非参数估计方法能处理任意的概率分布而不必假设密度

非参数估计方法能处理任意的概率分布而不必假设密度
非参数估计方法能处理任意的概率分布而不必假设密度

非参数估计方法:能处理任意的概率分布,而不必假设密度函数的形式已知。直接用已知类别的样本去估计总体密度分布。

我采用的数据是UCI数据库中的联合循环电厂数据集,包含9568个样本。该电厂每小时输出的电能由周围的温度(T),数据范围是从1.81到37.11;环境压力(AP),数据范围从992.89到1033.30;相对湿度(RH),数据范围从25.56到100.16;抽真空(V),数据范围从25.36到81.56四个属性决定。

我采用了Matlab中的princomp()函数对数据进行降维,得出的第一个主成分的贡献率是70.6217%,第二个主成分的贡献率为22.0507%。按照理论来说,应该选择前两个主成分,也就是二维的数据,因为前两个主成分的累积贡献率达到百分之九十多。但是由于数据样本数太多,如果选择二维数据的话,Matlab运行时间太长,所以我选择了贡献率为70.6217%的一维数据,数据范围从393.2851到495.7022。

1.给出一组统计数据,绘制出它的概率分布曲线,matlab的统计工具箱中有直接的函数,就是:Ksdensity 核心平滑密度估计

[f,xi] = ksdensity(x)

计算样本向量x的概率密度估计,返回在xi点的概率密度f,此时我们使用plot(xi,f)就可以绘制出概率密度曲线。

我所采用的数据的真实的概率密度曲线如图

.

2.用方窗进行估计,我选择的样本个数分别为1、200和6000,分别在窗长度为0.25、1和4

三种情况下进行了估计和比较,仿真结果如图所示。

由仿真结果可以看出:当N=1时,概率密度曲线是一个以第一个样本为中心的长方形,与窗函数差不多;当N=200及N=6000时,当h=0.25时,曲线起伏较大,噪声较大,当h=1时,曲线起伏减小,在h=4的情况下,曲线趋于平坦。尤其在N=6000时,曲线接近数据真实的概率密度曲线。

3. 用正态窗进行估计,我选择的样本个数分别为1、200和6000,分别在窗长度为0.25、1和20三种情况下进行了估计和比较,仿真结果如图所示。

由仿真结果可以看出:当N=1时,概率密度曲线是一个以第一个样本为中心的正态形状的小丘,与窗函数差不多;当N=200及N=6000时,当h=0.25时,曲线起伏较大,噪声较大,当h=20时,曲线起伏减小。在N=6000时,曲线接近数据真实的概率密度曲线。4. 用指数窗进行估计,我选择的样本个数分别为10、200和6000,分别在窗长度为0.25、1

和4三种情况下进行了估计和比较,仿真结果如图所示。

由仿真结果可以看出:当h=0.25时,曲线起伏较大,噪声较大;当h=1时,曲线起伏减小;当N=200及N=6000时,在h=4的情况下,曲线趋于平坦。尤其在N=6000时,曲线接近数据真实的概率密度曲线。

5.总结

从三个Parzen窗仿真实验可以看出,估计的概率密度函数与样本个数N和窗长度h的取值大小有密切的关系。若h选太小,则不能包含足够的样本,从而使概率密度估计不稳定。若h选太大,则概率密度估计较平坦,反映不出总体分布的变化。所以h的选取要适当。另

