不等式的放缩法基本公式
大学中常用不等式放缩技巧

大学中常用不等式,放缩技巧大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1 tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0<p<1)(a+b)p≥ap+ bp (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:nn+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
不等式的放缩法基本公式

不等式的放缩法基本公式1.加减法:对于不等式a<b,可以加上一个等式(或不等式)的两边,得到a+c<b+c。
同样地,可以减去一个等式(或不等式)的两边,得到a-c<b-c。
2. 乘除法:对于不等式a < b,如果c > 0,则乘以一个正数的两边,不等号方向不变,得到ac < bc。
如果c < 0,则乘以一个负数的两边,不等号方向反转,得到ac > bc。
同样地,除以一个正数的两边,不等号方向不变;除以一个负数的两边,不等号方向反转。
3.平方:对于不等式a<b,如果a和b都是非负数,可以对其进行平方运算,得到a^2<b^2、如果a和b都是负数,得到a^2>b^24.开方:对于不等式a<b,如果a和b都是非负数且不超过1,可以对其进行开方运算,得到√a<√b。
如果a和b都是正数且大于1,得到√a>√b。
5.绝对值:对于不等式,a,<,b,可以根据a和b的正负情况分别讨论。
如果a和b都是非负数,得到a<b。
如果a和b都是负数,得到-a<-b。
6.倍增法:对于不等式a<b,可以重复加或者减一个相同的数,直到得到符合条件的不等式。
这些是不等式的放缩法的基本公式和方法,但实际问题中常常还需要结合具体情况进行灵活运用。
同时,需要注意的是,放缩法只是解决不等式问题的一种方法,不是唯一的方法,有时候可能需要结合其他方法一起使用。
最重要的是,解决不等式问题时需要保持逻辑性和推理能力,严谨地进行分析和求解。
常见的不等式的放缩方法

常见的不等式的放缩方法天门中学高三数学组一、先求和再放缩类型1、设数列{}n a 的前n 项的和为,n S 42n n a n=-,设2n n n T S =,1,2,3,n =⋅⋅⋅,证明:132nii T =<∑解: 由得S n = 4n 2nna =-23×(2n+1-1)(2n-1) T n = ⇒2n S n= 32×2n (2n+1-1)(2n-1) = 32×(12n -1 - 12n+1-1),所以, = 1ni =∑i T 321(ni =∑12i -1 - 12i+1-1) = 32×(121-1 - 12i+1-1) < 322、已知2113,12n n n a a a a +==-+,求证:20101112k ka =<<∑。
证明:2112737(1)0,,416n n n n n a a a a a a a ++-=->⇒>==>321 ⇒ 当时,,3n ≥2n a >13(1)113n n n n n a a a a a a n n +=-+>+⇒>+-=-()20112011120100,11a a ⇒>⇒∈-21111111(1)11n n n n n n n n a a a a a a a a +++=-+⇒-=-⇒=---1na ()20101112011201111111112111111k n n n ka a a a a a a =+⇒=-⇒=-=-∈-----∑,2 二、先放缩为等比数列再求和类型1、设,证明:n N +∈11nni i e n e =⎛⎫<⎪-⎝⎭∑ 证明:()ln(1)1x x x +≤<- 111111ln 1ln 1111nnnn n ii i i i i i i i i i e e e n n n n n e --+∞--===⎛⎫⎛⎫⎛⎫⎛⎫i -∴-≤-⇒-≤-⇒-≤⇒-<<=⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑11111nni i e n e e =⎛⎫⇒<+=⎪--⎝⎭∑2、已知:113443n n n a k k --⋅=⋅+-,当13k <<时,求证:138nii n k a k =->∑。
不等式放缩法

利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。
设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。
点评: 关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。
点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。
2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。
用于解决积式问题。
例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。
若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N ,不等式12111(1)(1+)(1+)nc c c +⋅⋅>点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。
33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。
万能不等式放缩的解法

