非线性参数估计的数值方法
5-非线性方程组的数值解法及最优化方法

非线性方程组的数值解法
不动点迭代法:根据非线性方程求根的迭代法,将方程组改 写为如下等价方程组
xi i x1, x2,, xn , i 1,2,, n
构造迭代公式
xik 1 i x1k , x2k ,, xnk , i 1,2,, n
非线性方程组的数值解法
若对任意A Cmn 都有一个实数 A 与之对应,且满足:
(1)非负性:当 A O 时, A 0 ;当A O 时,A 0;
(2)齐次性:对任何 C ,A A ;
(3)三角不等式:对任意 A, B C nn ,都有A B A B ;
(4)相容性:对任意A, B C nn ,都有 AB A B ,
…
…
18
(0.2325670051,0.0564515197)
19
(0.2325670051,0.0564515197)
max
1 i 2
xik
xik
1
0.2250 0.0546679688 0.0138638640 0.0032704648 0.0008430541 0.0001985303 0.0000519694 0.0000122370 0.0000032485 0.0000007649
10-9
非线性方程组的数值解法
练习题:用牛顿迭代法求解方程组
取 X 0 1.6,1.2T
xx1122
x22 x22
4 1
结果:1.5811,1.2247
非线性方程组的数值解法
应用经过海底一次反射到达水听器阵的特征声线传播时间, 来反演海底参数。假设水中和沉积层声速都是恒定的,海底 沉积层上界面水平,下界面倾斜。特征声线由水中声源出发 折射进入沉积层,经过沉积层的下界面反射后,再折射进入 水中,由水中水听器阵接收。特征声线的传播时间为声线在 水中和沉积层中的传播时间之和。 三维坐标关系如图所示:
非线性参数估计的数值方法

二、遗传算法原理
遗传算法(Genetic Algorithm,GA):起源于应用计算机模拟生 物进化系统。
基本原理:
1)将优化问题离散后的各个可行解“编码”成“个体”(或染色 体),一群个体组成“种群”; 2)将参数编码个体(如二进制字符串),各个字符(二进制码0 或1)称为“基因”; 3)父代初始种群随机产生; 4)模拟生物进化,选择“适应度”(如优化问题的目标函数)高 的个体,进行“交叉”和“变异”操作,生成子代种群。“选 择”、“交叉”和“变异”是遗传算法的三个基本操作算子; 5)对子代种群,再进行选择、交叉和变异操作,直至收敛; 6)收敛的最优个体,对应于问题的最优或次优解。
按变异概率005实施变异操作序号交叉生成种群的个体位串随机变量y的计算结果变异生成种群的个体位串实参数适应值201129999683201677998967201194999839201355999949总和平均值最大值新一代的种群3998438999610999949在此基础上再用排序选择结合精英选择确定进入交配池的种群再实施交叉和变异操作直到适应值指标或最大进化代数达到设定的要求
从输入层通过隐层到输出层的传播为: ~ R 1 ~ ~ y y R f R ( z R ) f R (W R ~ y ) f R [W R F R 1 (W R 1 ~ y R 2 )] ~ ~ f R {W R f R 1[ f 1 (W 1 x )]}
, , ,
( yk d k ) ~ ) E E yk ( y d ) yk E ( w k k k ~ ~ ~ w y w w k k k k f ( zk ) zk f ( zk ) ~ ~ ( y d ) x δ x k k k ~ zk wk zk
数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。
非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。
本文将详细介绍这些数值解法及其原理和应用。
一、迭代法迭代法是解非线性方程的一种常用数值方法。
该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。
迭代法的求根过程如下:1.选择适当的初始值x0。
2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。
3.重复步骤2,直到满足停止准则为止。
常用的迭代法有简单迭代法、弦截法和牛顿法。
简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。
该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。
弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。
该方法通过连接两个点上的函数值的割线来逼近方程的根。
牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。
该方法通过用切线来逼近方程的根。
二、牛顿法牛顿法是解非线性方程的一种常用迭代法。
该方法通过使用方程的导数来逼近方程的根。
迭代过程如下:1.选择适当的初始值x0。
2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。
3.重复步骤2,直到满足停止准则为止。
牛顿法的收敛速度较快,但要求方程的导数存在且不为0。
三、割线法割线法是解非线性方程的另一种常用迭代法。
该方法通过连接两个点上的函数值的割线来逼近方程的根。
迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。
3.重复步骤2,直到满足停止准则为止。
割线法的收敛速度介于简单迭代法和牛顿法之间。
第7章 非线性方程的数值解法

设 0为给定精 度要求,试确定分半次 数k 使
x* xk
ba 2k
由 于2k , 两 边 取 对 数 , 即 得
ba
k ln(b a) ln
ln 2
数值分析
18/47
§例1: 5.用2 二二分分法 求 法x3 4x2 10 0在[1,2]内 的 根 ,
要 求 绝 对 误 差 不 超 过1 102。 2
第七章 非线性方程的数值解法
数值分析
本章内容
§7.1 方程求根与二分法 §7.2 不动点迭代及其收敛性 §7.4 牛顿法 §7.5 弦截法
数值分析
2/47
本章要求
1. 掌握二分法基本原理,掌握二分法的算法 流程;
2. 掌握理解单点迭代的基本思想,掌握迭代 的收敛条件;
3. 掌握Newton迭代的建立及几何意义,了解 Newton迭代的收敛性;
27/47
§ 7.2 不动点迭代法及其收敛性
不动点迭代的几个重要问题: 1、迭代格式的构造; 2、初值的选取; 3、敛散性的判断;☆ 4、收敛速度的判断。
数值分析
28/47
§ 7.2 不动点迭代法及其收敛性
三.压缩映射原理(整体收敛性)
考虑方程x g( x), g( x) C[a, b], 若
则f (x)=0在[a, b]内必有一根。
二. 过程
将区间对分,判别f (x)的符号,逐步缩小有根区 间。
数值分析
14/47
§7.1.2 二分法
三. 方法
取xmid=0.5*(a+b)
若f(xmid) < (预先给定的精度),则xmid即为根。
否则,若f (a)*f (xmid)<0,则取a1=a,b1=xmid 若f (a)*f (xmid)>0,则取a1=xmid,b1=b 此时有根区间缩小为[a1, b1],区间长度为 b1-a1=0.5*(b-a)
非线性偏微分方程数值解法

非线性偏微分方程数值解法非线性偏微分方程数值解法是现代数学中一个重要的研究领域,涵盖了广泛的应用领域,如流体力学、材料科学、地球科学等。
非线性偏微分方程具有复杂的数学性质,解析解往往难以获得,因此需要借助数值方法来求解。
本文将介绍几种常见的非线性偏微分方程数值解法,并分析其特点和适用范围。
有限差分法是求解非线性偏微分方程的常见数值方法之一。
该方法将偏微分方程中的微分算子用差分近似代替,将空间域和时间域划分为离散网格,通过迭代计算网格点上的函数值来逼近方程的解。
有限差分法简单易实现,适用于各种类型的非线性偏微分方程,如抛物型方程、椭圆型方程和双曲型方程。
然而,有限差分法的稳定性和精度受到网格剖分的影响,需要 carefully 选择合适的参数以获得准确的数值解。
有限元法是另一种常见的非线性偏微分方程数值解法。
该方法将求解区域划分为有限个单元,通过建立元素之间的连接关系,将原始方程转化为局部形式,再通过装配求解整体方程。
有限元法具有较高的精度和灵活性,适用于具有复杂边界条件和几何结构的问题。
然而,有限元法需要构建有效的网格剖分和选取合适的形函数,求解过程相对繁琐,需要较高的数值计算能力。
另外,谱方法也是一种常用的非线性偏微分方程数值解法。
谱方法利用谱逼近理论,将方程的解表示为一组基函数的线性组合,通过调整基函数的系数来逼近真实解。
谱方法在处理高度非线性和奇异问题时具有优势,能够提供高精度的数值解。
然而,谱方法对问题的光滑度和周期性要求较高,对基函数的选取也较为敏感。
总的来说,非线性偏微分方程数值解法包括有限差分法、有限元法和谱方法等多种方法,每种方法都有其适用的范围和特点。
在实际应用中,需要根据问题的具体特点和求解要求选择合适的数值方法,并结合数值分析和实验验证来确保数值解的准确性和可靠性。
希望本文的介绍能够帮助读者更好地理解非线性偏微分方程数值解法的基本原理和应用方法。
非线性方程数值解法及其应用

非线性方程数值解法及其应用摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。
本文主要介绍非线性方程的数值解法以及它在各个领域的应用。