外,样本数越多,估计的概率密度曲线越准确。

非参数统计分析NonparametricTests菜单详解

非参数统计分析――Nonparametric Tests菜单详解 非参数统计分析――Nonparametric Tests菜单详解 平时我们使用的统计推断方法大多为参数统计方法,它们都是在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。比如单样本u检验就是假定该样本所在总体服从正态分布,然后推断总体的均数是否和已知的总体均数相同。本节要讨论的统计方法着眼点不是总体参数,而是总体分布情况,即研究目标总体的分布是否与已知理论分布相同,或者各样本所在的分布位置/形状是否相同。由于这一类方法不涉及总体参数,因而称为非参数统计方法。 SPSS的的Nonparametric Tests菜单中一共提供了8种非参数分析方法,它们可以被分为两大类: 1、分布类型检验方法:亦称拟合优度检验方法。即检验样本所在总体是否服从已知的理论分布。具体包括: Chi-square test:用卡方检验来检验二项/多项分类变量的几个取值所占百分比是否和我们期望的比例有没有统计学差异。 Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一分为二。 Runs Test:用于检验样本序列随机性。观察某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。 One-Sample Kolmogorov-Smirnov Test:采用柯尔莫哥诺夫-斯米尔诺夫检验来分析变量是否符

合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。 2、分布位置检验方法:用于检验样本所在总体的分布位置/形状是否相同。具体包括: Two-Independent-Samples Tests:即成组设计的两独立样本的秩和检验。 Tests for Several Independent Samples:成组设计的多个独立样本的秩和检验,此处不提供两两比较方法。 Two-Related-Samples Tests:配对设计的两样本秩和检验。 Tests for Several Related Samples:配伍设计的多样本秩和检验,此处同样不提供两两比较。 一、分布位置检验方法 1、Two Independent Samples Test与 K Independent Samples Test 用于检验两独立样本/多独立样本所在总体是否相同。 Two-lndependent-Samples Test对话框: (1) Test Variable框,指定检验变量。 (2) Grouping Variable框,指定分组变量。Define Groups对话框,Groupl和Groupl后的栏中,可指定分组变量的值。 (3) TestType框,确定用来进行检验的方法。Mann-Whitney U:默认值,相当于两样本秩和检验。Kolmogorov-Smimov Z:K-S检验的一种。Moses extreme reactions:如果施加的处理使得某些个体出现 正向效应,而另一些个体出现负向效应,就应当采用该检验方法。

一十种概率密度函数

一十种概率密度函数 function zhifangtu(x,m) %画数据的直方图,x表示要画的随机数,m表示所要画的条数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a=min(x); b=max(x); l=length(x); h=(b-a)/m; %量化x x=x/h; x=ceil(x); w=zeros(1,m); for i=1:l for j=1:m if (x(i)==j) %x(i)落在j的区间上,则w(j)加1 w(j)=w(j)+1; else continue end end end w=w/(h*l); z=a:h:(b-h); bar(z,w); title('直方图') function y=junyun(n) %0-1的均匀分布,n代表数据量,一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y=ones(1,n); x=ones(1,n); m=100000; x0=mod(ceil(m*rand(1,1)),m); x0=floor(x0/2); x0=2*x0+1; u=11; x(1)=x0; for i=1:n-1 x(i+1)=u*x(i)+0; x(i+1)=mod(x(i+1),m); x(i)=x(i)/m; end %x(n)单位化

x(n)=x(n)/m; y=x; function y=zhishu(m,n) %指数分布,m表示指数分布的参数,m不能为0.n表示数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1;n if (x(i)==0) x(i)=0.0001; else continue; end end u=log(x); y=-(1/m)*u; function y=ruili(m,n) %瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1:n if (x(i)==0) x(i)=0.0001; else continue; end end u=(-2)*log(x); y=m*sqrt(u); function y=weibuer(a,b,n) %韦布尔分布,a,b表示参数,b不能为0.n表示数据量,一般要大于1024 %a=1时,是指数分布 %a=2时,是瑞利分布%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1:n if (x(i)==0) x(i)=0.0001; else continue; end

