第一章 金属晶体结构

合集下载

第一章金属的晶体结构 本章重点与难点: ①金属键; ②最常见

第一章金属的晶体结构 本章重点与难点: ①金属键; ②最常见

第一章金属的晶体结构本章重点与难点:①金属键;②最常见的晶体结构:面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp);晶向指数和晶面指数;③晶体中存在的缺陷:点缺陷、面缺陷、线缺陷。

内容提要:固体物质的原子是由键结合在一起。

这些键提供了固体的强度和有关电和热的性质。

由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷三类。

金属的原子之间时依靠金属键结合在一起的。

在结晶固体中,材料的许多性能都与其内部原子排列有关,可将晶体分为7种晶系,14种布拉菲点阵。

金属中最常见的晶体结构有面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)结构。

本章还介绍了晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。

实际的晶体结构中存在着一些缺陷,根据几何形态特征,分为点缺陷、面缺陷、线缺陷。

基本要求:1.建立原子结构的特征,了解影响原子大小的各种因素。

3.建立单位晶胞的概念,以便用来想像原子的排列;在不同晶向和镜面上所存在的长程规则性;在一维、二维和三维空间的堆积密度。

4.熟悉常见晶体中原子的规则排列形式,特别是bcc,fcc以及hcp。

我们看到的面心立方结构,除fcc金属结构外,还有NaCl结构和金刚石立方体结构。

5. 掌握晶向、晶面指数的标定方法。

一般由原点至离原点最近一个结点(u,v,w)的连线来定其指数。

如此放像机定为[u,v,w]。

u,v,w之值必须使互质。

晶面指数微晶面和三轴相交的3个截距系数的倒数,约掉分数和公因数之后所得到的最小整数值。

若给出具体的晶向、镜面时会标注“指数”时,会在三维空间图上画出其位置。

6.认识晶体缺陷的基本类型、基本特征、基本性质。

注意位错线与柏氏矢量,位错线移动方向、晶体滑移方向与外加切应力方向之间的关系。

7 了解位错的应力场和应变能,位错的增殖、塞积与交割。

第一节金属1 金属原子的结构特点金属原子的结构特点是外层电子少,容易失去。

第一章-金属的晶体结构(共118张PPT)可修改全文

第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。

第一章金属的晶体结构作业答案

第一章金属的晶体结构作业答案

第⼀章⾦属的晶体结构作业答案第⼀章⾦属的晶体结构1、试⽤⾦属键的结合⽅式,解释⾦属具有良好的导电性、正的电阻温度系数、导热性、塑性和⾦属光泽等基本特性.答:(1)导电性:在外电场的作⽤下,⾃由电⼦沿电场⽅向作定向运动。

(2)正的电阻温度系数:随着温度升⾼,正离⼦振动的振幅要加⼤,对⾃由电⼦通过的阻碍作⽤也加⼤,即⾦属的电阻是随温度的升⾼⽽增加的。

(3)导热性:⾃由电⼦的运动和正离⼦的振动可以传递热能。

(4) 延展性:⾦属键没有饱和性和⽅向性,经变形不断裂。

(5)⾦属光泽:⾃由电⼦易吸收可见光能量,被激发到较⾼能量级,当跳回到原位时辐射所吸收能量,从⽽使⾦属不透明具有⾦属光泽。

2、填空:1)⾦属常见的晶格类型是⾯⼼⽴⽅、体⼼⽴⽅、密排六⽅。

2)⾦属具有良好的导电性、导热性、塑性和⾦属光泽主要是因为⾦属原⼦具有⾦属键的结合⽅式。

3)物质的原⼦间结合键主要包括⾦属键、离⼦键和共价键三种。

4)⼤部分陶瓷材料的结合键为共价键。

5)⾼分⼦材料的结合键是范德⽡尔键。

6)在⽴⽅晶系中,某晶⾯在x轴上的截距为2,在y轴上的截距为1/2;与z轴平⾏,则该晶⾯指数为(( 140 )).7)在⽴⽅晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。

