睛】本题考查了统计图的选择,解答此题应根据条形、折线、扇形统计图的特点进行解答.6.(2021·山东青岛·七年级单元测试)下列调查中,适合用普查方法的是()A.了解某班学生对“北京精神”的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率D.了解一批科学计算器的使用寿命【答案】A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解某班学生对“北京精神”的知晓率是精确度要求高的调查,适于全面调查,故A选项正确;B、了解某种奶制品中蛋白质的含量,适合抽样调查,故B选项错误;C、了解北京台《北京新闻》栏目的收视率采用普查方法所费人力、物力和时间较多,适合抽样调查,故C选项错误;D、了解一批科学计算器的使用寿命,如果普查,所有计算器都报废,这样就失去了实际意义,故D选项错误,故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(2021·河北邱县·八年级期末)如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【答案】B【分析】先求出九(1)班的总人数,再求出步行的人数,进而求出步行人数所占的圆心角度数,最后即可作出判断.【详解】解:由扇形图知乘车的人数是20人,占总人数的50%,所以九(1)班有20÷50%=40人,故选项A错误;步行人数=40﹣12﹣20=8人,故选项B正确;步行人数所占比例为8÷40=20%,所占的圆心角度数为360°×20%=72°,故选项C错误;骑车的占12÷40=30%,如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有150人.故选项D错误;故选:B.【点睛】本题主要考查扇形统计图及用样本估计总体等知识.统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体的知识.8.(2020·全国·课时练习)某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B .被调查的学生中“知道”的人数为32人C .图中“记不清”对应的圆心角为60°D .全校“知道”的人数约占全校总人数的64%【答案】C【解析】∵816%50¸=,5064%=32´,∴选项A 、B 的说法正确.∵(116%64%)20%--=,∴图中“记不清”所对应的圆心角为:36020%=72´o o ,∴选项C 的说法错误.由样本数据可估计总体情况可知:选项D 的说法正确.故选C.9.(2021·江苏灌云·八年级期中)如图所示是某单位考核情况条形统计图(A 、B 、C 三个等级),则下面的回答正确的是( )A .C 等级人最少,占总数的30%B .该单位共有120人C .A 等级人比C 等级人多10%D .B 等级人最多,占总人数的23【答案】D【分析】由条形统计图可得该单位总人数和各等级的人数,从而对各选项的正误作出判断.【详解】解:由条形统计图可得该单位考核A 等级40人,B 等级120人,C 等级20人,所以总人数为:40+120+20=180,所以B 选项错误;由2011%180»可知A 错误;由 40201100%20-==可知A 等级比C 等级人数多100%,C 错误;由12021803=知B 等级人数占总人数的23,又由各等级人数知B 等级人数最多,所以D 正确.故选D . 【点睛】本题考查条形统计图的应用,通过条形统计图获得有关信息并进行准确分析是解题关键.10.(2021·河南郏县·七年级期末)我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔/米15452155186414743099若想根据表中数据绘制统计图,以便更清楚地比较五座山的高度,最合适的是()A .条形统计图B .折线统计图C .扇形统计图D .以上都可以【答案】A【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】根据题意,知:要求直观比较五座山的高度,结合统计图各自的特点,应选择条形统计图.故选A .【点睛】本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.二、填空题11.(2020·全国·八年级课时练习)要反映我市某月每天的最低气温的变化情况,宜采用______统计图.(填“条形”“折线”或“扇形”)【答案】折线【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:要反映我市某月每天的最低气温的变化情况,宜采用折线统计图.故答案为:折线.【点睛】考查了统计图的选择,此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.12.(2021·全国·七年级课时练习)进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是__________.(用字母按顺序写出即可)A.明确调查问题;B.记录结果;C.得出结论;D.确定调查对象;E.展开调查;F.选择调查方法.【答案】ADFEBC【详解】数据的收集调查分为以下6个骤,明确调查问题,根据调查问题确定调查对象,然后根据这些选择调查方法,然后展开调查,记录结果进行分析,最后得出结论;所以正确地顺序是ADFEBC. 13.(2021·吉林敦化·七年级期末)妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是取了一点品尝,这属于___(填“全面调查”或“抽样调查”).