采用PLC控制的变频器一拖三恒压供水技术方案

合集下载

用PLC与变频实现恒压供水

用PLC与变频实现恒压供水

用PLC与变频实现恒压供水摘要:恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数。

在用水量发生变化时保持水压恒定以满足用水要求。

变频恒压供水技术变频恒压供水相关产品正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。

追求高度智能化、系列化、标准化是未来供水设备适应城镇建设中成片开发智能楼宇、网络供水调度和整体规划要求的必然趋势。

在短短的几年内,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。

单泵产品系统设计简易可靠,但单泵电动机深度调速造成水泵、电动机运行效率低,而多泵型产品的投资更为节省,运行效率高,已发展成为主导产品。

变频恒压供水控制方式根据水泵工作原理,水泵消耗功率与转速的三次方成正比,即N=Kn,(其中Ⅳ为水泵消耗功率,为水泵运行时的转速,为比例系数)。

而水泵是按工频运行时速设计的,但供水时除高峰外,大部分时间流量较小,由于采用了变频技术及微机控制技术,因此可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。

实践证明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能效率可达20%~40%。

带PID回路调节器和/或PkO的控制方式在该方式中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。

传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望{直|压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输送给变频器一个频率控制信号。

还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个频率控制信号。

[b][align=center]详细内容请点击:用PLC与变频实现恒压供水[/align][/b]。

PLC与变频器控制恒压供水系统设计方案

PLC与变频器控制恒压供水系统设计方案

PLC与变频器控制恒压供水系统设计方案随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。

然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。

本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。

1、系统介绍变频恒压供水系统原理,它主要是由PLC、变频器、PID调节器、TC时间控制器、压力传感器、液位传感器、动力控制线路以及3台水泵等组成。

用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。

通过安装在出水管网上的压力传感器,把出口压力信号送入PID调节器,经运算与给定压力参数进行比较,得出一调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。

根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。

当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。

同时系统配备的时间控制器和PID控制器,使其具有定时换泵运行功能(即钟控功能,由时间控制器实现)和双工作压力设定功能(PID控制器和时间控制器实现)。

此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。

2 、工作原理2.1 运行方式该系统有手动和自动两种运行方式:⑴. 手动运行按下按钮启动或停止水泵,可根据需要分别控制1#-3#泵的启停。

该方式主要供检修及变频器故障时用。

⑵. 自动运行合上自动开关后,1#泵电机通电,变频器输出频率从0Hz上升,同时PID调节器接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50Hz,1#泵由变频切换为工频,启2#变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。

基于plc与变频器控制的恒压供水系统

基于plc与变频器控制的恒压供水系统

摘要随着人们对生活水平要求的不断提高和经济社会发展的需求;再加上目前能源的紧缺,严重制约着经济社会的发展。

利用现有的成熟技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。

本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。

在经过PID运算,通过PLC控制变频与工频的切换,实现闭环自动调节恒压变量供水。

运行结果表明,该系统具有压力稳定,结构简单,工作可靠等特点。

而本设计是针对居民生活用水而设计的。

电动机泵组成由三台水泵组成,由变频器或工频电网供电,根据供水系统出水口的压力和流量来控制变频器电动机泵的速度和切换,使系统运行在最合理的状态,保证按需供水。

关键词:变频器,恒压供水,PLC目录第一章绪论 (4)1.1变频恒压供水系统的国内研究现状 (4)1.2恒压供水系统的基本构成 (5)1.3课题研究的目的和意义 (5)第二章PLC功能选择及应用 (5)2.1 模拟量输入模块的功能及与PLC系统的连接 (5)2.2 模拟量输入模块缓冲存储器(BFM)的分配 (6)2.3 模拟量输出模块的功能及PLC系统连接 (6)2.4变频器的功能选择及原理 (7)2.4.1 变频器的分类及工作原理 (8)2.4.2 变频器硬件选择 (8)2.5压力传感器的作用及使用方法 (9)第三章系统设计 (10)3.1系统要求....................................................................... (10)3.2控制系统的I/O及地址分配 (10)3.3 PLC系统选型 (11)3.4 电器控制系统原理图 (11)3.4.1 主电路图 (11)3.4.2 控制电路图 (12)第四章系统程序设计 (12)4.1系统要求的工作泵组数量管理 (12)4.2程序的结构及程序功能的实现 (13)4.3 系统的运行分析 (14)总结 (14)致谢 (15)参考文献 (15)第一章绪论随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。