是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。
我将从二分法、Steffensen加速收敛法、Newton迭代法、弦截法来分析非线性方程的解法及应用。
关键字:非线性方程;二分法;Steffensen加速收敛法;代数Newton法;弦截法一、前言随着科技技术的飞速发展,科学计算越来越显示出其重要性。
科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。
因此经常需要求非线性方程 f(x) = O的根。
方程f(x) = O 的根叫做函数f(x)的零点。
由连续函数的特性知:若f(x)在闭区间[a,b]上连续,且f(a)·f(b)<O,则f(x) = O在开区间(a,b)内至少有一个实根。
这时称[a,b]为方程f(x) = O的根的存在区间。
本文主要是对在区间[1.2]的根的数值解法进行分析,介绍了非线性方程数值解法的四种方法,从而得到在实际问题中遇到非线性方程根的求解问题的解决方法。
二、非线性方程的数值解法1、二分法二分法的基本思想是将方程根的区间平分为两个小区间,把有根的小区间再平分为两个更小的区间,进一步考察根在哪个更小的区间内。
如此继续下去,直到求出满足精度要求的近似值。
设函数f(x)在区间[a,b]上连续,且f(a)·f(b)<O,则[a,b]是方程f(x)=O 的根的存在区间,设其内有一实根,记为。
取区间[a,b]的中点,并计算,则必有下列三种情况之一成立:(1)= O,就是方程的根;(2)f(a)·f()<O,方程的根位于区间[a,]之中,此时令,;(3)f()·f(b)<O,方程的根位于区间[,b]之中,此时令。
非线性方程与方程组数值解法

2.2 二分法
表2-2 计算结果
k
0 1 2 3 4 5 6 7
ak
1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3203
bk
2 1.5 1.5 1.375 1.375 1.3438 1.3281 1.3281
xk
1.5 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242
ab ;否则,回 2
5.2 二分法
说明:
x*
(ⅰ)上述计算步骤(2)和(3)每执行一次就把新的区间分成两份,根的范围也 缩小一半. 如果第 k 次二分后得到的区间记 为 [ak , bk ],根的近似值记为 xk ,则 ba (a b ) 有 bk ak k , xk k k ,那么当时 k , bk ak 0,这说明如果二分过 2 2 程无限继续下去,这些区间必将收敛于一点,即为所求根. (ⅱ) 第
3
2 f ( x ) 3 x 1 0, x [1, 2] 解 已知 f (1) 1 0, f (2) 5 0 且 ,
则方程
f ( x) x 3 x 1 0
在区间
(1, 2)
内只有一个实根.
当 k 1 , x1
bk ak 102 ,继续二分;
2.1 引言
通常隔离区间的确定方法为 (1)作 y f ( x) 的草图, 由 y f ( x)与横轴交点的大致位置来确定; 或 者将 f1 ( x) f 2 ( x) 改写成 f ( x) 0 , 根据 y f1 ( x) 和 y f 2 ( x) 交点横坐标来确定
根的隔离区间.
当 k 2 , x2
非线性方程的数值计算方法实验

非线性方程的数值计算方法实验《数值方法》实验报告1【摘要】在利用数学工具研究社会现象和自然现象,或解决工程技术等问题?0的求解问题,时,很多问题都可以归结为非线性方程f(x)无论在理论研究方面还是在实际应用中,求解非线性方程都占了非常重要的地位。
综合当前各类非线性方程的数值解法,通过比较分析,二分法,迭代法,牛顿―拉夫森方法,迭代法的收敛阶和加速收敛方法,以上的算法应用对某个具体实际问题选择相应的数值解法。
关键词非线性方程;二分法;迭代法;牛顿-拉夫森法;割线法等。
一、实验目的通过本实验的学习,应掌握非线性方程的数值解法的基本思想和原理,深刻认识现实中非线性方程数值的意义;明确代数精度的概念;掌握二分法、不动点迭代法、牛顿迭代法、割线法等常用的解非线性方程的方法;培养编程与上机调试能力。
二、实验原理二分法:单变量函数方程: f(x)=0其中,f(x)在闭区间[a,b]上连续、单调,且f(a)*f(b)<0,则有函数的介值定理可知,方程f(x)=0在(a,b)区间内有且只有一个解x*,二分法是通过函数在区间端点的符号来确定x*所在区域,将有根区间缩小到充分小,从而可以求出满足给定精度的根x*的近似值。