8)铜是(⾯⼼)结构的⾦属,它的最密排⾯是(111 )。

9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体⼼⽴⽅晶格的有(α-Fe 、 Cr、V ),属于⾯⼼⽴⽅晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六⽅晶格的有( Mg、Zn )。

3、判断1)正的电阻温度系数就是指电阻随温度的升⾼⽽增⼤。

(√)2)⾦属具有美丽的⾦属光泽,⽽⾮⾦属则⽆此光泽,这是⾦属与⾮⾦属的根本区别。

(×)3) 晶体中原⼦偏离平衡位置,就会使晶体的能量升⾼,因此能增加晶体的强度。

金属学与热处理第一章 金属的晶体结构

金属学与热处理第一章 金属的晶体结构
金属:Zn、Mg、Be、α -Ti、α -Co等
晶体结构特征:
点阵参数: a1=a2=a3=a,
α 1=α 2=α 3=1200
平面轴X1、X2、X3和Z轴的夹角=90 ——四轴坐标系
O
Z轴的单位长度=c,用a、c两个量来度量
点阵参数:α=β=90º, γ=120º; a1=a2=a3≠c, 理想状态:c/a=1.633
第一章 金属的晶体结构
本章教学目的
建立金属晶体结构的理想模型 揭示金属的实际晶体结构
§1-1 金属
一. 金属的特性和概念
1. 特性
金属通常表现出的特性:良好的导电性、导 热性、塑性、金属光泽、不透明。
2. 概念
(1) 传统意义上的概念。 (2) 严格意义上的概念:具有正的电阻温度系 数的物质,即电阻随温度的升高而增加的物质。
晶向─晶体点阵中,由阵点组成的任一直线,代 表晶体空间内的一个方向,称为晶向。 晶面─晶体点阵中,由阵点所组成的任一平面, 代表晶体的原子平面,称为晶面。
1.晶向指数的标定
晶向指数─用数字符号定量地表示晶向,这种数字符 号称为晶向指数。 以晶胞为基础建立三维坐标体系: z C′ O′ A′ c
γ O β α
晶体有各向异性, 非晶体则各向同性。
各向异性:不同方向上的性能有差异。
3.晶体与非晶体的相互转化性
玻璃
长时间保温
金属 极快速凝固
“晶态玻璃”
“金属玻璃”
非晶新材料的发展:光、电、磁、耐蚀 性、高强度等方面的高性能等。
二.晶体学简介
1.晶体结构模型的建立
(1) 假设:原子为固定不动的刚性小球,每个原子 具有相同的环境。
O′
z B′
C′

第一章 金属与合金的晶体结构

第一章 金属与合金的晶体结构

晶格-描述晶体中原子排列规律的空间格架。
晶胞-空间点阵中最小的几何单元。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际 排列。 特征:a 可能存在局部缺陷; b 可有无限多种。
空间点阵相同,是否晶体结构相同?
2 晶胞
(1)晶胞:构成空间点阵的最基本单元。
(2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角;
(c)
配位数=12;致密度=0.74
3、密排六方晶格:记为HCP 密排六方晶格的晶胞是一个六方柱体,由六个呈长 方体的侧面和两个呈六边形的底面所组成,如图所示。 属于这种晶格类型的金属有Mg、Zn、Be、Cd等。
两个晶格常数:正六边形边长a;上下两底面之间的距离c。 轴比:c/a 配位数:12;致密度:0.74(与面心立方相同)
(c) 2003 Brooks/Cole Publishing / Thomson Learning™
说明: a 指数意义:代表一组平行的晶面; b 0的意义:面与对应的轴平行; c 平行晶面:指数相同,或数字相同但正负号相反; d 晶面族:晶体中具有相同条件(原子排列和晶面间距 完全相同),空间位向不同的各组晶面。用{hkl}表示。 e 若晶面与晶向同面,则hu+kv+lw=0; f 若晶面与晶向垂直,则u=h, k=v, w=l。
金属特性:导电性、导热性好;正电阻温度系数;好的延 展 性;有金属光泽等。
(4)分子键与分子晶体
原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O
© 2003 Brooks/Cole Publishing / Thomson Learning™

