STM32CubeMx配置过程详解

合集下载

STM32CubeMX+FreeRTOS学习[4] 消息队列(Lu)

STM32CubeMX+FreeRTOS学习[4] 消息队列(Lu)

FreeRTOS学习之四:消息队列前提:默认已经装好MDK V5和STM32CubeMX,并安装了STM32F1xx系列的支持包。

硬件平台:STM32F1xx系列。

目的:学习消息队列的使用。

队列可以保存有限个具有确定长度的数据单元。

通常情况下,队列被作为FIFO(先进先出)使用,即数据由队列尾写入,从队列首读出。

本文例子使用STM32CubeMX配置创建两个任务,一个任务每隔一定时间发送一个消息到队列,另一个等待消息并根据消息的内容控制LED的闪烁次数。

Step1.打开STM32CubeMX,点击“New Project”,选择芯片型号,STM32F103RBTx。

Step2.配置时钟引脚。

Step3.配置PA8和PD2为Output,并把用户标签分别改为LED0,LED1。

Step4.将系统时基源改为TIM4。

Step5.使能FreeRTOS。

Step6.配置时钟树。

8M输入时,通过PLL得到72M内部时钟。

Step7.配置FreeRTOS。

在Tasks and Queues选项卡,默认配置了一个名为defaultTask的任务,其优先级为普通,任务堆栈大小为128字,任务函数名为StartDefaultTask。

双击蓝色的地方,弹出对话框,将任务名修改为MsgProducer,将任务函数名修改为MsgProducerTask。

点击Add按钮,增加一个任务MsgConsumer,优先级设置为Normal,函数名为MsgConsumerTask。

点击Queues栏的Add按钮,增加一个任务队列myQ01,深度为16,每个单元数据类型是uint16_t。

注:其他的都使用默认参数。

Step8.生成代码。

等完成后直接打开工程。

工程基本组织结构如下图,其中Application/User组中的文件是用户可以修改的,而其他组中的文件一般不进行修改。

Step9.分析程序结构。

在进入main函数之前,先定义了几个变量,声明了几个函数。

cubemx定时器中断函数

cubemx定时器中断函数

cubemx是一款用于STM32微控制器的图形化配置工具,它可以帮助开发人员快速、方便地生成代码框架。

在使用cubemx进行定时器中断函数的配置时,需要遵循一定的步骤和注意事项,下面将详细介绍cubemx定时器中断函数的配置方法。

一、打开cubemx工具打开cubemx工具,并选择对应的STM32微控制器型号。

在“Peripherals”选项卡中找到定时器模块,点击“TIM”进行配置。

二、配置定时器参数在定时器配置页面,可以设置定时器的时钟源、计数模式、分频系数等参数。

需要根据具体的应用场景来确定这些参数的取值。

值得注意的是,如果需要使用中断功能,需要勾选“中断”选项,并且选择“更新事件”或者其他需要中断的事件类型。

三、生成代码配置完成后,点击“Project”菜单中的“Generate Code”选项,cubemx会自动生成相应的初始化代码,并将其添加到工程中。

四、编写中断服务函数在生成的代码中,会自动生成定时器中断服务函数的框架,开发人员需要根据实际需求来编写中断服务函数的具体内容。

中断服务函数通常包括清除中断标志位、处理中断事件等操作。

五、使能定时器中断需要在主函数中启用定时器中断,在m本人n.c文件中调用HAL_TIM_Base_Start_IT函数来启用定时器中断功能。

以上就是使用cubemx配置定时器中断函数的基本步骤,开发人员在实际应用中可以根据具体的需求对定时器中断函数进行更详细的配置和优化,以满足实际应用的要求。

希望本文能帮助开发人员更好地掌握cubemx定时器中断函数的配置方法。

在实际的嵌入式系统开发中,定时器中断函数的配置和优化可以极大地影响系统的性能和稳定性。

开发人员需要深入了解定时器中断函数的相关知识,并在实际的项目中灵活应用。

下面将继续扩展讨论使用cubemx进行定时器中断函数的更详细配置和优化。

一、定时器中断优化在配置定时器中断函数时,需要注意一些优化的技巧,以提高系统的效率和响应速度。

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)本教程将向您展示如何使用STM32CubeMX配置定时器触发的固定频率ADC采样,并使用DMA进行数据传输。