【答案】抽样调查【分析】根据普查和抽样调查的定义,显然此题属于抽样调查.【详解】妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这属于抽样调查.故答案为抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.14.(2021·河北栾城·八年级期末)为了统计了解某市4万名学生平均每天读书时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序______________.【答案】③④②①【分析】直接利用调查收集数据的过程与方法分析排序即可.【详解】解:统计的主要步骤依次为:③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示;②分析数据;①得出结论;故答案为:③④②①.【点睛】本题考查了调查收集数据的过程与方法,正确掌握调查的过程是解题的关键.15.(2020·全国·八年级课时练习)(1)为掌握我校初一年级女同学的身高情况,从中抽测了100名女同学的身高,这个问题中总体是_________________________________________________,个体是______________________________________________________________,样本是______________________________________________,样本容量是_________.(2)为了解某校2000名学生的视力情况,随机抽取了该校100名学生的视力情况,在这次调查中:总体是_______________________________________________________________,个体是_______________________________________________________________,样本是__________________________________________,样本容量是__________.【答案】这个学校七年级女同学身高的全体;每个女同学的身高;抽测的100名女同学的身高;100;这个学校2000名学生的视力情况;每个学生的视力情况;该校100名学生的视力情况;100.【分析】根据总体,个体,样本及样本容量的相关概念即可求解.【详解】总体指调查的对象的全体,个体指总体中的每一个调查对象,样本指总体中所抽取的一部分个体,样本容量指样本中个体的数目;(1)为掌握我校初一年级女同学的身高情况,从中抽测了100名女同学的身高,这个问题中:总体是这个学校七年级女同学身高的全体,个体是每个女同学的身高,样本是抽测的100名女同学的身高,样本容量是100;(2)为了解某校2000名学生的视力情况,随机抽取了该校100名学生的视力情况,在这次调查中:总体是这个学校2000名学生的视力情况,个体是每个学生的视力情况,样本是该校100名学生的视力情况,样本容量是100.【点睛】本题主要考查了总体,个体,样本,样本容量的定义,关键是明确考查的对象.16.(2021·全国·七年级单元测试)如图为A,B两家酒店去年下半年的月营业额折线统计图.根据图中信息判断,经营状况较好的是A酒店.你的理由是:_________.【答案】A酒店营业额逐月稳定上升【分析】根据折线图的信息判断即可.【详解】解:经营状况较好的是A酒店,你的理由是:A酒店营业额逐月稳定上升.故答案为:A酒店营业额逐月稳定上升.【点睛】本题考查折线统计图,解题的关键是理解题意,灵活运用所学知识解决问题.17.(2021·山东青岛·七年级单元测试)来自某综合市场财务部的报告表明,商场2014年1-4月份的投资总额一共是2025万元,商场2014年第一季度每月利润统计图和2014年1-4月份利润率统计图如下(利润率=利润+投资金额).则商场2014年4月份利润是___________万元.【答案】125【分析】根据利润率=利润¸投资金额分别求出1月、2月、3月的投资额,由此得到4月份的投资额,即可根据公式求出答案.【详解】¸=(万元),1月份的投资额为:12520%625¸=(万元),2月份的投资额为:12030%400¸=(万元),3月份的投资额为:13026%500∴4月份的投资额为:2025-625-400-500=500(万元),´=(万元),∴4月份的利润为:50025%125故答案为:125.【点睛】此题考查条形统计图和折线统计图,会观察统计图,并由统计图中得到相关的信息,根据公式进行计算解答问题是解题的关键.18.我国五座名山的海拔高度如下表:山名黄山华山泰山庐山峨眉山海拔/米18652155154514743099要想对比几座名山的高度,应选择__________统计图.【答案】条形【解析】【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】根据题意,得要求直观比较五座山的高度,结合统计图各自的特点,应选择条形统计图.故答案为:条形.【点睛】此题考查统计图的选择,解题关键在于掌握统计图的应用.三、解答题19.为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们身高的平均值作为全校学生平均身高的估计.(1)小明的调查是抽样调查吗?(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量.(3)这个调查的结果能较好地反映总体的情况吗?如果不能,请说明理由.【答案】(1)是抽样调查;(2)见解析;(3)这个调查的结果不能较好的反映总体的情况,因为抽样太片面.