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

非参数统计检验方法的应用

论文投稿领域:数理经济与计量经济学 非参数统计检验方法的应用 阮曙芬1 程娇翼 1 张振中2 (1.中国地质大学数理学院,武汉 430074;2.中南大学数学科学与计算学院,长沙 410075) 摘要:本文对非参数统计中常用的三种假设检验方法进行了简单的介绍。运用 Kruskal-Wallis 检验方法对2002年前三季度的上海股市综合指数收益率数据进行了周末效应的检验,结果表明2002年上海股市综合指数收益率不具有周末效应。 关键字:符号检验;Wilcoxon 秩和检验;Kruskal-Wallis 检验 1引言 非参数统计是统计分析的重要组成部分。非参数假设检验是在总体分布未知或者总体分布不满足参数统计对总体所做的假定的时候,分析样本特点,寻找相应的非参数检验统计量。本文就是以此为出发点,介绍了非参数统计中假设检验常用的几个检验方法:符号检验、Wilcoxon 秩和检验和Kruskal-Wallis 检验,然后结合具体的问题和数据,在统计软件SAS 中作相应的非参数检验。 2非参数假设检验介绍 2.1 配对样本的符号检验 符号检验是根据正、负符号进行假设检验的方法。这种检验方法用于配对设计数值变量资料的假设检验,常常是差值不服从正态分布或者总体分布未知的情况下不能用t 检验的时候使用。其原理是对差值进行编制并冠以符号,然后对正负秩和进行比较检验。 设随机变量12,,...,n X X X 相互独立同分布,分布为()F x ,()F x 在0x =连续。假设检验问题 2.2 两独立样本的Wilcoxon 秩和检验 Wilcoxon 秩和检验的理论背景如下:有两个总体,一个总体的样本为12,,...,n X X X ,相互独立同分布,分布为()F x ;另一个样本为12,,...,n Y Y Y ,相互独立同分布,分布为()G x ,()F x , ()G x 连续。问随机变量Y 是否随机大于随机变量X ,即检验

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

非参数统计分析方法总结

非参数统计分析方法 一单样本问题 1,二项式检验:检验样本参数是否与整体参数有什么关系。 样本量为n给定一个实数MO(代表题目给出的分位点数),和分位 点口(0.25,0.5,0.75)。用S-记做样本中比M0小的数的个数,S+记做样本中比M0大的数的个数。如果原假设H0成立那么S-与n的比之应为n。 H0:M=M0 HI: M k MO或者M>M(或者M

H1 :不是随机的(混合倾向,游程多,长度短)(成群倾向,游程少,长度长) Spss步骤:分析一非参数检验一游程 得出统计量R 和p 值 当p值小于0.05时拒绝原假设,没有充足理由证明该数据出现是随机的二,两个样本位置问题 1,Brown —Mood 中位数检验 给出两个样本比较两个样本的中位数或者四分位数等是否相等或者有一定关系,设一个中值为M1,—个为M2 H0:M1=M2. HI: M1H M2或者M1>M或者M1

非参数统计

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 非参数统计是数理统计学的一个分支,它是针对参数统计而言的。所谓参数统计,简 单地说就是建立在总体具有明确分布形式,通常多为正态分布形式的假定基础之上,所建立 的统计理论和统计方法。而非参数统计是在不假定总体分布形式或在较弱条件下,例如总体 分布形式完全未知或分布形式是对称的,诸如这样一些宽泛条件下,尽量从数据本身获 得的信息,建立对总体相关统计特征进行分析和推断的理论、方法。 2.设计思路: 本课程是在已学数理统计基础上,通过非参数统计的学习,引导数学专业学生进一步增强对一般总体分析、推断的能力并加深对相关理论和方法的理解。 课程内容着重于基本知识点的理解,避免难度较大或较长定理的证明。目的是使学生对理论有一个基本的理解和在应用能力上的提高。课程内容包括以下四个方面: (1).非参数统计的基本概念:非参数统计方法的主要特点,次序统计量及其分布,U统计量, 秩统计量的概念,一些统计量的近似分布。 (2).非参数估计的方法:总体分位数的估计,对称中心的估计,位置差的估计。 (3).非参数检验的方法:总体p分位数的检验,总体均值检验,两样本的比较,随机性与 独立性检验,多总体的比较。 - 1 -

