§2.2联合剖面法解析

合集下载

激电测深和联合剖面测量

激电测深和联合剖面测量

激电测深和联合剖面测量作者:牛稳来源:《科技资讯》2014年第35期摘要:激发极化法是以岩(矿)石、水的激发极化效应的差异为物性前提,用人工地下直流电流激发,以某种极距的接收装置,测量地层的不同激发效应,研究地层横、纵向激发极化效应的特点,以查明矿产资源和有关地质问题的方法。

激电测深和联合剖面测量是激发激化法的常用方法,在硫化物金属矿的勘查过程中有较好的效果。

该文简述了激电测深、联合剖面方法在威宁二塘镇铅锌矿勘探中的综合应用,并介绍了激电测深、联合剖面测量概念、装置及激发激化法原理,且对L-2线剖面异常解释推断及验证。

关键词:威宁二塘镇激电测深联合剖面铅锌矿区综合应用中图分类号:P631 文献标识码:A 文章编号:1672-3791(2014)12(b)-0056-031 激电测量原理和装置1.1 工作原理电测深法是在地面的测深点上(即MN极的中点),通过逐次加大供电电极AB极距的大小,测量同—点的不同AB极距的视电阻率ρS值,研究这个测深点下不同深度的地质断面情况。

在AB极距离短时,电流分布浅,ρS曲线主要反映浅层情况;AB极距大时,电流分布深,ρS曲线主要反映深部地层的影响。

1.2 测量装置采用图1装置用于研究地层的垂向变化,通常在重点异常区布置测深点。

MN中点为测深点位置,MN不动,加大AB距进行观测。

2 矿区实测分析以黔西南威宁县二塘铅锌矿区L-2测线激电测深及联合剖面测量,作为具体解释推断实例。

2.1 地质背景及铅锌矿分布特征位于特提斯-喜马拉雅与滨太平洋两大全球巨型构造域结合部位,属扬子准地台上扬子台褶带,地质构造复杂、沉积建造多样、大陆流溢拉斑玄武岩浆活动强烈,深大断裂对该区地壳的演化起着重要的控制作用,与它们伴生的成矿单元,主要受构造的影响,具有明显的带状特征。

2.2 矿区地质(1)地层与构造。

①石炭系地层有中统黄龙组(C2h):浅灰、灰色厚层块状亮晶灰岩、燧石灰岩,夹生物屑灰岩,厚55~110m。

环境与工程物探:联合剖面法

环境与工程物探:联合剖面法

sSA
野外工作中,地表覆盖层电性不均匀将导致 sA 和 sB曲线出现锯齿状跳动,
当极距L大于电性不均匀体半径的5倍时,局部不均匀体对两条曲线的影响
近于相等,两条曲线呈同步跳动。这时可以取 F
A
A s
பைடு நூலகம்来消除表土不均匀的影响。
B s

FB
B s
A s
4、应用
联合剖面法主要用于探测产状陡倾的良导薄脉(矿脉、 断层、含水破碎带)及良导球状矿体。
② 交点左侧 sA > sB ,交点右侧 sA < sB ,此交点称为联
合剖面法的“正交点”(或低阻交点);
③ sA 与 sB 曲线对称,交点两侧,两条曲线明显张开。
当薄脉为直立高阻脉时:
联合剖面法 S曲线右
图。两条曲线也有一交点,
但右交侧点左sA <侧sBsA,>此交sB ,点交称点
为联合剖面法的“反交 点”;且反交点不明显, 而且两条曲线近于重合。
(一)联合剖面法
C→∞
1、装置特点及 ρs 公式
AO=BO MO=NO
OC > 5AO
A s
=
kA
U
A MN
IA
(AMN ∞ )
A (I)
M ON
(-I) B
B s
=
kB
U
B MN
IB
( ∞ MNB)
AM • AN kA = kB = 2 MN
在测量时,C极固定不动,A、M、N、B间保持距离不变,四 个极沿测线同时移动,逐点进行测量,测点为M、N的中点O。 每个点测量两次,得两个ρs值
由于C极为无穷远极,它在M、N处产生的电位很小,故可忽略 不计,因此,联合剖面法的电场可视为一个“点电源”的电场。