(1)根据调查的人数与调查的总体进行比较即可得到答案;(2)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.(3)从调查的人数占上进行说明即可.【详解】(1)小明的调查是抽样调查;(2)调查的总体是全校同学的身高;个体是每个同学的身高;样本是从中抽取的3名同学的身高;样本容量是3.(3)这个调查的结果不能较好的反映总体的情况,因为抽样太片面.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.20.(2021·全国·七年级课时练习)小颖一天的时间安排统计图如图所示.(1)根据图中的数据制作扇形统计图,表示小颖一天的时间安排;(2)比较两幅统计图的不同;(3)制作扇形统计图表示你一天的作息情况.【答案】(1)见解析;(2)见解析;(3)见解析(1)根据条形统计图中的各项所占的百分比乘以360度,得到各项所占圆心角的度数,进而绘制扇形统计图;(2)根据条形统计图和扇形统计图的区别即可;(3)根据(1)的方法绘制扇形统计图即可.【详解】(1)睡觉,88100%33%360120 2424´=´°=°,,学习,99100%=37.5%38%360=135 2424´»´°°,,活动,44100%17%360=60 2424´»´°°,,吃饭,1.5 1.5100%6%36022.5 2424´»´°=°,,其他,1.5 1.5100%6%36022.5 2424´»´°=°,,(2)例如,从条形统计图中可以得到每项安排的具体时间,从扇形统计图中可以看到每项安排所需时间占全天时间的百分比.只要能用自己的语言清楚地表达出两种统计图的不同即可.(3)例如,本人睡觉9小时,学习8小时,活动3小时,吃饭和其他各2小时,则睡觉,99100%=37.5%38%360=135 2424´»´°°,,学习,88100%33%360120 2424´=´°=°,,活动,33100%13%360=45 2424´»´°°,,吃饭,22100%8%36030 2424´»´°=°,,其他,22100%8%36030 2424´»´°=°,,绘制扇形统计图如图所示,【点睛】本题考查了条形统计图和扇形统计图,绘制扇形统计图,掌握两种统计图的特点以及求扇形统计图圆心角的度数是解题的关键.21.(2021·全国·七年级单元测试)某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了 名学生;(2)扇形统计图中的a= ;(3)对于“参加公益活动为6天”的扇形,对应的圆心角为 度.【答案】(1)100;(2)25;(3)54.【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360°×百分比计算即可.【详解】解:(1)本次随机调查的学生数是:30÷30%=100(名);故答案为:100;(2)7天的人数有:100×5%=5(名),5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),则扇形统计图中的a%=25100×100%=25%.即a=25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×15100=54°;故答案为:54.【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.22.(2021·全国·七年级课时练习)为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.【答案】见解析【分析】绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.【详解】解:第一步,计算最大值与最小值的差:在所给的数据中,最大值是7.2,最小值是1.5,它们的差是7.2-1.5=5.7,第二步,决定组距与组数:由于最大值与最小值的差是5.7,如果取组距为1,那么由于5.77=5110,可分成6组,组数合适,于是取组距为1,组数为6,第三步,列频数分布表:分组频数£<101.52.5x£<102.53.5x£<11x3.54.5x£<104.55.5x£<55.56.5£<46.57.5x合计50第四步,画频数直方图:【点睛】本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.23.小强对班上同学喜欢的电视节目进行了调查,并根据调查结果绘制了下图.(1)喜欢哪类节目的人最多?喜欢哪类节目的人最少?相差多少?(2)直观来看喜欢时事类节目的人数是喜欢军事类的几倍?直观看与实际看一致吗?(3)为了更直观、清楚地反映喜欢这类节目人数之间的关系,这个图应怎样改动?【答案】(1)喜欢科普类节目的人最多,喜欢历史类节目的人最少,相差9人;(2)直观上看喜欢时事类节目的人数是喜欢军事类的3倍,面实际上是1.5倍,两者不一致;(3)见解析【分析】(1)认真观察图形,获取喜欢看每一类电视节目的人数即可解答第(1)问;(2)从图上读出两个类人数,并作商,然后与直观上所得的结果作对比,即可解决此题;(3)假设由你来设计此图形,你将如何设计?说出自己合理的设计顺序或建议即可.【详解】解:(1)喜欢科普类节目的人最多,喜欢历史类节目的人最少,相差16-7=9(人).(2)直观上看喜欢时事类节目的人数是喜欢军事类的3倍,面实际上是1.5倍,两者不一致.(3)将纵轴起点改为从0开始,其他数据相应变化.【点睛】此题考查条形统计图,解题关键在于要学会从条形统计图获取相关信息.。