万能不等式放缩的解法万能不等式放缩是一种在解决数学不等式问题中非常常见和有效的方法。
通过巧妙地将不等式进行转化和放缩,我们可以得到更加紧凑和可操作的形式,从而更容易找到问题的解。
让我们来了解一下万能不等式放缩方法的背景和基本概念。
在数学中,不等式是指两个数之间的大小关系,比如大于、小于、大于等于或小于等于等。
解决一个不等式的问题,就是要找到使得不等式成立的一组数的范围或集合。
万能不等式放缩方法就是用来确定这个范围或集合的一种有效方法。
万能不等式放缩的基本思想是通过对不等式进行等价转化或放缩,得到一个更简单或更容易处理的形式。
为了达到这个目的,我们可以运用一些常见的数学技巧和性质,比如平方不等式、均值不等式、柯西-施瓦兹不等式等。
这些技巧和性质在数学中有着广泛的应用和证明,它们为我们解决不等式问题提供了强有力的工具。
接下来,让我们通过一个具体的例子来演示万能不等式放缩方法的应用。
假设我们要证明以下不等式成立:(1) 对于任意实数x和y,有(x-y)^2 ≥ 0。
为了证明这个不等式成立,我们可以利用平方不等式的性质。
根据平方不等式,任何实数的平方都大于等于零。
利用这个性质,我们可以把不等式改写为:x^2 - 2xy + y^2 ≥ 0。
进一步地,我们可以将这个不等式进行因式分解,得到:(x-y)(x-y) ≥ 0。
根据因式分解的性质,我们知道两个因子相乘的结果大于等于零,当且仅当这两个因子的符号相同或其中一个因子等于零。
我们可以得出结论:对于任意实数x和y,不等式(x-y)^2 ≥ 0成立。
通过这个简单的例子,我们可以看到万能不等式放缩方法的一般思路。
我们要对给定的不等式进行等价转化,找到一个更简单或更容易处理的形式。
我们可以利用一些常见的数学技巧和性质,对不等式进行进一步的放缩。
我们通过分析和判断得出结论,确定不等式的解集或范围。
总结起来,万能不等式放缩是一种在解决数学不等式问题中非常常见和有效的方法。
大学中常用不等式,放缩技巧

4:︱sin nx︱≤n︱sin x︱
5; (a+b)p≤2pmax(︱ap︱,︱bp︱)
(a+b)p≤ap+ bp (0<p<1)
(a+b)p≥ap+ bp (p>1)
6:(1+x)n≥1+nx (x>-1)
7:切比雪夫不等式
sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)
sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)
cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)
cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)
tan+tanB+tanC=tanAtanBtanC
首先 对 极限的总结 如下
极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致
1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)
ⅴ:三角中的等式(在大学中很有用)
cosαcosβ= 1/2[cos(α+β)+cos(α-β)]
sinαcosβ= 1/2[sin(α+β)+sin(α-β)]
cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)
浅谈用放缩法证明不等式

浅谈用放缩法证明不等式山东省许晔不等式的证明是中学数学教学的重点,也是学生接受时感到头痛的难点。
不等式的证明方法很多。
如:比较法(比差商法)、分析法、综合法、数学归纳法、反证法和放缩法等。
限于篇幅,下面仅就用放缩法证明不等式的问题加以证明。
所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,似达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a<b,可先证a<h1,成立,而h1<b又是可证的,故命题得证。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
现举例说明用放缩法证明不等式的几种常用方法。
一、运用基本不等式来证明①求证:lg8·lg12<1证明:∵lg8>0,lg12>0,而 lg96<lg100=2 ∴lg8·lg12<1.说明:本题应用对数函数的单调性利用不等式平均值,不等式两次放大,使不等式获证。
说明:本题采用了与基本不等式结合进行放缩的有关解题技巧。
解:∵a2b2≥2ab(当且仅当a=b时,等号成立)同理a2+c2≥2ac(当且仅当a=c时,等号成立)b2+c2≥2bc(当且仅当b=c时,等号成立)∴a2+b2+c2≥ab+bc+ac(当且仅当a=b=c时,等号成立)∵由已知可得a2+b2+c2=ab+bc+ac,说明:此题完全使用了不等式的基本性质便可解此题。
二、运用放大、缩小分母或分子的办法来达到放缩的目的证明:说明:本题观察数列的构成规律,采用通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。
证明:本题说明采用了分别把各项的分母换成最大的2m或最小的m+1的技巧。
③求证:证明:本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
2023届高考数学二轮复习大题专讲专练:放缩法