第一章金属的晶体结构

第一章金属的晶体结构

图2-6密排六方晶胞
第三节 晶体学概念
• • • • • • • 1.3.1 晶胞中的原子数 体心立方: 面心立方: 密排六方: 1.3.2 原子半径 1.3.3 配位数和致密度 配位数:指晶体结构中与任一个原子最近邻且等距离的原 子数目。 • 体心立方晶体8个,面心立方12个,密排六方12个,所以 面心立方和密排六方致密度高 • 致密度分别为0.68、0.74、0.74
图2-5
面心立方晶胞
• (3)密排六方晶胞(close packed lattice hexagonal):密排六方晶体的晶胞如图1.6所示。 • 它是由六个呈长方形的侧面和两个呈正六边形的 底面所组成的一个六方柱体。因此,需要用两个 晶格常数表示,一个是正六边形的边长a,另—个 是柱体的高c。在密排六方晶胞的每个角上和上、 下底面的小心都有一个原子,另外在中间还有三 个原子。因此,密排六方晶格的晶胞中所含的原 子数为:6×1/6×2+2×1/2+3=6个。 • 具有密排六方晶体结构的金属有Mg、Zn、Be、 Cd、α-Ti、α-Co等。
A、B组元组成的固溶体也可表示为A(B), 其中A为溶剂, B为 溶质。例如铜锌合金中锌溶入铜中形成的固溶体一般用α表 示, 亦可表示为Cu(Zn)。
• 固溶体特性:1固溶体成分可以在一定范围内变化, 在相图上表现为一个区域。2固溶体必须保持溶剂 组元的点阵类型。3纯金属结构有哪些类型,固溶 体也应有哪些类型,即固溶体本身没有独立的点 阵类型。4组元的原子尺寸不同会引起的点阵畸变, 原子尺寸相差越大,引起的畸变也越大。
• 1.3.4晶体中原子的排列方式(略) • 1.3.5 晶体结构中的间隙 • 三种典型晶体结构的四面体间隙、八面体间 隙(图1-13,1-14,1-15) • 间隙半径与原子半径之比rB/rA=?(见表1-2) • 可见面心立方结构八面体间隙比体心立方结 构四面体间隙还大,因此溶碳量大的分类 • 1.按溶剂分类 • (1)一次固溶体:以纯金属组元作为溶剂的 固溶体称为一次固溶体,也叫边际固溶体。 • (2)二次固溶体:以化合物为溶剂的固溶体 称二次固溶体,或叫中间固溶体。如电子 化合物、间隙相。 • 有的化合物和化合物之间,也可以相互溶 解而组成固溶体,如Fe3C和Mn3C,TiC和 TiN等。

(完整版)第一章金属的晶体结构

(完整版)第一章金属的晶体结构

第一章金属的晶体结构1-1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向。

附图1-1 有关晶面及晶向1-2、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

{111}=(111)+(111)+(111)+(111)(111)与(111)两个晶面指数的数字与顺序完全相同而符号相反,这两个晶面相互平行,相当于用-1乘某一晶面指数中的各个数字。

xy z1-3 (题目见教材)解:x方向截距为5a,y方向截距为2a,z方向截距为3c=3 2a/3=2a。

取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5)1-4 (题目见课件)解:(100)面间距为a/2;(110)面间距为2a/2;(111)面间距为3a/3。