北师大版七年级上册数学第六章单元测试卷及答案共5套

北师大版七年级上册数学第六章单元测试卷及答案共5套

第六章《数据的收集与整理》单元测试(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查2.要了解某市七年级学生的视力状况,从中抽查了500名学生的视力状况,那么样本是指()A.被抽查的500名学生的视力状况B.500名七年级学生C.500D.某市所有的七年级学生的视力状况3.我国五座名山的高度如下表:若想根据表中的数据制作成统计图,以便更清楚地对几座名山的高度进行比较,应选用()A.扇形统计图B.条形统计图C.折线统计图D.以上三种都可以4.某课外兴趣小组为了了解所在地区老年人的健康状况,分别做了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况5.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是()A.没有经过专家鉴定B.应调查四位游戏迷C.这三位玩家不具有代表性D.以上都不是6.如图是张大爷家1月至6月份的每月用电量的统计图,由图中信息可知,张大爷家这6个月用电量最大值与最小值的差是()A.100度B.150度C.200度D.250度7.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A.24人B.10人C.14人D.29人8.某学校将为七年级学生开设A,B,C,D,E,F共6门选修课,选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如下尚不完整的统计图表.根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.被调查的学生中喜欢选修课E,F的人数分别为80人,70人C.喜欢选修课C的人数最少D.扇形统计图中E部分扇形的圆心角为72°二、填空题(每小题4分,共16分)9.要反映一天的气温变化情况用______统计图表示比较合适.10.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压、高血脂、高血糖)现象必须引起重视.这个结论是通过_______得到的(填“普查”或“抽样调查”)11.对某中学70名女生的身高进行测量,得到一组数据的最大值为169cm,最小值为143cm,对这组数据整理时测定它的组距为5cm,应分成________组.12.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是______人. 三、解答题(共52分)13.(10分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中,任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)为调查一个省的环境污染情况,调查省会城市的环境污染情况14.(12分)如图是某班在一次数学小测验中学生考试成绩频数直方图(满分100分),根据图中提供的信息回答问题:(1)该班共有多少名学生?(2)该次测验成绩哪一分数段的人数最多?是多少人?(3)如果80分及以上为优秀,那么优秀率是多少?15.(14分)某中学开通了空中教育互联网在线学习平台,为了解学生使用情况,该校学生会把该平台使用情况分为A(经常使用)、B(偶尔使用)、C(不使用)三种类型,并设计了调查问卷,先后对该校七(1)班和七(2)班全体同学进行了问卷调查,并根据调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题.(1)求此次被调查的学生总人数;(2)求扇形统计图中表示类型C的扇形的圆心角度数,并补全折线统计图.16.(16分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,在对全市家庭进行的抽样调查中发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)m=______,n=______;(2)补全条形统计图;(3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?参考答案1.B2.A3.B4.D5.C6.B7.A8.C9.折线10.抽样调查11.612.1013.解:(1)合适,在全校所有的班级中任意抽取8个班级具有一定的代表性. (2)不合适,调查的范围较小,没有代表性和广泛性,失去了调查意义. 14.解:(1)2+3+6+10+12+14+8=55(人).(2)观察频数直方图可知成绩在80~90分数段内的人数最多,有14人.(3)因为成绩优秀的学生有14+8=22(人),所以优秀率为2255×100%=40%.15.解:(1)(32+26)÷58%=58÷58%=100(人).答:此次被调查的学生总人数为100人.(2)由折线统计图知,类型A人数为18+14=32(人),故类型A学生的比例为32÷100×100%=32%.所以类型C学生所占的比例为1-32%-58%=10%.所以扇形统计图中表示类型C的扇形的圆心角度数为360°×10%=36°.七(2)班类型C学生人数为10%×100-2=8(人).补全折线统计图图略16.解:(1)20 6 (2)条形统计图补充图略.(3)最常见的方式是直接抛弃.第六章《数据的收集与整理》一、精心选一选,你一定能行(每小题4分,共40分)1.下列调查适合作者普查的是( )A.了解在校大学生的主要娱乐方式B.了解我市居民对废电池的处理情况C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是()A.调查全校女生B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人3.要反映某市一周内每天的最高气温的变化情况,宜采用( )A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( )A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是( )A.144B.162 C.216 D.2506.某校对学生上学方式进行了一次抽样调查,右图是根据此次调查结果所绘制的扇形同就,已知该学校2560人,被调查的学生中汽车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为547一组数据的最大值是97,最小值76,若组距为4,则可分为几组 ( ) A. 4 B. 5 C. 6 D. 78.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果件下图,根据此条形图估计这一天该校学生平均课外阅读时间为 ( ) A.0.96小时 B.1.07小时 C.1.15小时 D.1.50小时人数/人510152000.511.52时间/时9. 超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其余类同),这个时间段内顾客等待时间不少于六分钟的人数为 ( )人数48121620123456等待时间/minA.5B.7C.16D.3310.某水库水位发生变化的主要原因是降雨的影响,对这个水库5月份到10月份的水位进行统计得到折线统计图如图所示,则该地区降雨最多的时期为 ( )水位05101520255678910月份A .5~6月份 B.7~8月份 C.8~9月份 D.9~10月份 二、耐心填一填,你一定很棒的!(每小题4分,共32分)11.为了考察某七年级男生的身高情况,调查了60名男生的身高,那么它的总体是-____________,个体是__________________,总体的一个样本是_________________. 12.小明家本月的开支情况如图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元。