(4).总体分布类型的估计与检验:分布函数的估计与检验,概率密度估计。 3. 课程与其他课程的关系: 先修课程:《概率论》,《数理统计》,《多元统计分析》;并行课程:《应用回归分析》;后置课程:《统计软件》。 非参数统计是应用数学专业、信息与计算科学专业的选修课程,但对于今后从事统计研究和统计应用工作的学生来讲可以作为专业必修课学习。 二、课程目标 非参数统计具有应用性广,稳健性好等特点。通过本课程学习,要求学生了解或理解非参数统计的一些基本理论和方法,注重利用理论和方法、借助计算机解决问题的能力。开课学期结束时,要求学生能够做到: (1)理解非参数统计方法的主要特点及与参数统计方法的区别。掌握次序统计量及其分布;理解并掌握U统计量秩统计量的概念;理解一些常用统计量的近似分布。重点是次序统计量及其分布; U统计量构造,秩统计量; (2)掌握总体分位数估计、对称中心的估计、位置差估计的方法。 (3)理解各种检验的基本思想,掌握检验的一般步骤,掌握检验统计及其拒绝域。难点在于检验统计量的选取及概率分布。 (4)理解分布函数估计及检验的基步骤和过程。 (5)为更深入学习非参数统计学理论打下初步的基础。也为学习专业统计软件的作好准备。 三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,认真听讲,认真完成作业。其中有一些作业需要学生自编程序用机器完成。(2)按时完成并按时提交书面形式的作业。延期提交作业需要得到任课教师的许可。 (3)完成一定量的阅读文献和背景资料,可以以小组的形式讨论学习,促进同学间的心得交 - 1 -

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.360docs.net/doc/8013565119.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

4概率分布及参数估计

第四章 概率分布及参数估计 一、填空题 1.抽样误差是不可避免的,但可随着____样本含量___的增大而减小,反映抽样误差大小的指标是___标准误____。 2.参数估计有两种方法:一种是直接利用样本统计量的值来估计总体参数,称为___点估计____;另一种是按一定的置信度来估计总体参数所在范围,称____区间估计___。 3.确定正态分布的两个参数是 ___均数μ____和 ___标准差σ___。 4.二项分布变量X 的均数是____ nπ___,标准差是___π)-n π(1____;频率P=n X 的均数是___π____,标准差是___n π)-π(1____。 5.Poisson 分布变量的均数是____λ___,标准差是____λ___。 二、分析计算题 1.有人就食管癌与进食腌制食品的关系进行了病例-对照研究,由某医院近期确诊的所有食管癌患者构成病例组,同一医院中患有其他急性疾患的患者按照性别、年龄和职业匹配构成对照组,以完全相同的方法询问腌制食品的食用情况,结果如下表所示。 腌制食品 食管癌 其他急性疾病 经常食用 537 554 不常食用 639 922 合计 1176 1476 试估计条件概率P (经常食用|食管癌)和P (经常食用|其他急性疾患)。能否估计P (食管癌|经常食用)和P (其他急性疾患|经常食用)?如何描述进食腌制食品对食管癌发病机会的影响? 答 :设食用腌制品为事件A ,患食管癌为事件B 。P (A |B )=0.457,