采用plc控制的变频器一拖三恒压供水技术方案

采用plc控制的变频器一拖三恒压供水技术方案

采用plc控制的变频器一拖三恒压供水技术方案采用PLC控制的变频器一拖三恒压供水技术方案1. 系统控制要求;1.1 实现变频器一拖三控制并可手动/自动切换;1.2自动状态运行时系统启动一台泵后,当压力无法达到设定压力时,系统自动启动第二台泵,当压力还是无法达到设定压力时,系统自动启动第三台泵;当出口压力高于设定压力时应尽快切除掉一台泵………或两台泵,直到满足设定压力为止。

1.3手动状态时,要求手动启/停每一台泵,用于检修及应急;1.4 低液位时,停所有泵并声音及指示灯报警;1.5 管网压力如果大于设定值上限,所有泵停,直至压力下降然后按设定重新逐一启动水泵。

1.6 三台泵均具备软启动功能。

电气原理图:2. 设备选型:2.1 PLC系统选型:选用台湾亚瑞电子(南京)有限公司生产的SR-22MRD 可编程控制器。

该控制器具备14点DC输入,8点模拟量输入端口,模拟量输入端口为DC0—10V(精度为0.1V);8点继电器输出(负载能力为:感性负载2A,非感性负载10A)。

2.2 压力变送器的选择:可选择三线制电压型压力变送器,带LCD数显表头。

压力范围在10Kpa-60Mpa。

2.3 液位开关选用供液电极型液位开关。

2.4 变频器:风机水泵型变频器。

3.电气控制原理及PLC程序说明:3.1 电气控制原理图如图。

3台水泵电机为 M1,M2,M3。

KM1,KM3,KM5分别控制三台泵工频运行;KM2,KM4,KM6分别控制三台泵变频运行。

电路设计为互锁功能。

每台泵均有热继电器作电机过载保护。

QF1-4分别为变频器、泵主回路隔离开关。

QF5为PLC及控制回路提供电源。

SA为手动/自动切换旋纽,打到1位置启动PLC 按设计程序自动运行;打到2位置为手动启动单台泵运行,用于检修、紧急状态下使用。

HL3-HL8为运行状态指示。

HL2为水箱位置报警指示。

3.2 PLC I/0地址及功能如图3.3 程序文字简介:SA旋钮置于自动位置,PLC运行准备。

基于PLC 和变频器控制的恒压供水系统

基于PLC 和变频器控制的恒压供水系统

基于PLC 和变频器控制的恒压供水系统摘要本文设计介绍了一种基于PLC和变频器的变频恒压供水系统,由PLC 进行逻辑控制,由变频器进行压力调节。

PLC和变频器作为控制系统的核心部件,经过变频器内部的PID运算,通过PLC控制变频与工频的切换,通过传感器反馈压力信号,实现闭环自动调节恒压供水,基本实现了高质量恒压供水,降低电能损耗,延长了加压泵的使用寿命,通过故障处理基本实现了不间断供水。

关键词PLC;变频器;传感器0 引言在城乡供水系统中,随着高层建筑的广泛建设以及居民小区的规模化发展,原有的高位水塔供水系统已经不能满足恒压供水的要求,采用变频恒压控制是现代供水控制系统的新型方式,变频恒压供水系统可有效地降低“水锤”对泵体冲击、节约电能、维持管网水压恒定、实现无人值守等。