下面研究二分法的几何意义:设a1=1, b1=b, 区间?a1,b1?,中点x1=a1?b1及f?x1?,若f?x1?=0,则x*=x1,2若 f(a1)*f(x1)<0,令a2=a1,b2=x1,则根x*? [a2,b2]中,这样就得到长度缩小一半的有根区间[a2,b2],若 f(b1)*f(x1)<0,令a2=x1,b2=b1,则根x*? [a2,b2]中,这样就得到长度缩小一半的有根区间[a2,b2],即f(a2)f(b2)<0,此时b2-a2=b1?a1,对有根区间[a2,b2]重复上述步骤,即分半求中点,判断中2电处符号,则可得长度有缩小一半的有根区间[a2,b2],《数值方法》实验报告2如图所示:重复上述过程,第n步就得到根x*的近似序列?xn?及包含x*的区间套,如下:(1)[a1,b1]?[a2,b2]?....[an,bn]?... (2)f(an)f(bn)?0,x*?[an,bn] (3)an-bn=1=…=2(an?1?bn?1)(4) xn?b?a 2n?1an?bnb?a,且|x*-xn|?n?1 (n=1,2,3…..) 22显然limxn,且xn以等比数列的收敛速度收敛于x*,因此用二分法求f(x)=0的实根x*可以达到任意指定精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E W , θ δ r r θ
隐层:
f r r 1 r 1 δ rW δ z
r
r R 1,2 ,1
R R 1 2 1 误差反向传播过程可表示为: δ δ δ δ
。
1.4、神经网络的学习与推理方法(续)
3、基本BP算法:基本BP算法的具体步骤如下:
从输入层通过隐层到输出层的传播为: ~ R 1 ~ ~ y y R f R ( z R ) f R (W R ~ y ) f R [W R F R 1 (W R 1 ~ y R 2 )] ~ ~ f R {W R f R 1[ f 1 (W 1 x )]}
, , ,
r f 2r ( z2 2r ) r f Jr ( z J Jr )
输出为: y r f r z r θ r f1r ( z1r 1r )
~ r 1 f r (W r ~ y )
T
其中:
~ W r W r θr
T
T ~ y r 1 y r 1 1
( yk d k ) ~ ) E E yk ( y d ) yk E ( w k k k ~ ~ ~ w y w w k k k k f ( zk ) zk f ( zk ) ~ ~ ( y d ) x δ x k k k ~ zk wk zk
T ~ w T w 取连接权 k 和输入 ~ x x 1 ,输出为: k k
~ T~ yk f ( z k ) f (w k x)
1 2 ~ 误差函数为: E ( w k ) ( y k d k ) 2
, ;
1.4、神经网络的学习与推理方法(续)
误差的导数 :
f ( z k ) 其中:δk ( yk d k ) zk
E w k E k x w k
因此,有
E θ k E δk θ k
代入最速下降法迭代关系,得学习规则:
wk (i 1) wk (i) i k x
k (i 1) k (i) i k
r p
r R 1, ,2,1
(9)修正网络的权值和阈值。
r 1 T W r (t 1) W r (t ) δ p ( yr p ) r θ r (t 1) θ r (t ) δ p
r 1,2, , R
(10)如果p < q,那么p = p+1,转到(5);否则,转到(11)。 (11) E E E p (12)如果E ≤ε,那么训练成功,转到(14);否则,转到(13)。 (13)如果t < T,那么t = t+1,转到(4);否则,训练未成功,转到(14)。 (14)结束。
(6)通网络将输入模式 x p 的正传播,计算网络的输出 y p
0 初值: y p x p
r 1 r 1 r 1 r r 1 逐层计算输出:y p f W y p θ r 0,1,2, , R 1
最后一层输出:
yp yR p
。
1.4、神经网络的学习与推理方法(续)
z2 f z 1 z 2 0
if z 0 其 他
e z ez f z tanh(z ) z e ez
1.2、神经元模型(续)
• 神经网络模型
~ n1 2 n 1 两层模型的输出: y k f wkj f w ji xi j k i 1 j 1
二、遗传算法原理
遗传算法(Genetic Algorithm,GA):起源于应用计算机模拟生 物进化系统。
基本原理:
1)将优化问题离散后的各个可行解“编码”成“个体”(或染色 体),一群个体组成“种群”; 2)将参数编码个体(如二进制字符串),各个字符(二进制码0 或1)称为“基因”; 3)父代初始种群随机产生; 4)模拟生物进化,选择“适应度”(如优化问题的目标函数)高 的个体,进行“交叉”和“变异”操作,生成子代种群。“选 择”、“交叉”和“变异”是遗传算法的三个基本操作算子; 5)对子代种群,再进行选择、交叉和变异操作,直至收敛; 6)收敛的最优个体,对应于问题的最优或次优解。
1.4、神经网络的学习与推理方法(续)
2、误差的反向传播过程
R 误差函数: E W , θ y d 2