第41讲放缩法在前面的几个章节中已经涉及了一部分放缩法的运用,在导数里放缩法具有广泛用途,比如说直接利用放缩法证明不等式,利用放缩法找零点或者隐零点区间,利用放缩法判定导函数的正负号,进而判定函数单调性等.那放缩法到底是什么?放缩法本质上是一种近似估算,利用它达到简化计算的目的,其理论依据是高等数学里面的泰勒展开,这在后面的章节会具体讲解,本节先从高中数学的视角来讲解不等式放缩.那么如何利用放缩法解决导数问题呢?放缩法的核心在于利用不等式,对函数进行放大或缩小,从而达到简化函数进而简化计算的目的.下面一些关于不等式的常用结论,请在做题过程中慢慢体会.1. 能够利用的不等式通常分为三类:(1)常用不等式,就是常用对数不等式、常用指数不等式和基本不等式,以及相关的变形.(2)已证不等式,通常就是第一小问证明出来的不等式会被用在第二小问题来进行放缩.(3)变形不等式,常用不等式的变形或者在解题过程中积累下来的不等式.2. 在利用不等式放缩的时候需要注意“一向,二等,三证明”.一向.就是不等式放缩时要注意不等号的方向要一致,需要同向才能放缩.二等.就是要注意等号成立的条件,如果多次放缩还要注意等号能否同时成立.三证明.就是在运用了不等式放缩之后,一定要对不等式进行证明,除基本不等式之外,其他必须证明,也就是我们常说的“欲用不等式,必证不等式”.3. 运用不等式放缩时通常可以分为以下几类:(1)直接放缩.就是直接利用常用不等式或者函数单调性放缩即可求解.(2)去参数放缩.利用函数的单调性和参数取值范围,把参数去掉来实现放缩.(3)去项放缩.是通过舍弃一些项来实现放缩简化.(4)系数放缩.对函数进行因式分解,在可预见不等式性质的前提下,把某一个因式作为另一个因式的系数进行放缩.基本放缩公式总结下面一些常用的不等式,可用于放缩法证明不等式或者赋值法找零点,其原理会在后面泰勒展开那里具体讲【解析】,这里不过多证明.注意:如果考试的时候使用了下面的不等式,一定要用构造函数的方式证明出来,所谓“欲用不等式,必证不等式”.第一组:对数放缩(1)放缩成一次函数()-<+.x x x x x xln1,ln,ln1(2)放缩成双撇函数1111ln (1),ln (01)22x x x x x x x x ⎛⎫⎛⎫<->>-<< ⎪ ⎪⎝⎭⎝⎭.(01)x <<. 11ln (1),ln (01)22x x x x <>><<.(01)x <<. (3)放缩成二次函数()()22211ln ,ln 1(10),ln 1(0)22x x x x x x x x x x x -+--<<+->. (4)放缩成类反比【例】函数()211ln 1,ln (1)1x x x x x x -->>+,()21ln (01)1x x x x -<<<+. ()()2ln 1,ln 1(11x x x x x x x ++>>++0),()2ln 1(0)1x x x x+<<+. 第二组:指数放缩(1)放缩成一次函数e 1,e ,e e x x x x x x +>.(2)放缩成类反比【例】函数()11e 0,e (0)1x x x x x x<-<-. (3)放缩成二次函数223111e 1(0),e 1226x x x x x x x x ++>+++ 第三组:指对放缩()()e ln 112x x x x -+--=.第四组:三角函数放缩 222111sin tan (0),sin ,1cos 1sin 222x x x x x x x x x x <<>---. 第五组:以直线1=-y x 为切线的函数121ln ,e 1,,1,ln x y x y y x x y y x x x-==-=-=-=.下面举例说明如何运用不等式放缩来证明不等式.【例】设()ln 1f x ax x =++,若对任意的()20,x x f x x e >⋅恒成立,求a 的取值范围. 先参变分离:()2ln 1e x x g x a x+=-. 放缩法:由e 1x x +可得()()()22ln 2e ln 1e ln 12ln 1ln 1ln 1e 2x x x x x x x x x x x x x x x+-+-+++-++-===. 这里直接利用指数不等式整体代换放缩,即可求出min ()g x ,极大地简化了计算,这也是放缩法的魅力所在,我们一定要铭记不等式放缩的“三注意”:一向,二等,三证明.常用不等式及其变形方法总结不等式一:常用指数不等式【例1】证明:指数不等式:e 1x x +.【解析】证明:令()()e 1x f x x =-+,则()e 1x f x '=-.令()0f x '<得0x <.令()0f x '>得0x >.()f x ∴在(),0∞-单调递减,在()0,∞+上单调递增.()()00e 10f x f ∴=-=,即()e 10x x -+.e 1x x ∴+.(1)记忆:可以利用图像辅助记忆,即指数函数e x y =的图像在一次函数1y x =+的上方.(2)取等条件:0x =时可以取到等号.(3)变形:对于指数不等式变形通常是利用整体代换,11e 1e .t x x x x x 令=+-−−∴−→+(4)变方向:当1x >-时要改变不等号方向通常不等号两边取倒数,1e 11x xx e x -+⇒+不等式二:常用对数不等式【例2】证明:对数不等式:ln 1x x -.【解析】证明:令()()ln 1(0)g x x x x =-->,则()11g x x'=-. 令()0g x '<得1x >,令()0g x '>得01x <<. ()g x ∴在()0,1单调递增,在()1,∞+上单调递减.