联合剖面法模型实验

联合剖面法模型实验

实验三联合剖面法模型实验一、实验目的与内容1.掌握联合剖面测量的方法。

2.了解联合剖面曲线低阻正交点、高阻反交点特征。

二、实验仪器及材料准备WDDS-1数字电阻率仪一台(带8节2号电池),万用表一台,电池箱一个(带60节1 号电池),大头针若干,水槽跑极装置一套,低、高阻板状模型,低、高阻球状模型。

记录纸一张,单对数坐标纸一张,直尺一把,铅笔,橡皮。

三、实验步骤1.在水槽中放置低阻球体球体,顶面埋深1〜4cm测线通过球心在水面的投影。

联合剖面法极距按AO=8cm,MN=2cn 点距2cm设置。

无穷远极距离测线垂直距离5倍AO以上。

按(3-1)式计算装置系数。

(3-1)UMN(3-2)=K --------I2.按图3.1布设联合剖面法电极,准备好记连接仪器,在WDDS-1上设置极距参数等。

录纸和单对数坐标纸。

图3.1联合剖面法模型实验装置图3.逐点移动电极,测量(注意:测量完沈后要给B极供电, 记录u , I, d每个数据要至少测量两次,要求误差不超过阻率。

如图3.2把联剖曲线绘在单对数坐标纸上。

'餐和:都测完才跑极)。

5 %,按(3-2)式计算视电图中横坐标为测点位置, 采用算术坐标,单位cm;纵坐标为归一化视电阻率 匚:6,采用对数坐标, 匚为实测视电阻率,J 为远离低阻体的视电阻率,J 基本上等于水的 电阻率。

仪器操作步骤: (1) 开机,按“ 键,调节液晶屏对比度。

按“电池”键,检查仪器电池电压。

0.5秒,输入数值5后按“确认”键”选择3P-PRFL 联合剖面。

NO=01,按“确认”键;输入数据(单位为 m ):按“停止”键,屏幕显示 K 值。

(5)测量:测:将A 接线柱夹子与A 极电缆相连,按“测量”键测量。

在2号和4号排列下,版面显示“ A-极供电?”,按“确认”键为 A 极供电 并显示测量结果 ?SA (其他键表示B 极供电);将测量参数记录到记录纸上。

按“确认”键存储数据测叮:将A 接线柱夹子与B 极电缆相连,按“测量”键,再按“确认”键,名义 上是对A 极供电,实际上是对B 极供电。

§2.2联合剖面法解读

§2.2联合剖面法解读
2 K x B 12 S 1,1 1 1 2 2d x
B 的计算公式也有以下三 s
第 13 页
X
§2.2 联合剖面法
(2)当O点在ρ1而B点进入ρ2岩石时:
21 2 1,2 1 2
B S
这种情况下的表达式与AMN装置中第二种情况相同。
研究垂直接触面上的ρs曲线特征,目的在于确定 岩石分界面,进行地质填图。下面将重点讨论具有 一个垂直接触面的最基本情况。 联合剖面法是由两个三极装置AMN和MNB组成的, 由于供电电极与测量电极的排列次序不同,故在过 垂直接触面时的 和 sA 曲线特征也不同。由于对称 sB
四极剖面法的
sAB
当装置向右移动并逐渐靠近接触面时,虚点源B1的 作用则逐渐加强,这早因为虚点源B1与实点源B相对 界面要保持对称,所以实点源B愈靠近界面,虚点源 B1也就愈与界间接近,从而Bl到测量电极MN的距离
也就愈小,故作用加倍。
第 16 页
X
§2.2 联合剖面法
虚点源B1(电流K12I)的符号 决定其对
1
A s
于是
sA便逐晰上升装置愈靠近接触面,ρ2岩石吸引电流
的作用愈强,