此配置可以用于您需要按照固定频率对模拟信号进行采样的应用中。

在开始之前,请确保已安装好STM32CubeMX和相应的IDE(如Keil、IAR等),并且您已熟悉STM32CubeMX的基本使用方法。

以下是配置步骤:1. 打开STM32CubeMX,并选择您的目标MCU型号。

2. 在"Pinout & Configuration"选项卡中,配置定时器和ADC引脚。

a.选择一个定时器,并设置其时钟源和频率。

您可以选择任何一个可用的定时器来触发ADC采样。

b.配置ADC引脚,将其连接到您的模拟信号源。

3. 在"Configuration"选项卡中,配置ADC。

a.启用ADC和DMA控制器。

b.配置ADC分辨率,采样时间和采样周期。

这些参数取决于您的应用需求。

c. 在"Mode"选项中,选择"Continuous Conversion Mode"。

这样ADC将会不断地根据定时器触发进行采样。

d. 启用"DMA Continuous Requests"。

这样当ADC完成一次采样后,DMA控制器将自动将数据传输到内存中。

4. 在"NVIC Settings"选项卡中,启用DMA和ADC中断。

5. 在"Project"选项卡中,选择生成代码所需的IDE和工程路径。

然后单击"Generate Code"按钮生成代码。

现在您已成功配置了定时器触发的固定频率ADC采样,并使用DMA进行数据传输。

您可以在生成的代码中初始化和启用各个模块,并编写相应的中断处理函数来处理DMA和ADC中断。

STM32CubeMX使用说明

STM32CubeMX使用说明

STM32CubeMX使用说明黄盈鑫目录安装软件 (1)安装固件包 (4)创建一个简单的工程 (8)安装软件●到ST的网站上下载最新版本的STM32CubeMX软件:/content/st_com/en/products/development-tools/software-development-too ls/stm32-software-development-tools/stm32-configurators-and-code-generators/stm32cubemx. html●编写这份文档的时候最新版本是V4.17.0将下载后的压缩包解压,双击里面的SetupSTM32CubeMX-4.17.0.exe文件来安装软件,出现下图的界面的时候按Next按钮继续:●在下面的窗口中选择“I accept the terms of this license agreement”然后继续按Next按钮。

●下一个出现的窗口是选择软件安装的路径,默认安装路径是C:\Program Files(x86)\STMicroelectronics\STM32Cube\STM32CubeMX,可以根据实际需要选择别的路径,本次安装在D盘相同的路径上。

●按Next按钮后弹出一个确认窗口,按确定键确定。

●接着弹出下图的配置窗口,按原来默认的配置,按Next键继续。

●安装完后,按Next键继续。

●按Done键关闭下面的窗口,完成所有的安装。

安装固件包●点击桌面上的STM32CubeMX图标运行软件。

●先修改软件包的安装路径,点击help菜单选“Updater Settings”选项。

●软件包默认安装在C:/Users/XIN/STM32Cube/Repository/目录下,STM32Cube软件包比较大可以点击Browse按键修改安装的路径。

●修改完软件包的安装路径后开始安装STM32Cube软件包,点击help菜单选“Install newsoftware and/or firmware packages”选项。

基于STM32CubeMX配置PWM输出和输入捕获

基于STM32CubeMX配置PWM输出和输入捕获

基于STM32CubeMX配置PWM输出和输⼊捕获PWM输出和输⼊捕获1、试验⽬标 1.输出2路PWM脉冲信号 2.捕获1路PWM脉冲信号 本次试验会使⽤到2个定时器,⼀个⾼级定时器⽤于脉冲捕获,⼀个普通定时器⽤于PWM脉冲输出。

2、准备材料 1. STM32F103C8 2. STM32CubeMX2、STM32CubeMX配置 2.1时钟树 系统时钟为72M,APB1 和APB2 的定时器时钟都为72MHZ。

2.2 PWM输出配置 PWM的输出配置⽐较简单,这⾥我们使⽤到了TIM2普通定时器控制输出,具体参数如下图。

在 Parameter Settings 页配置预分频系数为 72-1,计数周期(⾃动加载值)为 10000-1,定时器溢出频率,即PWM的周期,就是72MHz/(71+1)/(9999+1) = 100Hz 2.3 PWM输⼊捕获配置 PWM捕获,本次试验使⽤到了STM32F103C8的⾼级定时器TIM1。

配置如下图。

中断配置勾线这⾥,因为我们需要使⽤中断回调函数来计算频率占空⽐。

2.4 配置中断分组和中断使能2.5串⼝输出2.6⽣成⼯程 这⾥选择分离C.h⽂件,IDE 根据⾃⼰的环境选择,这⾥我使⽤的GUN编译⽅式的IDE所以选择了SW4SEM32。