()()()1ln1110g x g ∴=--=,即()ln 10x x --.ln 1x x ∴-.(1)记忆:可以利用图像辅助记忆,即指数函数ln y x =的图像在一次函数1y x =-的下方.(2)取等条件:1x =时可以取到等号.(3)变形:对于对数不等式变形通常是利用整体代换,()1ln 1ln 1t x x x x x 令=-−−→-+−.(4)变方向:通常不等号两边同时乘负号,1ln 1ln 1x x x x-⇒-.常用不等式直接放缩对于一些无参不等式的证明,特别是同时包含指数函数、对数函数的不等式,我们通常需要用常用指数不等式和常用对数不等式放缩为幂函数,从而实现函数简化,进而方便计算和求解.【例1】证明:()1e ln 1x x ->+.【解析】证明:由常用指数不等式e 1x x +,整体代换可得()1e 11x x x --+=,当且仅当1x =时,取等号.由常用对数不等式ln 1x x -,整体代换可得()()ln 111x x x ++-=,当且仅当0x =时,取等号.(1)式与(2)式取等号的条件不同,()1e ln 1x x -∴>+.【例2】证明:12e e ln 1x x x x -+>. 【解析】证明:由e 1x x +得1e x x -,即e x ex ,故1e e x x -,当且仅当1x =时,取等号. 又1ex 111ln 1ln 1lne 1ln 0e e t t t t x x t x x令=−⇒−−→---⇒+. 由于(1)(2)式等号不能同时成立,两式相加得2ln e e x x x-+>,两边同乘e x 得()1f x >.【例3】设()()ln 1f x x =+证明:当02x <<时,()96x f x x <+.【解析】证明:当0x >时,2x <+,12x <+. ()()()ln 11ln 12x f x x x ∴=+<++. 记()()9ln 126x x h x x x =++-+, 则()2115412(6)h x x x =+-=++' ()()22153621(6)x x x x x +-++.当02x <<时,()0h x '<,()h x ∴在()0,2内是减函数.又()()00h x h <=.()9ln 126x x x x ∴++<+,即()9ln 116x x x ++<+.∴当02x <<时,()96x f x x <+.去参数放缩所谓去参数放缩,就是在给出了参数取值范围来证明不等式恒成立的题目中,把参数按取值范围放缩为常数.例如:已知参数1a ,证明()0af x >恒成立,按去参数放缩可得()()0af x f x >,只需要证明()0f x >即可.【例1】已知函数()e ln 1x f x a x =--,证明:当1ea 时,()0f x . 【解析】证明:当1ea 时,()e ln 1e xf x x --. 设()e ln 1e xg x x =--,则()e 1e x g x x=-'. 当01x <<时,()0g x '<.当1x >时,()0.1g x x >∴='是()g x 的最小值点.∴当0x >时,()()10g x g =.∴当1e a 时,()0f x .【例2】已知函数()21e xax x f x +-=,证明:当1a 时,()e 0f x +. 【解析】证明;当1a 时,()()21e 1e e x x f x x x +-++-+ 令()211e x g x x x +=+-+,则()121e x g x x +=++'.当1x <-时,()()0,g x g x '<单调递减.当1x >-时,()()0,g x g x '>单调递增.()()10g x g ∴-=.因此()e 0f x +.【例3】已知函数()()ln x f x e x m =-+,当2m 时,证明:()0f x >.【解析】证明:当2m ,(),?x m ∈-+∞时,()()ln ln 2x m x ++,故只需证明当2m =时,()0f x >当2m =时,函数()1e 2x f x x =-+',在()2,∞-+上为增函数,且()10f '-<,()00f '>. 故()0f x '=在()2,∞-+上有唯一实数根0x ,且()01,0x ∈-. 当()02,x x ∈-时,()0f x '<.当()0,x x ∞∈+时,()0f x '>.从而当0x x =时,()f x 取得最小值.由()00f x '=得()00001e ,ln 22x x x x =+=-+. 故()()()20000011022x f x f x x x x +=+=>++. 综上,当2m 时,()0f x >.去项放缩所谓去项放缩,就是直接去掉不等式两边的一些不影响不等式恒成立的确定项,从而去除参数或者简化不等式,进而快速得到证明.说白了,就是简单粗暴地扔掉一些累赘,自然就简单了.比如要证明()()()g x f x h x +>,如果能够得到()0g x ,则把()g x 直接扔掉,若()()f x h x >成立,则不等式()()()g x f x h x +>恒成立.【例1】已知函数()()()11x f x x e =+-,若0m ,证明:()2f x mx x +.【解析】证.明:由()()()11x f x x e =+-得()()00,10f f =-=,去项放缩:根据20,0m x >,可直接放缩去掉含参项2x mx x +,令()()()11x g x x e x =+--,则()()2e 2x g x x =+-',当2x -时,()()2e 220x g x x '=+-<-<.当2x >-时,设()()()2h x g x x ='=+。