P (A |B )=0.3753;不能估计P (B |A );食用腌制品对食管癌发病机会的影响为P (A |B )/P (A |B )=1.2166。 2.据统计,某医院急性腹痛患者中30%患急性阑尾炎;阑尾炎患者中70%体温高于37.5℃,而非急性阑尾炎患者中只有40%体温高于37.5℃作为一项鉴别诊断的依据,试计算条件概率P (急性阑尾炎|急性腹痛患者体温高于37.5℃)。 答:设体温高于37.5℃为事件A ,患急性阑尾炎为事件B ,P (B |A )=0.4286。 3.假定健康中学生的舒张压服从正态分布,均数为9.3 kpa ,标准差为1.3 kpa 。问舒张压在8~10.6 kpa 之间的约占多少?舒张压高过12.7 kpa 的约占多少?舒张压低于6.7 kpa 的约占多少? 答 : 舒张压在8~10.6 kpa 之间的约占68.26%;舒张压高过12.7 kpa 的约占0.44%;舒张压低于6.7 kpa 的约占2.28%。 4.上级规定适龄儿童必须接种某种预防疫苗,漏种率不得超过5%。事后分区考核,随机抽查20名适龄儿童,其中漏种者超过1名,即视为不合格;其中无漏种者视为优秀。 ⑴某地区漏种率实为1%,问考核不合格的概率多大? ⑵某地区漏种率实为10%,问得以侥幸通过考核的概率多大? ⑶某地区漏种率实为6%,问被视为优秀的概率多大? 答 :⑴P=1.69%。⑵P=39.18%。⑶P=29.01%。 5.从同一水源制备10份随机试样,每份1ml ,在相同条件下分别作平板培养,共得菌落144个,试估计该水源中每毫升平均菌落数的95%置信区间。 答 : 本题的菌落数是服从Poisson 分布,由于λ=144>30,可以作正态近似。此时每毫升菌落数X ~N (14.4,1.44),故95%的置信区间是: 2 S Z αχ±=14.4±1.96?44.1=14.4±2.35=(12.05,16.75)

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

非参数统计分析

第十三章非参数统计分析 统计推断方法大体上可分为两大类。第一大类为参数统计方法。常常在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。第二大类为非参数统计方法,着眼点不是总体参数,而是总体的分布情况或者样本所在总体分布的位置/形状。 非参数统计方法大约有8种,可被划分为两大类,处理各种不同情形的数据。 单样本情形: 检验样本所在总体的位置参数或者分布是否与已知理论值相同。 ①Chi-Square过程:针对二分类或者多分类资料 例题1:见书P243。检验样本分布情况是否与已知理论分布相同。运用卡方检验过程。 ②Binomial过程:针对二分类资料或者可转变为二分类问题的资料。 例题2 :见书P246。检验某一比例是否与已知比例相等,运用二项分布过程。练习:质量监督部门对商店里面出售的某厂家的西洋参片进行了抽查。对于25包写明为净重100g的西洋参片的称重结果为(单位:克),数据见非参数。Sav,人们怀疑厂家包装的西洋参片份量不足,要求进行检验。 ③Runs过程:用于检验样本序列是否是随机出现的。二分类资料和连续性资料均可。 游程检验: 游程的含义: 假定下面是由0和1组成的一个这种变量的样本: 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 其中相同的0(或相同的1)在一起称为一个游程(单独的0或1也算)。 这个数据中有4个0组成的游程和3个1组成的游程。一共是R=7个游程。其中0的个数为m=15,而1的个数为n=10。 游程检验的原理 判断数据序列是否是真随机序列。该检验的原假设为数据是真随机序列,备择假设为非随机序列,在原假设成立的情况下,游程的总数不应太多也不应太少。例题3:见书P247。检验样本数据是否是随机出现的。 例题4:从某装瓶机出来的30盒化妆品的重量(单位克),数据见非参数.sav,为了看该装瓶机是否工作正常。 提示:实际需要验证大于和小于中位数的个数是否是随机的(零假设为这种个数的出现是随机的)。 ④1-Sample--K –S 过程 原理:单样本的Kolmogorov-Smirnov检验(K-S检验)方法主要针对连续性资料,是用来检验一个样本数据的观测累积分布是否是已知的理论分布。这些