三个晶面中面间距最大的晶面为(110)。

1-5 (题目见课件)解:方法同1-4题1-7 证明理想密排六方晶胞中的轴比c/a=1.633。

证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,构成正四面体,如图所示。

则OD=2c,AB=BC=CA=AD=BD=CD=a 因∆ABC 是等边三角形,所以有OC=32CE 因(BC)2=(CE)2+(BE)2则CE=23a ,OC=32×23a =33a又(CD)2=(OC)2+(21c )2,即(CD)2=(33a )2+(21c )2=(a )2因此,ac=38≈1.6331-8解:面心立方八面体间隙半径 r=a/2-2a/4=0.146a , 面心立方原子半径R=2a/4,则a=4R/2,代入上试有CBADEOr=0.146⨯4R/2=0.414R。

(其他的证明类似)1-9 a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积的膨胀?b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转变为α-Fe时,试求其体积膨胀? c)分析实际体积膨胀小于理论体积膨胀的原因?解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别为V面、V体与a面、a体,刚球半径为r,由晶体结构可知,对于面心晶胞有4r=2a面,a面=22r,V面= (a面)3=(22r)3对于体心晶胞有4r=3a体,a体=334r,V体= (a体)3=(334r)3则由面心立方晶胞转变为体心立方晶胞的体积膨胀∆V为∆V=2×V体-V面=2.01r3b)按晶格常数计算实际转变体积膨胀∆V实,有∆V实=2×V体-V面=2×(0.2892)3-(0.3633)3=0.000425 nm3c)实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转变为α-Fe时,Fe 原子半径发生了变化,原子半径减小了。

