中考数学:求取值范围问题
2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)1.如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A 在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2.如图1,A(1,0)、B(0,2),双曲线y=(x>0)(1)若将线段AB绕A点顺时针旋转90°后B的对应点恰好落在双曲线y=(x>0)上①则k的值为;②将直线AB平移与双曲线y=(x>0)交于E、F,EF的中点为M(a,b),求的值;(2)将直线AB平移与双曲线y=(x>0)交于E、F,连接AE.若AB⊥AE,且EF =2AB,如图2,直接写出k的值.3.如图1,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD﹣∠POC时,求此时m的值;(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.4.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.5.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.6.如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F 在第一象限内,OF的长度不变,且反比例函数y=经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.7.如图,二次函数与反比例函数的图象有公共点A(﹣2,5),▱ABCD的顶点B(﹣5,p)在双曲线上,C、D两点在抛物线上(点C在y轴负半轴,点D在x轴正半轴)(1)求直线AB的表达式及C、D两点的坐标;(2)第四象限的抛物线上是否存在点E,使得四边形ACED的面积最大,若存在,求出点E的坐标和面积的最大值,不存在,说明理由.8.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m >0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.10.如图,点P在曲线上,PA⊥x轴于点A,点B在y轴正半轴上,PA=PB,OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,点C是线段PB延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.(1)填空:OA=;OB=;k=;(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是;(3)试问:在点C运动的过程中,BD﹣BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.参考答案1.解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,如图1,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF∽△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH∽△DPG,,,解得:k=0(舍),综上:存在.2.解:(1)设旋转后点B的对应点为点C,过点C作CD⊥x轴于点D,如图所示∵∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠BAO+∠ABO=90°,∴∠ABO=∠CAD,在△OAB和△DCA中,,∴△OAB≌△DCA(AAS),∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1),把C(3,1)代入y=中,得k=3,故答案为:3;(2)直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设点E(m,n),mn=3,直线EF的表达式为:y=﹣2x+t,将点E坐标代入上式并解得,直线EF的表达式为y=﹣2x+2m+n,将直线EF表达式与反比例函数表达式联立并整理得:2x2﹣(2m+n)x+3=0,x1+x2=,x1x2=,则点F(n,),则a=(),b=(n+),===2;(3)故点E作EH⊥x轴交于点H,由(1)知:△ABO∽△EHA,∴,设EH=m,则AH=2m,则点E(2m+1,m),且k=m(2m+1)=2m2+m,直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设直线EF的表达式为:y=﹣2x+b,将点E坐标代入并求解得:b=5m+2,故直线EF的表达式为:y=﹣2x+5m+2,将上式与反比例函数表达式联立并整理得:2x2﹣(5m+2)x+3=0,用韦达定理解得:x F+x E=,则x F=,则点F(m,4m+2),则EF==2AB=2×,整理得:3m2+4m﹣4=0,解得:m=或﹣2(舍去负值),k=m(2m+1)=2m2+m=.3.