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10 万个家庭,没有孩子的家庭有1000 个,有一个孩子的家庭有9 万个,有两个孩子的家庭有6000 个,有 3 个孩子的家庭有3000 个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X ,它可取值0,1,2,3,其中取0 的概率为0.01,取 1 的概率为0.9,取 2 的概率为0.06,取 3 的概率为0.03,它的数学期望为 0×0.01+1×0.9+2×0.06+3×0.03 等于 1.11,即此城市一个家庭平均有小孩 1.11 个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一 个家庭,最有可能它家的孩子为 1.11 个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为 80 的正态分布,即平均分是80 分,由正态分布的图形知 x=80 时的函数值最大,即随机变量在 80 附近取值最密集,也即考试成绩在 80 分左右的人最多。 下图为概率密度函数图(F(x)应为f(x) ,表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t 分布、F 分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定 伯努利试验) 2、

正态分布及其经典习题和答案

专题:正态分布 例:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。【课内练习】 1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。 2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 3.已在n 个数据n x x x ,,,21Λ,那么() ∑=-n i i x x n 1 21是指 A .σ B .μ C .2σ D .2 μ( ) 答案:C 。解析:由方差的统计定义知。 4.设),(~p n B ξ,()12=ξE ,()4D ξ=,则n 的值是 。 答案:4。解析:()12==np E ξ,()(1)4D np p ξ=-= 5.对某个数学题,甲解出的概率为2 3 ,乙解出的概率为34,两人独立解题。记X 为解出该题的人数,则E (X )= 。 答案:1712。解析:11121145(0),(1),3412343412P X P X ==?===?+?=231 (2)342 P X ==?=。

正态分布、概率

信息系统项目管理师重点知识点:完工概率计算总结 例图: 活动BCD的乐观(o)工期都是9天,最可能(m)工期为12天,最悲观(p)工期都是15天,那么在14天内完成单项活动的概率和完成全部这三项活动的概率是多少 首先计算平均工期(PERT):公式--(乐观时间+4*最可能时间+悲观时间)/ 6 (9+4*12+15)/6=12天; 其次计算标准差:公式--(悲观时间-乐观时间)/ 6 ; (15-9)/6=1天 再计算偏离平均工期:方法--[给出的天数计算(14)-计算出来的平均工期(12)]/标准差(1) (14-12)/1=2 备注:此时得出来的为几,之后就是使用几西格玛 (Sigma)(1σ=68,37%)(2σ=95.46%)(3σ=99.73%)(6σ=99.99966%百万分之三点四) 计算每一项活动在14天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+95.46%/2=97.73% 备注:50%参考正态分布图,95.46参考2西格玛值; 计算全部活动在14天内完工概率是:方法--每一项活动的概率相乘 97.73%*97.73%*97.73%=93.34% 下图为简要正态分布图:

备注:正态分布有50%成功,有50%不成功 如计算将上面的14天,修改为13天; 偏离平均工期就是1天,计算方法:(13-12)/1=1天,则应该使用1西格玛; 计算每一项活动在13天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+68.37%/2=84.19% 备注:50%参考正态分布图,68.37参考1西格玛值; 计算全部活动在13天内完工概率是:方法--每一项活动的概率相乘 84.19%*84.19%*84.19%=59.67% 如果计算为11-15天的概率:最小值的概率+最大值的概率 68.37/2+99.75/2=84.06%