《数据的收集与整理(一)》单元测试卷一

《数据的收集与整理(一)》单元测试卷一

《数据的收集与整理(一)》单元测试卷一
1.请根据二年级(1)班同学今年订阅杂志的统计表制成统计图,并回答问题。

统计图
(1)一个格代表()人。

(2)订阅()的人数最多,比订阅小学生作文的多()人。

(3)订阅()和()的人数相等。

2.下面是北京市2007年上半年空气质量情况。

1月:优0良11轻微污染及以上20;2月:优2良19轻微污染及以上7
3月:优1良19轻微污染及以上11;4月:优0良10轻微污染及以上20
5月:优2良24轻微污染及以上5;6月:优4良20轻微污染及以上6
你能完成统计表吗?
3.下表是上学期二年级(1)班期末数学成绩统计表。

(1)这次考试________范围内人数最多,________范围内人数最少。

(2)从表中你发现了什么?
4.丽丽和亮亮分别在城市A和城市B记录下了4月份的天气情况,如下表,请你制成统计表。

城市A
城市B
1月份两个城市天气情况统计表
(1)丽丽生活在南方,亮亮生活在北方,请根据统计结果和生活经验,知道城市A是()
记录的,城市B是()记录的。

(2)城市A晴天的天数比城市B的多()天。

(3)亮亮一家4月份要到南方玩,根据统计的结果你要提醒妈妈注意什么?
参考答案
一、(1)5(2)米老鼠15(3)爱科学其他
二、略
三、(1)80~8960以下
四、(1)小亮丽丽(2)3(3)答案不唯一,如:要带雨伞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学一教学教案-课时训练 第六章数据的收集与整理
单元测试题
(时间45分钟 满分100分) 班级 __________ 学号 __________ 姓名
一、选择题(每题3分,共24分)
1 .某班有50人,其中三好学生10人,优秀学生干部 5人, 1.能清楚地看出各部分与总数之间的百分比关系的是( ) A .条形统计图 B .扇形统计图 C .折线统计图
2 .解决下列问题,比较容易用全面调查方式的是( 得分
在扇形统计图上表示三好 D •以上均可以 ) A . 了解一天大批产品的次品率情况 B . 了解某市初中生体育中考的成绩 C . 了解某城市居民的人均收入情况 D . 了解某一天离开某市的人口数量
3. 对某班40同学的一次数学成绩进行统计,适当分组后 80〜90分这个分数段的划记 人数为“正下”,那么此班在这个分数段的人数占全班人数的百分比是( ) A . 20% B . 40% C . 8% D . 25%
4. 为了了解某县八年级学生的体重情况,从中抽取了 个问题中,下列说法错误的是( A.200名学生的体重是总体 C.每个学生的体重是一个样本 200名学生进行体重测试 ) B.200名学生的体重是一个样本 D.全县八年级学生的体重是总体。

5. 完成下列任务,宜用抽样调查的是 A .调查你班同学的年龄情况
C .考察一批炮弹的杀伤半径 6. 在整理数据5,5,3,■, 2,, 不清,但从扇形统计图的答案上发现数据 B. 了解你所在学校男、女生人数
D .奥运会上对参赛运动员进行的尿样检查 4时,■处的数据看 5的圆心角是180°,则■处的数据是 .在这 A . 2 B . 3 C . 4 7.下图是某厂2007年各季度产值统计图 (单位:
A .四季度中,每季度生产总值有增有减
B .四季度中,前三个季度的生产总值增长较快