以上CubeMX的PWM配置就完成了。

配置完毕后,⽣成⼯程打开。

下⾯我们来分析代码和如何使⽤。

3、代码实现 3.1 tim.c 该代码主要配置了Tim1 和Tim2 的相关配置,为什么要这么配置,在接下来的第4⼤点会详细说明。

这⾥主要了解HAL_TIM_IC_CaptureCallback 捕获中断回调函数这⾥函数主要处理计算占空⽐和频率。

/********************************************************************************* @file tim.c* @brief This file provides code for the configuration* of the TIM instances.******************************************************************************* @attention** <h2><center>© Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:* /licenses/BSD-3-Clause********************************************************************************//* Includes ------------------------------------------------------------------*/#include "tim.h"/* USER CODE BEGIN 0 *//// 计算占空⽐时使⽤__IO uint16_t IC2Value = 0;__IO uint16_t IC1Value = 0;__IO float DutyCycle = 0;__IO float Frequency = 0;/* USER CODE END 0 */TIM_HandleTypeDef htim1; // ⾼级定时器捕获PWMTIM_HandleTypeDef htim2; // 普通定时器输出PWM/* TIM1 init function */void MX_TIM1_Init(void){TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_SlaveConfigTypeDef sSlaveConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};TIM_IC_InitTypeDef sConfigIC = {0};htim1.Instance = TIM1;htim1.Init.Prescaler = 72-1;htim1.Init.CounterMode = TIM_COUNTERMODE_UP; /* 计数⽅式上计数 */htim1.Init.Period = 65535; /* 计数器更新上限值 */htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; /* 采样时钟分频 */htim1.Init.RepetitionCounter = 0; /* 重装值=0 */htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; /* ⾃动装载值软件使能 */ if (HAL_TIM_Base_Init(&htim1) != HAL_OK) /* 初始定时器 */{Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; /* 内部时钟源 */if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK){Error_Handler();}if (HAL_TIM_IC_Init(&htim1) != HAL_OK){Error_Handler();}///选择从模式: 复位模式sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;sSlaveConfig.InputTrigger = TIM_TS_TI1FP1; /* 选择定时器输⼊触发: TI1FP1 */ sSlaveConfig.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;sSlaveConfig.TriggerFilter = 0;if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK){Error_Handler();}///IC1捕获上升沿触发 TI1FP1sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;sConfigIC.ICFilter = 0;if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK){Error_Handler();}///IC2捕获下降沿捕获 TI1FP2sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_2) != HAL_OK){Error_Handler();}}/* TIM2 init function */void MX_TIM2_Init(void){TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};TIM_OC_InitTypeDef sConfigOC = {0};htim2.Instance = TIM2;/** htim2.Init.Prescaler 分频计算* 定时器时钟源TIMxCLK = 2 * PCLK1* PCLK1 = HCLK / 2* => TIMxCLK = HCLK/2 = SystemCoreClock / 2 *2=72MHz (APB1)* 设定定时器频率为=TIMxCLK/(TIM_Prescaler+1)=10KHz* */htim2.Init.Prescaler = 72-1;htim2.Init.CounterMode = TIM_COUNTERMODE_UP; /* 计数⽅式上升沿有效 */htim2.Init.Period = 10000-1; /* 累计 TIM_Period个后产⽣⼀个更新或者中断当定时器从0计数到10000,即为10000次,为⼀个定时周期*/ htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;if (HAL_TIM_Base_Init(&htim2) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; /* 内部时钟源 */if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK){Error_Handler();}if (HAL_TIM_PWM_Init(&htim2) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK){Error_Handler();}///PWM模式配置sConfigOC.OCMode = TIM_OCMODE_PWM1; /* 配置为PWM模式1*/sConfigOC.Pulse = 5000; /* 默认占空⽐为50%*/sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; /* 当定时器计数值⼩于CCR1_Val时为⾼电平*/sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) /* 配置PWM通道*/{Error_Handler();}if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK){Error_Handler();}HAL_TIM_MspPostInit(&htim2); /* 外置GPIO初始化 */}void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle){GPIO_InitTypeDef