W W1 W 2 W R
θ θ1 θ 2 θ RFra bibliotek
1 R ( y d )T ( y R d ) 2
连接权和阈值的更公式 :
W r (i 1) W r (i ) E W , θ W r
序号 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 位串 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 实参数 20.1000 20.1032 20.1065 20.1097 20.1129 20.1161 20.1194 20.1226 20.1258 20.1290 20.1323 20.1355 20.1387 20.1419 20.1452 20.1484 适应值 9.99178 9.99329 9.99463 9.99581 9.99683 9.99769 9.99839 9.99893 9.99931 9.99953 9.99959 9.99949 9.99923 9.99881 9.99823 9.99749 序号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 位串 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 实参数 20.1516 20.1548 20.1581 20.1613 20.1645 20.1677 20.1710 20.1742 20.1774 20.1806 20.1839 20.1871 20.1903 20.1935 20.1968 20.2000 适应值 9.99658 9.99552 9.99430 9.99292 9.99137 9.98967 9.98781 9.98578 9.98360 9.98125 9.97875 9.97609 9.97326 9.97028 9.96713 9.96382
记忆等能力;
• 通过学习和记忆而不是假设,找出输入、输出 变量之间的非线性关系(映射)
1.1、神经网络的特点
• 分布式存储信息。 • 自适应性。具有自我调节的能力, 包含:学习、自组织、泛化及训练。 • 并行性。
• 联想记忆功能。
• 自动提取特征参数。
• 容错性。
1.2、神经元模型
• 神经元:生物神经系统是由大量神经细胞(神经元)组成的 一个复杂的互联网络。
2.1 遗传算法计算步骤
遗传算法的计算步骤: 1. 对参数离散化,确定编码方案,随机给定一组初始解, 确定初始化种群; 2. 用适应度评价这组解的性能;
3. 根据评价结果,选择一定数量性能优异的解,进行交 叉、变异操作,得到一组新的解;
4. 返回到第2步,对该组新的解进行评价;
5. 若评价结果满足要求或进化过程达到设定的代数,计 算结束;否则转向第3步,继续进行交叉、变异操作。
(1)输入共有q组训练样本的样本集
{( x1 , d1 ), ( x2 , d 2 ),, ( xq ,d q )}
(2)设计网络层数,每层神经元数,激活函数;权值和阈值初始化; 设置目标误差ε,学习速率η,最大训练次数T。 (3)初始化训练次数t = 0。 (4)p = 1,总误差E = 0。 (5)输入网络一对训练样本( x p , d p )
基本BP算法
(7)计算 x p 的网误差
(8)通过网络将δ反向传播。
E P W , θ y R p dp
2
1 R ( y p d p )T ( y R p dp) 2
f R R 最后一层: δ R y p d p z p
R p
f r r 1 r 1 δ rW δ 逐层计算: z p
2.3 遗传编码与译码
• 参数空间到GA编码空间的映射称为编码;从编码空间到参数空间 的映射为解码。 • 参数空间中所有的点(潜在解)必须与GA编码空间中的个体必须 一一对应,称为编码条件。
2.3 遗传编码与译码
• 个体位串编码空间到参数空间的映射为译码,译码函数为:
算例的编码
长度为L=5的二进制编码。编码精度为
辑规则;2)模糊逻辑规则用神经网络来实现。
1.4、神经网络的学习与推理方法
• BP网络的学习:其实质是确定相邻层神经元间的连接权,
有两类学习:有教师学习和无教师学习;前者已知网络的 目标输出,后者则无目标输出。
• BP网络的学习规则:输入 x,网络输出y ,与目标输出d 间存在误差,调节连接权和阈值,使误差减小,达到不大 于目标误差的要求。
j 1 n
激活函数f (z)有以下几种形式:
1、阈值函数:
2、非线性斜面函数: 3、Sigmoid函数:
1 f z 1 e a z
1 , f z 0 ,
, f z c z , ,
if z 0, if z 0
if z if z if z
1.3、典型的神经网络模型
• BP网络模型:BP算法是非循环多级网络的训练
算法,该算法的学习过程由正向传播和反向传播 组成。