第一章 纯金属的晶体结构

第一章  纯金属的晶体结构
பைடு நூலகம்
四、晶体的各向异性及同素异构转变
• • • • 晶体的伪各向同性 2、晶体的同素异构转变 同素异构体 重结晶过程 规律:有一定的转变温度;转变时需要过冷 (或过热);有结晶潜热产生;转变过程也 是由形核及核长大来完成的。
铁的同素异构转变
• Fe
§1—4 金属的实际晶体结构 二、金属实际晶体结构
点缺陷是一种热力学平衡缺陷
• 从热力学中己知,一个过程是否能够自发进行,取 决于体系的吉布斯自由能的变化。 • ΔG<0。 • ΔG=ΔU+PΔV—TΔS。在固态的条件下,体积的变 化ΔV常常可以忽略不计,因此可以近似地认为: ΔG=ΔU—TΔS=ΔF • 假设在一个有N个原子的理想晶体中,引入n个空位 内能将增加nUv。
螺型位错
混合型位错
• 刃型位错和 螺型位错混 合而成的
钼中的六角位错网络
柏氏向量
• 在切应力作用下,位错线很容易沿滑移面运动。一根位错 线扫过滑移面,滑移面两边的原子就相对移动一个原子间 距。大量位错扫过滑移面,就造成晶体的宏观切变。 • 柏氏向量的方向就是原子移动的方向,也就是晶体滑移的 方向。柏氏向量的大小就是原子移动的距离。它总是由一 个平衡位置指向另一个平衡位置,而不能是任意的方向和 大小。 • 每一根位错线都有自己的柏氏向量。
体心立方
晶体中的原子数 2 原子半径 : 3a / 4 原子体积: 3 a
3
16
配位数: 8 致密度:0.68 八面体间隙半径: 0.067a,6个 四面体间隙半径:0.126a,12个
体心立方间隙
体心立方
4.晶胞中四面体空隙
5 3
1
2
6
4
代表四面体空隙,位置在6个面的如图所示位 置。个数=6×4×1/2=12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.其它金属结构状态 非晶态金属 准晶态金属
准晶体的结构像
晶体的原子像
2007-04-17 6
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
三.晶体的描述
1.晶格与晶胞
阵点:将晶体的实际质点(原子、分子)抽象为纯粹的几何点 晶格:描述原子排列方式的几何格架——空间点阵 晶胞:晶格中具有代表性的最小的几何单元。 ——晶格则由晶胞重复堆砌而成。
2007-04-17 14
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
实例
AB
2007-04-17
15
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
想 想 G C O B E x
2007-04-17 16
晶向指数确定?
z H F A
求晶向OA、OB、OC、 EF、EG、EH的晶向指
晶体结构
晶格
晶胞
2007-04-17 7
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
2.晶格特征参数 晶格常数:表示晶胞几何形状、大小的参数。如立方晶胞: 三棱边a、b、c; 三棱边夹角α、β、γ 晶胞所占原子数: 指一个晶胞所占的原子总数 配位数: 指晶体结构中与任何一个原子最近邻且等距离的原子数目 致密度: 晶胞中原子所占体积与晶胞体积之比 配位数和致密度可衡量晶胞中原子排列的紧密程度
金属晶粒内的结构示意图
2007-04-17 26
纯铁的显微组织
奥氏体不锈钢的显微组织
铸铁的显微组织
第二节 实际金属的微观结构
二. 晶体缺陷 1.晶体缺陷的概念 点缺陷 空位、间隙原子、异类原子
2007-04-17
28
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
二. 晶体的概念
1.定义
原子在三维空间作有规则的周期性重复排列的物质
2.特性
恒定熔点:晶体到液体或液体到晶体的转变为突变 各向异性:强度、弹性、导电性、热膨胀性等 规则外形:个别晶体,如水晶、天然金刚石等
2007-04-17
5
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
<111>
2007-04-17
23
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
体心立方、面心立方晶格主要晶面的原子排列和密度
体心立方晶格 晶面指数 晶面原子 排列示意图 晶面原子密度 (原子数/面积) 面心立方晶格 晶面原子 排列示意图 晶面原子密度 (原子数/面积)
{100}
2007-04-17 18
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
实例
Z
(011)
Y
X
2007-04-17
19
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
想 想
晶面指数确定?
z G D C O y
F A
求晶面OAB、EFG、 BCDE的晶面指数?
例题
E
第一节 第二节
金属的晶体结构 实际金属的微观结构
2007-04-17
1
机械工程材料精品课程 机械工程材料精品课程
第一章 金属的晶体结构 主要内容
晶体和点阵的概念 三种常见的金属晶体结构及特征参数: 体心立方、面心立方、密排六方 单胞原子数、致密度、配位数 晶体的描述 晶向指数和晶面指数 晶体缺陷 点缺陷、线缺陷、面缺陷
2007-04-17
25
机械工程材料精品课程 机械工程材料精品课程
第二节 实际金属的微观结构
显微组织--用放大50~1000倍的光学显微镜观察,可看到 各种晶粒的大小、形态和分布.