GPIO_InitStruct = {0};if(tim_baseHandle->Instance==TIM1){/* USER CODE BEGIN TIM1_MspInit 0 *//* USER CODE END TIM1_MspInit 0 *//* TIM1 clock enable */__HAL_RCC_TIM1_CLK_ENABLE(); /*定时器时钟使能*/__HAL_RCC_GPIOA_CLK_ENABLE(); /*GPIO时钟使能*//**TIM1 GPIO ConfigurationPA8 ------> TIM1_CH1*/GPIO_InitStruct.Pin = GPIO_PIN_8; /* 36脚的F103 不能改变引脚编号*/GPIO_InitStruct.Mode = GPIO_MODE_INPUT; /* 输⼊模式*/GPIO_InitStruct.Pull = GPIO_NOPULL; /* ⽆上下拉*/HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* TIM1 interrupt Init */HAL_NVIC_SetPriority(TIM1_CC_IRQn, 0, 0); /* 配置中断分组*/HAL_NVIC_EnableIRQ(TIM1_CC_IRQn); /* 使能中断*//* USER CODE BEGIN TIM1_MspInit 1 *//* USER CODE END TIM1_MspInit 1 */}else if(tim_baseHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspInit 0 *//* USER CODE END TIM2_MspInit 0 *//* TIM2 clock enable */__HAL_RCC_TIM2_CLK_ENABLE();/* USER CODE BEGIN TIM2_MspInit 1 *//* USER CODE END TIM2_MspInit 1 */}}void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle){GPIO_InitTypeDef GPIO_InitStruct = {0};if(timHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspPostInit 0 *//* USER CODE END TIM2_MspPostInit 0 */__HAL_RCC_GPIOA_CLK_ENABLE();/**TIM2 GPIO ConfigurationPA0-WKUP ------> TIM2_CH1PA1 ------> TIM2_CH2*/GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; /* 这⾥定义了2路PMW输出⽤PA0 和PA1*/ GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* USER CODE BEGIN TIM2_MspPostInit 1 *//* USER CODE END TIM2_MspPostInit 1 */}}void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle){if(tim_baseHandle->Instance==TIM1){/* USER CODE BEGIN TIM1_MspDeInit 0 *//* USER CODE END TIM1_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_TIM1_CLK_DISABLE();/**TIM1 GPIO ConfigurationPA8 ------> TIM1_CH1*/HAL_GPIO_DeInit(GPIOA, GPIO_PIN_8);/* TIM1 interrupt Deinit */HAL_NVIC_DisableIRQ(TIM1_CC_IRQn);/* USER CODE BEGIN TIM1_MspDeInit 1 *//* USER CODE END TIM1_MspDeInit 1 */}else if(tim_baseHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspDeInit 0 *//* USER CODE END TIM2_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_TIM2_CLK_DISABLE();/* USER CODE BEGIN TIM2_MspDeInit 1 *//* USER CODE END TIM2_MspDeInit 1 */}}/* USER CODE BEGIN 1 *//*** @brief Conversion complete callback in non blocking mode 捕获回调函数* @param htim : hadc handle* @retval None*/void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1){/* 获取输⼊捕获值 */IC1Value = HAL_TIM_ReadCapturedValue(&htim1,TIM_CHANNEL_1);IC2Value = HAL_TIM_ReadCapturedValue(&htim1,TIM_CHANNEL_2);if (IC1Value != 0){/* 占空⽐计算 */DutyCycle = (float)((IC2Value+1) * 100) / (IC1Value+1);/* 频率计算 */Frequency = 72000000/72/(float)(IC1Value+1);}else{DutyCycle = 0;Frequency = 0;}}}/* USER CODE END 1 *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/3.2 main.c ⽤于计算的变量//计算占空⽐时的全局表变量extern __IO uint16_t IC2Value;extern __IO uint16_t IC1Value;extern __IO float DutyCycle;extern __IO float Frequency; 使能和输出PWM/// 使能捕获/⽐较2中断请求HAL_TIM_IC_Start_IT(&htim1,TIM_CHANNEL_1);HAL_TIM_IC_Start_IT(&htim1,TIM_CHANNEL_2);/// 开始输出PWMHAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_1);HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_2); 打印调试输出while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */printSwo("IC1Value =",IC1Value,LINE_FEED_EN);printSwo("IC2Value =",IC2Value,LINE_FEED_EN);printSwo("占空⽐:",DutyCycle,LINE_FEED_EN);printSwo("频率:",Frequency,LINE_FEED_EN);HAL_Delay(500);}3.3 输出结果短接任意⼀路输出 PA0与PA8 PWM输出与捕获,或 PA1与PA8 PWM输出与捕获。

STM32CubeMX新建工程的过程及方法解析

STM32CubeMX新建工程的过程及方法解析

STM32CubeMX新建工程的过程及方法解析
Ⅰ、写在前面
关于STM32CubeMX新建工程的过程。

最终通过STM32CubeMX工具配置完成一个驱动IO(点亮LED)的软件工程,也就是通过STM32CubeMX配置完成之后,打开工程直接下载就能点亮LED的工程。