A 也就不断增加 s
第 7页
X
§2.2 联合剖面法
当MN当前到达接触面时,有最大值
2 1 2
A s 2 1
反之,如果ρ2>ρ1,则ρ2岩石表现为排斥电流的作用, 那时MN到达到接触面时,有最小值 2 A 1 s 1 2
s
2
A s
第 11 页
X
§2.2 联合剖面法
此后,随着装置的右移并远离分界面时,ρ1岩

联合剖面法模型实验

联合剖面法模型实验

实验三 联合剖面法模型实验一、实验目的与内容1.掌握联合剖面测量的方法。

2.了解联合剖面曲线低阻正交点、高阻反交点特征。

二、实验仪器及材料准备WDDS-1数字电阻率仪一台(带8节2号电池),万用表一台,电池箱一个(带60节1号电池),大头针若干,水槽跑极装置一套,低、高阻板状模型,低、高阻球状模型。

记录纸一张,单对数坐标纸一张,直尺一把,铅笔,橡皮。

三、实验步骤1.在水槽中放置低阻球体球体,顶面埋深1~4cm ,测线通过球心在水面的投影。

联合剖面法极距按AO=8cm,MN=2cm,点距2cm 设置。

无穷远极距离测线垂直距离5倍AO 以上。

按(3-1)式计算装置系数。

MNANAM r r r K ⋅=π2 (3-1)IU KMNs ∆=ρ (3-2) 2.按图3.1布设联合剖面法电极,连接仪器,在WDDS-1上设置极距参数等。

准备好记录纸和单对数坐标纸。

图3.1 联合剖面法模型实验装置图3.逐点移动电极,测量(注意:测量完As ρ后要给B 极供电,As ρ和Bs ρ都测完才跑极)。

记录u ∆,I, s ρ每个数据要至少测量两次,要求误差不超过5%,按(3-2)式计算视电阻率。

如 图3.2把联剖曲线绘在单对数坐标纸上。

608010012014010.90.80.70.60.5ρs /ρ1x (cm)ρs A ρs B图3.2 联合剖面法视电阻率曲线图中横坐标为测点位置,采用算术坐标,单位cm ;纵坐标为归一化视电阻率1ρρs,采用对数坐标,s ρ为实测视电阻率,1ρ为远离低阻体的视电阻率,1ρ基本上等于水的电阻率。

仪器操作步骤:(1)开机,按“↑↓”键,调节液晶屏对比度。

按“电池”键,检查仪器电池电压。

按“设置”键,设定供电时间仪器默认为0.5秒,输入数值5后按“确认”键(2)按“排列”键输入线号。

(3)按“确认”显示排列方式。

按“↑↓”选择3P-PRFL 联合剖面。

(4)按“极距”键输入极距号,如:NO=01,按“确认”键;输入数据(单位为m ):AB/2=0.08,MN/2=0.01,并按“确认”键,再按“停止”键,屏幕显示K 值。

电法勘探资料处理与解释复习资料解析

电法勘探资料处理与解释复习资料解析

电法勘探资料处理与解释复习资料1.电剖面/电测深定性分析方法:定性分析是在资料的预处理和分析的基础上进行的,其主要任务是初步解释引起各个异常的地质原因。

对有意义的异常体还应该确定大致的形状,走向,倾向,分布范围,埋深等,并绘出相应的定性的解释图件。

(1)电剖面的定性分析方法:首先根据给定的资料,结合地质和其他的物探资料,进行分析,期间要注意地形影响及地表不均匀体的影响。

根据异常性质经验进行引起异常的地质原因进行初步判断——断层破碎带,低阻矿脉:引起低阻条带异常及低阻正交点——高低阻岩层接触界线:引起阶梯状条带状异常——高阻岩脉岩墙:引起高阻条带异常——局部不均匀体:引起局部高阻或低阻异常对于局部存在的高阻或者低阻体,可以根据低阻吸引电流,高阻排斥电流的方法留确定局部的视电阻率异常为高阻还是低阻。