C .四季度中,各季度的生产总值变化一样
D . 5
万元):则下列说法正确的是
D •第四季度生产总值增长最快
3 3 2
2 11
&数学老师布置10道选择题作为课堂练习, 形 ( A . 二、填空题 图,根据统计图可知, ) 0.38 B . 0.4 (每题3分,共24分)
le
学习委员将全班同学的答题情况绘制成条 答对 8道题的同学的频率是 C . 0.16
D . 0.08
9.
在对25个数据进行整理的频数分布表中,
各组的频数之和等于
之和等于 ___________ .
10. 某图书馆有A 、B 、C 三类图书,它的扇形统计图如右图所示, 那
么(1) A 类图书所占百分比为 _________ %; (2)若B 类图书 有420万册,则C 类图书有
_册.
11. ____________________________________________________ 要反映某同学成绩进步的情况应选用 ____________________________________ .
12. 某中学数学教研组有 25名教师,将他们按年龄分组,在38-45
岁组内的教师有8名教师,那么这个小组的频率是 ____________ . 13.
为了解社区居民的用水情况,小江调查了 120户居民,
'
发现人均日用水量在基本标准量( 50升)范围内
的频率
是75% ,那么他所调查的居民超出了标准量的有 14. 在PC 机上,为了让使用者清楚、直观地看出磁盘
空间”与 可用空间”占整个磁盘空间”地百分比, 统计图是 . 15. 将一批数据分成 5组,列出频率分布表,其中第一组与
第五组的频率之和是 0.2 7,第二与第四组的频率之和是 0.54,那么第三组的频率是 __________ .
16.
如右上图所示,根据某班 54个
学生的数学成绩绘制的频数分布直方图中,各小长
方形的高的比 AB : CD : EF : GH : PK=1 : 3 : 7 : 5 : 2,若后两组为 80分以上学 生数,则80分以上学生人数是 ____________________________________ •若80分成绩为优秀,则优秀率是 _____________________
三、解答题(共52分)
17. (9分)观察如图所示的扇形统计图,并回答问题:
(1) 全世界共有 ____ 个大洲, ________ 的面积最大; (2) _____ 这两个洲的面积之和最接近地球总陆地 面积的一半;
(3) 图中各个扇形分别代表了 之和是 __________ ;
(4) 地球的表面积为 5.1亿平方千米,而陆地面积为 1.49亿平方千米,仅占整个地球表面积的
29.2% .则
亚洲的陆地面积约为 _____________ 万平方千米(用科学 记数法表示),它占地球的表面积约为 ______________ . (第4题每格2分)
18. (8分)在“ 3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进 行了抽
A C E G P 分数
___ . 已用 使用的
,所有百分比
,各组的频率
亚洲24.3%
南美洲12 %
匕美洲16.1 地球陆地面积分布图 洋洲
次洲
6%
.1 %
查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度)分为很不满意、不满意、较满意、很满意四个等级。