小角度晶界:相邻晶粒的位向差 较小(﹤100)的晶界(包括亚晶 界,即亚晶粒之间的边界)。 大角度晶界:相邻晶粒的位向差 较大(>100)的晶界
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
2. 结合力和结合能
f=fa+fr =-a/Rm+b/Rn m<n
三原子作用模型
双原子作用模型
大量原子保持一平衡距离,使得 结合能最低,原子自发趋于紧密 排列——固态金属中原子趋于规 则排列
2007-04-17 4
机械工程材料精品课程 机械工程材料精品课程
x
B
2007-04-17
20
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
5.用晶面指数分析晶向和特殊晶面 (1)(hkl):表示一组平行晶面; (2) 低指数晶面 (001)、(010)、(100) (110) (111)
Z
(011)
Y
X
(3) {hkl} 晶面族指数:表示原子排列情况相同的所有 晶面; {100}:(100),(010),(001) (4) 两晶面如指数的数字与顺序相同而完全异号,则 互相平行。
原子半径:
1 a 2
2007-04-17 12
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
五、晶向指数和晶面指数
1. 定义
晶面:晶格中一系列原子所组成的平面 晶向:晶格中任意两个原子之间连线所指的方向 晶面指数和晶向指数:确定晶面和晶向在点阵中的几何位置的一 套标志参量。
Z Z [001] [111] [110]
机械工程材料精品课程 机械工程材料精品课程
第二节 实际金属的微观结构
螺型位错 运动图: 简化图、顶视图、原子面简化图 螺型位错的特征:
1、没有一个额外半原子面, 位错线附近呈螺旋形排列; 2、晶格畸变管道,只有正应 变,而无切应变。 3、与晶体滑移方向平行,位 错线运动的方向垂直于位错 线
2007-04-17
2007-04-17
30
机械工程材料精品课程 机械工程材料精品课程
第二节 实际金属的微观结构
2.位错的基本概念 刃型位错 运动图:顶视图、前视图、位错线简图、
原子面简化图
特征:1、有一个额外半原子面 2、存在晶格畸变,既有正应变,又有切应变。 3、与晶体滑移方向垂直,位错线运动的方向垂直于位错线
2007-04-17 31
第二节 实际金属的微观结构
线缺陷 位错:晶体滑移区与未滑移区的边界线 各种类型的位错
刃型位错
螺型位错
2007-04-17 29
机械工程材料精品课程 机械工程材料精品课程
第二节 实际金属的微观结构
面缺陷 晶界、亚晶界、相界
晶界:晶体结构相同但位向不同的 晶粒之间的界面 相界:具有不同晶体结构的两相 之间的分界面
2007-04-17 8
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
四、金属中三种常见的晶体结构
1. 单胞原子排列
体心立方
面心立方
密排六方
2007-04-17
9
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
2.几何特征
体心立方
点阵模型
晶胞原子数
晶格配位数
特征:在立方体的中心有一个原子,晶格常数a=b=c,α=β=γ=900 单胞原子数:2 配位数:8 3 原子半径: a 致密度:0.68 (68%)
2007-04-17 2
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
一.金属晶体的形成
1.金属键
正离子和自由电子之间的正负电荷产生吸引力而使金属原子结合。 自由电子气模型 金属特性:导电、导热性,塑性,强度↑,金属光泽。
play
正离子与自由电子之间的吸引力
2007-04-17 3
-
Y
[010] Y
X
[100] X
[110] 2007-04-17 13
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
2. 晶向指数确定方法 (1)建立坐标系 (2)过O作OC//AB (3)求C点坐标值: 例:1/2,1/2,1 (4)化为最小整数 [UVW]:[112] 出现负数时,“-”号放在数字上面, − 如 [11 2] ;
2007-04-17 17
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
4、晶面指数确定方法 (1)建立坐标系 (2)求出待定晶面在坐标上的截距 例:1,1/2,1/2 (3)取截距倒数: 1 2 2 (4)化成最小整数 (h k l):(1
2
2)
(5)晶面与坐标轴平行时,截距为∞,倒数为0;截距为 负数时,“-”号放在数字上面;
2007-04-17 22
机械工程材料精品课程 机械工程材料精品课程
第一节 金属的晶体结构
体心立方、面心立方晶格主要晶向的原子排列和密度
体心立方晶格 晶向指数 晶向原子 排列示意图 晶向原子密度 (原子数/长度) 面心立方晶格 晶向原子 排列示意图 晶向原子密度 (原子数/长度)
<100>
<110>
{110}
{111}
2007-04-17
24
机械工程材料精品课程 机械工程材料精品课程
第二节 实际金属的微观结构
一. 实际金属晶体结构特点 1.多晶体 实际金属大多是多晶体组织,即 由晶粒和晶界组成 晶粒--小的单晶体(10-1~10-3mm) 晶界--位向不同的晶粒之间的界 多晶体结构--由许多位向不 同的晶粒构成
2007-04-17 34
机械工程材料精品课程 机械工程材料精品课程
第二节 实际金属的微观结构
相关文档
最新文档