电剖面法方法很多这我们就讨论利用联合剖面法来进行定性分析根据联合剖面法的不同极距可以判断地下异常体的倾向,利用联合剖面法的视电阻率曲线初步确定异常体中心埋深等等(2)电测深的定性分析方法:目的:通过定性解释可以了解工作的区的地电断层的类型及变化情况。

单独一条电测深曲线的解释:①电性层的数目;②各层电阻率的相对大小;③估计第一层和底层的电阻率值。

最主要是确定电阻率测深曲线的类型。

2.视电阻率等值线断面图定性分析方法:这道题要根据具体的题目具体分析,例题在复习资料上有。

3.曲线类型图分析方法:曲线类型,二层情况:(1)D型曲线,p1>p2电阻率下降,基底为低阻(2)G型曲线,p1<p2电阻率升高,基底为高阻三层情况:(1)A型曲线,p1<p2<p3电阻率递增(2)K型曲线,p1<p2>p3中间层电阻率高(3)H型曲线,p1>p2<p3中间层电阻率低(4)Q型曲线,p1>p2>p3电阻率递减多层情况这就不讨论可以根据三层的曲线进行推导4.一维直流电测深的正演方法原理、正演程序流程:一.正演原理(1)电阻率测深法原理电阻率测深法简称电测深,是用来探明水平层状(或近水平层状)岩石在地下分布情况的一组 电阻率法变种。

联合剖面法和对称四极测深法电法报告

联合剖面法和对称四极测深法电法报告

实验二:对称四极测深法
第一节 实验目的
1、掌握 DDC-8 电阻率仪的操作方法。 2、熟悉对称四极测深装置的特点、原理以及操作方法。 3、结合书本理论,通过实践加深对对称四极测深法(二层水平层状大地模型)的 认识。 4、在实验室模拟测量,对数据进行简单处理作图,并对其做出合理解释。
第二节 实验原理
图2 如图 2 所示,电测深法的装置特点是保持测量电极 MN 的位置固定,在不 断增大供电电极距的同时,逐次进行观测。 但是, 在实际工作中, 由于 AB 极距不断加大, 若 MN 的距离始终保持不变,

A S

K
A
U I
A MN A
,
B S

K
B
U I
B MN B
第 1 页
电法实习报告
式中
K K 2 AM MN AN
A
B
联合剖面装置取 MN 中点作为记录点。
第三节 实验步骤
①连接 A,B,M,N 接线柱并分别与小电极连接; ②按“ON”键打开仪器后,再按“电池”键检查仪器工作电压≥9.6V; ③按“时间”键,设置供电时间参数; ④按“排列”键,设置排列方式参数(3P/PRFL) ; ⑤按“极距”键,设置电极距参数 AB/2 和 MN/2(单位:m) ; ⑥按“前进”键,记录装置系数 K 值; ⑦连接外接电源 HV,检查上述无误后,就可以进行数据采集(ΔUmn,I,R, ρS) ; ⑧将 A 极连通,按“测量” ,记录数据; ⑨换下 A,连上 B 极,再按“测量” ,记录下数据; ⑩将整个电极测量装置向前挪动 5cm,重复⑧⑨⑩直至整个剖面完成; ⑪关闭电源,拆下导线,整理好装置,整齐的放在实验台上。 我们小组共有 8 人,分为电阻率仪,每个人每个步骤都操作了一遍。