(1)请问:甲商场抽查用户数为 _______ ;
乙商场抽查用户数为_______ ;
(2)分别求出甲、乙两商场很满意用户在调查总数中所占的百分比。

(精确到1%)
(3)请为甲商场提一条合理化建议。

19. (12分)初中生的视力状况受到全社会的广泛关注,某市有关部门对全市 3万名初
中生视力状况进行了一次抽样调查,如图是利用所得数据绘制的频数分布直方图 (长方形的高表示该组人数),根据图中所提供的信息,回答下列问题: (1) 本次调查共抽测了 _______ 名学生,占该市初中生总数的百分比是 ____________ ; (2) 从左到右五个小组的频率之比是 ________ ;
(3) 如果视力在 4.9〜5.1(含4.9 , 5.1)均属正常,则全市有 正常, 视力正常的合格率是 __ . (4) 此统计图说明了什么?
J.
100
3.95 425
視力
20. (10分)为了解某学校八年级学生的身体发育情况,学校对八年级女生的身高进行 了一次测量,
所得数据整理后绘制出统计图(如图)
名初中生的视力 30 BO 40 20
o y II
(1 )中m 和n 表示的数分别是多少?
(2)将统计图补充完整后再用频数折线图描述数据.
一、 1. B 2. B 3.A 4.A 5.C
6. D
7. D
8. B
二、 9. 25, 1 10 . 45, 350 万 11 .折线 12 . 0. 35 13 . 30 14 .扇形 15 . 0.19 16 . 21, 0.39
三、17 . (1) 7; (2)亚、非;(3) 3.6X107 , 7.1%
18 . (1) 4500, 4500 ; (2) 22% ,
29% ; ( 3)不唯一,示例:增加售后服务措施,提高服务的满意程度等; 19. (1) 240,
0.8% ; (2) 2: 4: 9: 6: 3; (3) 7500, 25%; (4)略 20. (1) 20, 16%; (2)略 21 . ( 1)
略;(2) 0.25, 100; ( 3)略
组别 人数 百分比 145.5 〜149.5 1 2% 149.5 〜153.5 4 8% 153.5 〜157.5 m 40% 157.5 〜161.5 15 30% 161.5 〜165.5 8 n 165.5 〜169.5
2 4% 合计
50
100%
21. (13分)未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查 了
市内某校100名学生寒假中花零花钱的数量(钱数取整数.单位:元)以便引导 学生树立正确的消费观•根据调查数据制成了频率分布表和直方图(如图) (1) 补全频率分布表; (2)
在频率分布直方图中长方形 ABCD 的面积是 .这次调查的样本容量是 (3)研究所认为,应对消费
150元以上的学生提出勤俭节约的建议.试估计应对该
校1000名学生中约多少名学生提出这项建议

分组 频数 频率 0.5 〜50.5
0. 1
50.5 〜
20
0. 2 100.5 〜150.5
〜200.5 30 0. 3 200.5 〜250.5 10 0. 1 250.5 〜300.5
5 0. 05
合计
100。

相关文档
最新文档