具有较大的经济和社会意义。

本文论述了一种基于PLC的变频恒压供水系统。

利用PLC加以不同功能的传感器、变频器,根据压力传感器测得管网压力的大小及变化来控制加压泵的转速及数量,使水管的压力始终保持在合适的范围内,从而达到恒压供水的目的。

1 恒压供水系统原理恒压供水的基本思路是:采用电机调速装置控制泵的转速,并自动调整泵的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节能的目的。

系统的控制目标是泵站总管的出水压力。

系统任意设定供水压力值,其与反馈总管的压力值通过PID调节后控制调速装置,以调节加压泵的运行速度,从而调节系统的供水压力。

与传统的恒速泵供水系统、水塔高位水箱供水系统和气压罐供水系统相比,调速恒压供水系统具有供水质量高、灵活性强、能耗少、电动机起制动平稳、无水锤效应等优点,从而获得了广泛应用。

2 系统总体设计2.1 系统概况本系统拟在控制2台55kW和3台30kW加压泵相互配合完成恒压供水。

本文将以“一拖三”(一台变频器拖动三台加压泵,加压泵功率为30kW),“一拖二”(一台变频器拖动两台加压泵,加压泵功率为55kW)的设备介绍PLC与变频器组成的恒压供水系统的工作原理。

基于PLC和变频器的恒压供水系统设计

基于PLC和变频器的恒压供水系统设计

本论文结合我国中小城市供水厂的现状,设计了一套基于PLC和变频器的恒压供水自动控制系统。

变频调速恒压供水自动控制系统由可编程控制器、变频器、水泵电机组、传感器、以及控制柜等构成。

在变频调速恒压供水系统中,三台水泵的调节是通过变频器来改变电源的频率f来改变电机的转速n,从而改变水泵性能曲线得以实现的。

变频调速恒压供水自动控制系统的控制器经历了从继电器—接触器,到单片机,再到PLC。

而变频器也从多端速度控制、模拟量输入控制,发展到专用变频器。

从而实现了城市供水系统简单、高效、低耗能的功能,而且还实现自动化的控制过程。

通过编程软件设计了一个用于供水系统压力控制的PID控制器,PID控制器内置在PLC中,该控制器对于压力给定值与测量值的偏差进行处理,实时控制变频器的输出电压和频率,进而改变水泵电动机的转速来改变水泵出水口流量,实现整个供水的压力的自动调节,使压力稳定在设定值附近。

关键词:PLC 变频调速恒压供水节能运行摘要 (I)1 绪论 (1)1.1 恒压供水问题的提出 (1)1.2 恒压供水系统的国内外研究现状 (1)1.3 本课题的主要工作 (2)2 变频恒压供水的工作原理 (3)2.1 供水系统的基本特性 (3)2.2 变频与变压(VVVF)原理 (3)2.3 变频调速的原理 (4)2.4 水泵调速运行的节能原理 (5)2.5 变频恒压供水的特点 (7)3 变频恒压供水系统的硬件设计 (8)3.1 变频恒压供水系统方案设计 (8)3.2 变频恒压供水系统结构设计 (9)3.3 变频恒压供水系统的构成 (10)3.3.1 压力传感器选择 (10)3.3.2 系统主要配置的选型 (11)3.3.3 MM420变频器概述 (14)3.4 基于S7-200 PLC恒压供水系统设计 (17)3.4.1 S7-200 PLC概述 (17)3.4.2 系统主电路设计 (19)3.4.3 控制系统接线图 (20)3.4.4 PLC外围接线图 (21)4 变频恒压供水系统软件设计 (23)4.1 恒压供水系统的控制流程 (23)4.2 供水系统加减水泵分析 (24)4.3 恒压供水中PID控制设计 (24)4.4 控制系统程序设计 (27)4.4.1供水系统的I/O分配 (27)4.4.2 供水系统所用软元件配置 (28)4.4.3手动自动设计 (30)4.4.4 水泵变/工频程序设计 (32)4.4.5 PLC和变频器通讯 (37)4.5 控制系统的调试 (39)结论 (41)致谢 (42)参考文献 (43)1 绪论1.1 恒压供水问题的提出众所周知,水是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市建设发展十分迅速,同时也对城市的基础设施建设提出了更高的要求。