2联合剖面讲解

2联合剖面讲解

两种岩石陡立接触面上的ρs表达式
A(+I) M(x) 0
虚电源A’
A、M都在介质1
x
ρ1
d
U (1,1) Ir1 1 K12
ρ2
2 x 2d x
K12I
A(+I)
• A在介质1 、M在介质2 ρ1
U (1,2) (1 K12 )Ir2 2x
M
x
ρ2
(1-K12) I
两种岩石陡立接触面上的ρs表达式
况,因此
jMN→ j0, 所以,
rMN =r1,
在远离界
面时,rs 曲线出现
r1渐近线。
(2)三极排列AMN向右移动并逐渐接近直立界 面时,由于r2<r1 ,电流线被低阻介质吸引,使 jMN>j0 , 因而rs>界面)时,
rs出现极大 值。
因为K12<0,MN向界面移动过程中d减小, rs 的值增大;当d=x时,即MN刚好在接触面上 时,视电阻率取极大值,即:
AB MN AB
50
3
四、电剖面法的测网布置
根据地质任务、工作比例尺,常用的比例尺和 测网密度(线距×点距)见下表。待测工区所 布置的测线应相互平行,并垂直主要构造走向。
比 例 尺 线 距 (米) 点 距 (米)
1:25000 1:10000 1:5000
250 100~200 50~100
和 BC回路供电得两个视电阻率 ρsA,和ρSB, ,并绘制他们的曲 线,作图时习惯上ρSA, 为实 线, ρSB, 为虚线。 适用:寻找陡倾的良导金属 矿及构造破碎带,在地质找 矿和地质填图中均得到广泛 的应用。
1.装置特点及ρs公式
AO=BO MO=NO OC>5AO
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B S
自此,当B极越过界面进到ρ2岩石中但MN仍在ρ1时,
1 A ( s 。 sB ) 2
第 2页
X
§2.2 联合剖面法
B AB s 曲线后,容易得到 s 曲线。下 面分别讨论之。 A 故有 s 和


1.
A s 剖面曲线
第 3页
X
§2.2 联合剖面法
计算时采用上图的坐标和符号则有 (1)当供电电极(A)和测量电极中点(O)均在ρ1岩石中时
(3)当O点和B点都进入到ρ2岩石中时:
2 K12 x B S 2,2 2 1 2 2d x
第 14 页
X
§2.2 联合剖面法
sB
100
=BO
sB
图中给出了 按 以上各式计
B 算的 s 剖面
曲 线,可用
sB
20
“镜象法”虚
O
MN B
研究垂直接触面上的ρs曲线特征,目的在于确定 岩石分界面,进行地质填图。下面将重点讨论具有 一个垂直接触面的最基本情况。 联合剖面法是由两个三极装置AMN和MNB组成的, 由于供电电极与测量电极的排列次序不同,故在过 垂直接触面时的 和 sA 曲线特征也不同。由于对称 sB
四极剖面法的
sAB
§2.2 联合剖面法
由两个三极装置组成: A-MN, MN –B (C为无穷远) A
A-MN
C
地“无穷远”
K M N Bபைடு நூலகம்
MN -B
横向分辨能力强,异常 明显。适合于水文、工 程地质及构造找矿。
装置相对笨重,地形 影响大。解释时具体 分析。
第 1页
X
§2.2 联合剖面法
一、垂直接触面上联合剖面法异常
B s
的作用
在当ρ1>ρ2,K12<o,又I为正,故K12I为负号。于 是虚源B1电流的方向在测点处与实源B的电流方向 相反,所以此时虚源B1的作用是使

B 减小 s
1
B s
第 17 页
X
§2.2 联合剖面法
当B极到达接触面时(d=0),则
2 1 2 1 1 K12 1 2
O
MN B
点源的作用来 s 讨论 曲线的
B
1 100 m
2 20 m
MNB三极装置过垂直接触面的
sB 剖面曲线
第 15 页
变化特征。
X
§2.2 联合剖面法
由图可见,当全部装置均在ρ1,且距离接触面 很远时,镜象B1的作用可以忽略不计,此时,相当
均匀介质情况。
sB 1
s
2
A s
第 11 页
X
§2.2 联合剖面法
此后,随着装置的右移并远离分界面时,ρ1岩
石排斥电流的作用便相应减弱,于是jMN便趋于j0,
最后