Ⅱ、STM32CubeMX新建工程描述
这里结合实例来讲述新建工程的每一个步骤的细节。

1.打开STM32CubeMX软件,点击“新建工程”
2.选择MCU或选择(ST官方)开发板
A.如果是我们网上购买的,或者自己画的开发板,点击“MCU Selector”进入MCU选择器。

选择器在网页上常见,根据自己需求进行选择(我们以STM32F103E为例)。

1.根据“系列”选择;如:F0、F1、F
2.。

..。

.F7、L0、L1、L4等;
2.根据“产品线”选择;
3.根据“封装”选择;
4.根据“其他特征”选择;如:FLASH大小、RAM大小、IO数量等。

层层筛选下来,最后就可以看到自己想要的芯片型号,双击“选中”芯片,如下图:
B.如果你的开发板是购买ST官方的开发板(或评估板),点击“Board Selector”进入开发板选择器。

(我们以STM3210E-EV AL为例)。

1.根据“厂商”选择;目前只有ST厂商,估计以后会拓展其他厂商;
2.根据“板子类型”选择;
3.根据“芯片系列”选择;
层层筛选下来,最后就可以看到自己想要的芯片型号,双击“选中”芯片,如下图:。

STM32CubeMX使用说明

STM32CubeMX使用说明

STM32CubeMX使用说明黄盈鑫目录安装软件 (1)安装固件包 (4)创建一个简单的工程 (8)安装软件●到ST的网站上下载最新版本的STM32CubeMX软件:/content/st_com/en/products/development-tools/software-development-too ls/stm32-software-development-tools/stm32-configurators-and-code-generators/stm32cubemx. html●编写这份文档的时候最新版本是V4.17.0将下载后的压缩包解压,双击里面的SetupSTM32CubeMX-4.17.0.exe文件来安装软件,出现下图的界面的时候按Next按钮继续:●在下面的窗口中选择“I accept the terms of this license agreement”然后继续按Next按钮。

●下一个出现的窗口是选择软件安装的路径,默认安装路径是C:\Program Files(x86)\STMicroelectronics\STM32Cube\STM32CubeMX,可以根据实际需要选择别的路径,本次安装在D盘相同的路径上。

●按Next按钮后弹出一个确认窗口,按确定键确定。

●接着弹出下图的配置窗口,按原来默认的配置,按Next键继续。

●安装完后,按Next键继续。

●按Done键关闭下面的窗口,完成所有的安装。

安装固件包●点击桌面上的STM32CubeMX图标运行软件。

●先修改软件包的安装路径,点击help菜单选“Updater Settings”选项。

●软件包默认安装在C:/Users/XIN/STM32Cube/Repository/目录下,STM32Cube软件包比较大可以点击Browse按键修改安装的路径。

●修改完软件包的安装路径后开始安装STM32Cube软件包,点击help菜单选“Install newsoftware and/or firmware packages”选项。

cubemx生成stm32f103c8t6的项目例程

cubemx生成stm32f103c8t6的项目例程

cubemx生成stm32f103c8t6的项目例程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!使用CubeMX生成STM32F103C8T6项目例程在嵌入式系统开发中,STM32系列微控制器是极为常见且广泛应用的一种选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

STM32CubeMx使用详解
——cuyebiren
——意法半导体STM32/STM8社区STM32CubeMx是STM32系列单片机初始化代码工程生成工具。

我们可以用它搜索选择满足我们需求的芯片,用它配置芯片外设引脚和功能,用它配置使用如LWIP、FAT32、FreeRTOS等第三方软件系统,还可以用它做功耗评估。

STM32CubeMx 不仅能生成初始化代码工程,也能生成引脚配置信息的pdf和txt文档,方便查阅和设计原理图。

——我相信STM32CubeMx的强大会使玩过它的人赞不绝口,毅然决然地放弃使用标准库,转而使用基于HAL库的它和HAL库。

下面就开始介绍STM32CubeMx的使用:
一、打开软件后的界面,如下。

这里主要介绍“Help”菜单。

“Updater Setings”可以设置下载的固件库及其解压文件的存放位置,这样就可以找到软件下载的固件库到底存放到哪了。

“Install New Libraries”可以检查并下载固件库和软件更新情况,以及历史版
本,也可以手动导入固件库。

二、点击“New Projet”进入芯片选择界面。

这里选择STM32F407ZGTx(因为我的开发板是这个型号)。

三、选择芯片型号双击或点“OK”,进入工程配置。

四、外设使能及引脚选择。

相关文档
最新文档