解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y=0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)如图2,过Q作QM⊥y轴于M,过P作PN⊥OC于N,过O作OH⊥CD于H,∵P(m,1)和Q(1,m),∴MQ=PN=1,OM=ON=m,∵∠OMQ=∠ONP=90°,∴△OMQ≌△ONP(SAS),∴OQ=OP,∠DOQ=∠POC,∵∠DOQ=∠OCD﹣∠POC,∠OCD=45°,∴∠DOQ=∠POC=∠QOH=∠POH=22.5°,∴MQ=QH=PH=PN=1,∵∠OCD=∠ODC=45°,∴△DMQ和△CNP都是等腰直角三角形,∴DQ=PC=,∵OC=OD=m+1,∴CD=OC=,∵CD=DQ+PQ+PC,∴=2+2,∴m=+1;(3)如图3,∵四边形BAPQ为平行四边形,∴AB∥PQ,AB=PQ,∴∠OAB=45°,∵∠AOB=90°,∴OA=OB,∴矩形OAMB是正方形,∵点M恰好在函数y=(m为常数,m>1,x>0)的图象上,∴M(,),即OA=OB=,∵AB=PQ,∴,解得:m=或(舍),∴OA=OB====.4.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).5.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,即:m﹣n=1或0或2或4,当m﹣n=0时,m=n与题意不符,点D不能在C的下方,即BC=CD也不存在,n+2>n,当B、D重合时,m﹣n=2成立,故m﹣n=1或4或2;②点E的横坐标为:,当点E在点B左侧时,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.当点E在点B右侧时,同理BC+BE=(m﹣n)(1+)﹣1,当1+=0,k=﹣1时,(不合题意舍去)故k=1,d=1.6.解:(1)∵F在直线y=x上∴设F(m,m)∵y=经过点B(2,4).∴k=8.∵F(m,m)在反比例函数的图象上,∴m2=8∴m=2(负值已舍去).∴由两点间的距离公式可知:OF==4.(2)①∵函数y=的图象经过点D,E∴OC•CD=OA•AE=k.∵OC=2,OA=4,∴CD=2AE.②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3n,BD=4﹣2n,BE=2﹣n在Rt△EBD,由勾股定理得:DE2=BD2+BE2,∴9n2=(4﹣2n)2+(2﹣n)2.解得n=,∴k=4n=6﹣10.③CD=2c,AE=c当OD=DE时,22+4c2=(4﹣2c)2+(2﹣c)2,∴c=10﹣2,∴k=4c=40﹣8.(a+b)2=a2+b2+2ab=16+2k=96﹣16.当若OE=DE时,16+c2=(4﹣2c)2+(2﹣c)2,∴c=.∴k=4c=10﹣2.∴(a+b)2=a2+b2+2ab=16+2k=36﹣4.当OE=OD时,4+4c2=16+c2,解得c=2.此时点D与点E重合,故此种情况不存在.综上所述,(a+b)2的值为96﹣16或36﹣4.7.解:(1)设反比例函数的解析式为y=.∵它图象经过点A(﹣2,5)和点B(﹣5,p),∴5=,∴k=﹣10,∴反比例函数的解析式为y=﹣,∴P=﹣=2,∴点B的坐标为(﹣5,2),设直线AB的表达式为y=mx+n,则,∴,∴直线AB的表达式为y=x+7.由▱ABCD中,AB∥CD,设CD的表达式为y=x+c,∴C(0,c),D(﹣c,0),∵CD=AB,∴CD2=AB2,∴c2+c2=(﹣5+2)2+(2﹣5)2,∴c=﹣3,∴点C、D的坐标分别是(0,﹣3)、(3,0).(2)设二次函数的解析式为y=ax2+bx﹣3,,∴,∴二次函数的解析式为y=x2﹣2x﹣3,假设第四象限的抛物线上存在点E,使得△CDE的面积最大.设E(k,k2﹣2k﹣3),则F(k,k﹣3),过点E作x轴的垂线交CD于点F,则S△CDE=S△EFC+S△EFD=•EF•OD=•[(k﹣3)﹣(k2﹣2k﹣3)]=﹣(k2﹣3k)=﹣(k﹣)2+,所以,当k=时,△CDE的面积最大值为,此时点E的坐标为(,﹣).∵A(﹣2,5),C(0,﹣3),D(3,0),∴△ACD的面积为定值,∵直线AD的解析式为y=﹣x+3,∴直线AD交y轴于K(0,3),∴S△ACD=S△ACK+S△CKD=×6×2+×6×3=15,∴四边形ACED的面积的最大值为15+=.8.解:(1)过点B、D分别作BE⊥x轴、DF⊥x轴交于点E、F,∵∠DAF+∠BAE=90°,∠DAF+∠FDA=90°,∴∠FDA=∠BAE,又∠DFA=∠AEB=90°,AD=AB,∴△DFA≌△AEB(AAS),∴DF=AE=3,BE=AF=1,∴点B坐标为(﹣3,1),故答案为(﹣3,1);(2)t秒后,点D′(﹣7+2t,3)、B′(﹣3+2t,1),则k=(﹣7+2t)×3=(﹣3+2t)×1,解得:t=,则k=6,则点D′(2,3)、B′(6,1);(3)存在,理由:设:点Q(m,n),点P(0,s),mn=6,①当BD为平行四边形一条边时,图示平行四边形B′D′QP,点B′向左平移4个单位、向上平移2个单位得到点D′,同理点Q(m,n)向左平移4个单位、向上平移2个单位为(m﹣4,n+2)得到点P (0,s),即:m﹣4=0,n+2=s,mn=6,解得:m=4,n=,s=,故点Q(4,)、点P(0,);②当BD为平行四边形对角线时,图示平行四边形D′Q′B′P′,B′、D′中点坐标为(4,2),该中点也是P′Q′的中点,即:4=,=2,mm=6,解得:m=8,n=,s=,故点Q′(8,)、P′(0,);故点Q的坐标为:Q(4,)或(8,),点P的坐标为P(0,)(0,).9.