A s
达均匀情况时的ρ2值。
第 12 页
X
§2.2 联合剖面法
2. sB 剖面曲线
对于MNB三极装置而言, 种情况: (1) 当O点和B极都在ρ1岩石上时
A s 曲线的变化特征根
j MN MN j0
A s
当装置距离接触面很远时,地中电流的分布几乎与均
匀介质情况(只有 (只有ρ1岩石)相同。此时,jMN=j0及
ρMN=ρ0
1
A s
第 6页
X
§2.2 联合剖面法
当装置向右移动逐渐接近接触面时,由于ρ2<ρ1,所
以ρ2岩石将表现出向右吸引电流的作用,致使MN处的电 流密度增大,即jMN>j0,所以:
2
第 8页
X
§2.2 联合剖面法
当MN极由ρ1岩石近入到ρ2岩石时,由于电流密度的
法线分量是连续的 : 但是ρMN由ρ1跃变到ρ2,所以 跃变,并旦跃变前后
j
(1) MN
j
( 2) MN
A 在接触面处将发生 s

A(1) s A( 2 ) s
2 1
第 9页
X
§2.2 联合剖面法
A S
第 4页
X
§2.2 联合剖面法
根据以上三种情况下的 s 计算公式,对于ρ1>ρ2之 计算结果如图所示:
A
sA
100
20
O A MN
1 100 m
O A MN
2 20 m
AMN三极装置过垂直接触面的
sA剖面曲线
X
第 5页
§2.2 联合剖面法
通过电流密度的分布规律解释 据的已知关系式:
K12 L2 1,1 1 1 2 L 2 x
A S
(2)当A 极在ρ1而O点进入ρ2岩石时: 21 2 A S 1,2 1 2 (3)当A极和O点全部进入到ρ2岩石时:
K12 L2 2,2 2 1 2 2 x L
当装置向右移动并逐渐靠近接触面时,虚点源B1的 作用则逐渐加强,这早因为虚点源B1与实点源B相对 界面要保持对称,所以实点源B愈靠近界面,虚点源 B1也就愈与界间接近,从而Bl到测量电极MN的距离
也就愈小,故作用加倍。
第 16 页
X
§2.2 联合剖面法
虚点源B1(电流K12I)的符号 决定其对
由于当前 ρ1<ρ2岩石时,故 下跃变。
A 曲线过界面时乃是向 s
反之,

A 曲线过界面时将向上跃变 s
当装置继续向前移动直到A极达到接触面之前:
1 2 1 2
A s
第 10 页
X
§2.2 联合剖面法
当A极进入ρ2岩石时,将随着 d的增加而减小,直到A极 A 远离界面时, 便趋于ρ2。从地下电流的分布状况来说, 当 A极在 ρ2 岩石中靠近分界面时,由于 ρ2<ρ1 ,所以 ρ1 岩石对A极供入ρ2岩石中的电流表现为排斥作用,因此 使得jMN比正常情况(地下全为ρ2岩石)的j0大,故。
2 K x B 12 S 1,1 1 1 2 2d x
B 的计算公式也有以下三 s
第 13 页
X
§2.2 联合剖面法
(2)当O点在ρ1而B点进入ρ2岩石时:
21 2 1,2 1 2
B S
这种情况下的表达式与AMN装置中第二种情况相同。
1
A s
于是
sA便逐晰上升装置愈靠近接触面,ρ2岩石吸引电流
的作用愈强,

A 也就不断增加 s
第 7页
X
§2.2 联合剖面法
当MN当前到达接触面时,有最大值
2 1 2
A s 2 1
反之,如果ρ2>ρ1,则ρ2岩石表现为排斥电流的作用, 那时MN到达到接触面时,有最小值 2 A 1 s 1 2
相关文档
最新文档