一拖三恒压供水方案

一拖三恒压供水方案

一拖三恒压供水方案1. 引言恒压供水系统是一种将水泵的工作状态自动调整以保持水压恒定的供水系统。

在一些特定的场景中,需要将恒压供水系统扩展为一拖三的方案,即一个水泵供水给三个不同的用水设备。

本文将介绍一种实现一拖三恒压供水的方案。

2. 方案设计2.1 硬件设备•恒压供水器:一台恒压供水器,用于控制水泵的工作状态并保持水压恒定。

•水泵:一台大功率水泵,用于将水送至三个供水设备。

•一拖三分水器:一台一拖三分水器,用于将水分流至三个供水设备。

2.2 方案流程以下是一拖三恒压供水方案的流程:1.水泵启动:当任意一个供水设备启动时,恒压供水器检测到供水压力下降,信号水泵启动。

2.恒压供水:水泵开始工作,将水送至一拖三分水器,并保持恒定的水压。

3.水分流:一拖三分水器将水分流至三个供水设备,每个设备都能得到稳定的水压供应。

4.停止供水:当所有供水设备停止工作时,恒压供水器检测到供水需求结束,信号水泵停止工作。

3. 方案优势一拖三恒压供水方案的优势如下:3.1 节约成本通过使用一台大功率水泵,可以同时供水三个设备,避免了每个设备都单独安装水泵的成本,从而节约了设备成本。

3.2 省空间一拖三恒压供水方案只需要安装一个水泵和一个分水器,相比于每个设备都安装一个水泵的方案,节省了很多空间。

3.3 操作简便只需通过恒压供水器来控制整个系统的启停,操作简单方便。

3.4 稳定压力恒压供水器能够根据供水设备的需求自动调整水泵的工作状态,保持恒定的水压,确保各个供水设备都能得到稳定的供水。

4. 方案实施4.1 安装水泵首先,按照安装要求安装一台大功率水泵,该水泵需要能够满足同时供水三个设备的需求。

4.2 安装一拖三分水器在水泵出口处安装一拖三分水器,确保分水器的设计能够保证三个供水设备同时得到稳定的供水。

4.3 安装恒压供水器安装恒压供水器,连接水泵和一拖三分水器,并根据具体型号的使用说明进行设置和调试。

4.4 调试系统在安装完毕后,进行系统的调试工作。

PLC控制变频器的恒压供水系统的设计

PLC控制变频器的恒压供水系统的设计

PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。

PLC(可编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。

1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装位置和水泵的布置,以确保系统的整体效果最优。

通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。

2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网压力的变化,常用的传感器包括压力传感器和流量传感器。

这些传感器需要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。

3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选择合适的变频器,并进行参数设置。

在供水系统中,变频器的作用是通过控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。

4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制逻辑的设计。

程序中需要包括对传感器数据的采集和处理、对变频器的频率设置和控制、对水泵的启停控制等功能。

5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试与优化。

通过实际操作和测试,确定系统的参数设置和控制策略是否满足恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳定性。

6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。

例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。

总而言之,PLC控制变频器的恒压供水系统设计是一项复杂而重要的工作,它能够实现供水系统的自动化控制,提高系统的稳定性和能效。

要设计一个好的恒压供水系统,需要充分了解供水系统的要求和实际情况,并合理选择和配置设备,进行有效的控制策略设计和系统优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采用PLC控制的变频器一拖三恒压供水技术方案
1. 系统控制要求;
1.1 实现变频器一拖三控制并可手动/自动切换;
1.2自动状态运行时系统启动一台泵后,当压力无法达到设定压力时,系统自动启动第二台泵,当压
力还是无法达到设定压力时,系统自动启动第三台泵;当出口压力高于设定压力时应尽快切除掉一台
泵………或两台泵,直到满足设定压力为止。