第六章 非参数统计分析方法的SAS编程实现

第六章非参数统计分析方法的SAS编程实现 作者:薛富波最终修改日期: 一、npar1way过程语句格式简介 二、不同类型资料的非参数检验方法 1. 两独立样本差别的秩和检验 2.配对设计资料的秩检验 3.完全随机设计多组数据分布位置差别的秩和检验 三、几条重要提示 非参数统计分析方法(non-parametric statistics)是相对参数统计分析方法而言的,又称为不拘分布(distribution-free statistics)的统计分析方法或无分布形式假定(assumption free statistics)的统计分析方法。其中包括Wilcoxon秩和检验、Kruskal-Wallis秩和检验、friedman秩和检验等,它们分别对应不同设计类型的资料。 SAS中对于非参数分析方法功能的实现主要由npar1way过程来完成,从过程名字就可以看出,在此过程的处理进程中,只能一次指定一个因素进行分析。下面我们先来了解一下npar1way过程的语句格式以及各语句和选项的基本功能。 一、npar1way过程语句格式简介 npar1way过程属于SAS的STAT模块,对于统计学教科书上所涉及的非参数统计方法几乎都可以通过此过程来完成。Npar1way过程的基本语句格式如下。 PROC NPAR1WAY <选项> ; BY 变量名; CLASS变量名; EXACT 统计量选项 ; FREQ变量名; OUTPUT < OUT=数据集名 > < 选项 > ; VAR 变量名; RUN; QUIT; Proc npar1way语句标志npar1way过程的开始,默认情况下(不列举任何选项):npar1way过程对最新创建的数据集进行分析,将缺失数据排除在分析过程之外;执行方差分析过程(等同于ANOVA选项),对样本分布位置的差异进行

非参数统计

非参数统计(nonparametric statistics)

复习: 参数(parameter) 参数统计:假定被检验的总体分布类型为已知的一类统计方法。 例如t检验、ANOVA要求总体:正态性和方差齐性等。

非参数统计(nonparametric statistics) 不依赖总体分布的类型,不对总体参数作估计或推断,只是检验分布(具体说是分布的位置)是否相同的一类统计方法。

非参数统计的优缺点 优点: 对资料无前提要求,应用范围广; 资料的收集和统计分析简便。 缺点: 对符合参数检验资料用非参数 检验时,因没有充分利用信息, 使检验效能 ; 历史较短,复杂的设计无对应方法; ③无概括性的数字说明总体。 。

非参数统计应用范围 不符合参数统计分析要求或不能通过数据 变换使资料满足参数检验要求的资料可用非参 数检验来分析。 偏态分布或未知分布资料或例数过少(难定分布); 分布一端或两端无界:如10以下或10以上; ●不能或未加精确测量的资料:如等级资料; ?个别数值偏离过大; ?各组离散程度相差悬殊(即方差不齐); ?不能满足参数检验要求的资料等。 综上所述:资料符合参数检验时,首选参数检验

常用的秩和检验(rank sum test) 配对设计Wilcoxon signed rank test 成组设计(两组)Wilcoxon rank sum test 成组设计(多组)Kruskal – Wallis test 多个样本两两比较Nemenyi test 随机区组设计资料Friedman’s M test

王静龙《非参数统计分析》教案

.引言 一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。 例如:分析下面的供应商的产品是否合格? 合格产品的标准长度为(±),随即抽取n=100件零件,数据如下: 表 经计算,平均长度为cm x 4958.8=,非常接近中心位置,样本标准差为 () 1047.011 2 =--= ∑=n i i n x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。 这说明产品有接近三分之一不合格,三分之二合格,所以需要更换供应厂 商,而用非参数分析却是另外一个结果。 以下是100个零件长度的分布表:

这说明有90%的零件长度在)2.05.8(±cm 之间,有9%的零件不合格,所以工厂不需要换供应商。 例2 哪一个企业职工的工资高? 表两个企业职工的工资 显然,企业1职工的工资高,倘若假设企业1与企业2的职工工资分别服从正态分布),(),,(22σσb N a N ,则这两个企业职工的工资比较问题就可以转化为一个参数的假设检验问题,原假设为b a H =:0,备择假设为b a H >:0 则 ))11(,(~2σn m b a N y x +-- 若0H 为真,则 其中])()([211 212 2∑∑==-+--+= n i i m i i w y y x x n m S 拒绝域为:}325.1{)}20({90.0≥=≥t t t 检测值为:282.1=t 故不能拒绝原假设,认为两企业的工资水平无差异。 也可以用值-P 检验 由于1073.0)282.1)20((=≥t P 故不能拒绝原假设,认为两企业的工资水平无差异。

相关文档
最新文档