1.3手动状态时,要求手动启/停每一台泵,用于检修及应急;
1.4 低液位时,停所有泵并声音及指示灯报警;
1.5 管网压力如果大于设定值上限,所有泵停,直至压力下降然后按设定重新逐一启动水泵。

1.6 三台泵均具备软启动功能。

电气原理图:
2. 设备选型:
2.1 PLC系统选型:选用台湾亚瑞电子(南京)有限公司生产的SR-22MRD 可编程控制器。

该控制器具备14点DC输入,8点模拟量输入端口,模拟量输入端口为DC0—10V(精度为0.1V);8点继电器输出(负载能力为:感性负载2A,非感性负载10A)。

2.2 压力变送器的选择:可选择三线制电压型压力变送器,带LCD数显表头。

压力范围在
10Kpa-60Mpa。

2.3 液位开关选用供液电极型液位开关。

2.4 变频器:风机水泵型变频器。

3.电气控制原理及PLC程序说明:
3.1 电气控制原理图如图。

3台水泵电机为M1,M2,M3。

KM1,KM3,KM5分别控制三台泵工频运行;KM2,KM4,KM6分别控制三台泵变频运行。

电路设计为互锁功能。

每台泵均有热继电器作电机过载保护。

QF1-4分别为变频器、泵主回路隔离开关。

QF5为PLC及控制回路提供电源。

SA为手动/自动切换旋纽,打到1位置启动PLC按设计程序自动运行;打到2位置为手动启动单台泵运行,用于检修、紧急状态下使用。

HL3-HL8为运行状态指示。

HL2为水箱位置报警指示。

3.2 PLC I/0地址及功能如图
3.3 程序文字简介:
SA旋钮置于自动位置,PLC运行准备。

当液位传感信号为1,如果压力信号<=2V,3号泵变频运行,1、2号泵工频运行补水;当压力信号<=2.5V, 1号泵工频、2号泵变频运行;压力信号〉=2.5V ,小于3V 时,1号泵变频运行。

如果信号大于3V,将所有泵置零,即停止三台泵所有方式的运行,待压力下降重新逐一起动水泵运行。

变频与工频切换时,考虑到电机中的残余电压,不能将电机立即切换到工频,而是延时一段时间,到电机中的残余电压下降到较小值,这个值保证电源电压与残余电压不同相时造成的切换电流冲击较小,故设置延时时间为700ms(可根据现场情况调节),之后接入工频。

变频器设置为自由停车。

本程序关键部位功能块解读:
1. 程序开始采用TBLS功能块作为程序的启动与停止(包括急停),启动按钮定义为S置位信号。

停止按钮定义R端复位;
2 .大量采用&逻辑功能块,各条件均满足经过判断后用于输出;
3. 灵活使用反向器,例如变频器的一拖三功能和变频与旁路的切换均为反向器实现。

压力传感器信号<2.5V且>2V,则由CMPR模块(模拟量比较器)引出一路至反向器1#,经过反向后控制1#变频输出为零,再经过一个反向器控制1#工频输出。

所以变频器一拖三功能,变频与旁路的切换换都是通过反向器及其后接延时接通TRG模块实现。

变频器的启/停控制也由三段压力信号约束(三段经比较后的压力信号接入或逻辑模块作为RS的置位信号,三路控制变频输出的反信号接入另一&逻辑模块作为RS复位端控制变频
器的启/停,由此实现变频输出的平滑切换。


假如液位传感器信号为0,即:水满,程序置零,工频变频运行停止,输出为零,直到信号为1开始
补水。

SA置于手动位置可通过外围控制电路启动各台泵单独工频运行,便于检修与应急。

以下为编辑完成的程序界面:
以下为I/O设备地址及功能:
以下为压力信号电压小于3V时的仿真运行画面:。

相关文档
最新文档