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.10.解:(1)t2﹣8t+12=0,解得:t=2或6,∵OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,即OA=6,OB=2,即点A、B的坐标为(﹣6,0)、(0,2),设点P(﹣6,),由PA=PB得:36+(2+)2=()2,解得:k=﹣60,故点P(﹣6,10),故答案为:6,2,﹣60;(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,tan∠ACO=,线段AB中点的坐标为(﹣3,1),则过AB的中点与直线AB垂直的直线PQ的表达式为:y=mx+n=﹣3x+n,将点(﹣3,1)的坐标代入上式并解得:n=﹣8,即点M的坐标为(0,﹣8),则圆的半径r=MB=2+8=10=MQ,过点Q作QG⊥y轴于点G,tan∠QMG=tan∠HMP===,则sin∠QMG=故GQ=MQ sin∠QMG=,MG=3,故点Q(,﹣8﹣3);故答案为:(,﹣8﹣3).(3)是定值,理由:延长PA交圆M于E,过点E作EH⊥BD于H,连接CE,DE,∵PA=PB,∴∠PAB=∠PBA,∵四边形ABCE是圆的内接四边形,∴∠PAB=∠PCE,∠PBA=∠PEC,∴∠PEC=∠PCE,∴PE=PC,∴AE=BC,∵AO⊥BD,EH⊥BD,PA⊥OA,∴四边形AOHE是矩形,∴AO=EH,AE=OH=BC,∵PA∥BD,∴=,∴,∴∠ABD=∠BDE,且∠AOB=∠EHD=90°,AO=EH,∴△AOB≌△EHD(AAS)∴OB=DH=2,∴BD﹣BC=BD﹣OH=OB+DH=4.。
2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)◆ 题型一:已知不等式确定的解集,求参数值或者范围几种常见考法: ① {若我们计算的结果为a <x <b 而题中给的结果为1<x 2,因为不等(组)的解集是确定的,则{a =1b =2② {若我们计算到ax <a ,因为未知a 的正负,无法下一步运算而题中给的结果为x <1,根据不等式的性质,则a >0③ {若我们计算的结果为{x <bx <2而题中给的结果为x <2,根据不等式解集的取法,“同小取小”,则b ≥2④ {若我们计算的结果为{x <bx <2而题中给的结果为x <b ,根据不等式解集的取法,“同小取小”,则b ≤2⑤ {若我们计算的结果为{x >b x >2而题中给的结果为x >2,根据不等式解集的取法,“同大取大”,则b ≤2⑥ {若我们计算的结果为{x >b x >2而题中给的结果为x >b ,根据不等式解集的取法,“同大取大”,则b ≥21. (2022·河北·模拟预测)已知a 是自然数,如果关于x 的不等式(a -3) x >a -3的解集为x <1,那么a 的值为( )A .1,2B .1,2, 3C .0,1, 2D .2,3【答案】C【分析】根据不等式(a -3)x >a -3的解集为x <1,得a -3<0,即可求解. 【详解】解:∵(a -3)x >a -3,当不等式两边同时除以a -3,若a -3>0,不等式化为x >1, 若a -3<0,则不等式化为x <1, ∴a -3<0,即a <3,符合条件的自然数有0,1,2. 故选:C .【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键.2. (2022·四川成都·模拟预测)关于x 的不等式组{3x −1>4(x −1)x <m 的解集为3x <,那么m 的取值范围是( )A .m ≥3B .m >3C .m <3D .m =3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x <,即可求解. 【详解】解:{3x −1>4(x −1)①x <m ②,解不等式①得:3x <, ∵不等式组的解集为3x <, ∴m ≥3. 故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.1.(2022·重庆市第三十七中学校二模)若数a 既使得关于x 的不等式组{x−a 2+1≤x+a 3x −2a >6无解,又使得关于y的分式方程5y−2−a−y2−y =1的解不小于1,则满足条件的所有整数a 的和为( ) A .−4 B .−3 C .−2 D .−52.(2022·重庆·模拟预测)若关于x 的不等式组{3<0x −4>3(x −2)的解集为x <1,且关于x 的分式方程x+2x−1+m 1−x=3有非负整数解,则符合条件的m 的所有值的和是( )A .6B .8C .11D .143.(2022·重庆市开州区德阳初级中学模拟预测)若关于x 的一元一次不等式组{3x −2≥2(x +2)a −2x <−5的解集为x ≥6,且关于y 的分式方程y+2a y−1−8−3y 1−y=2的解是正整数,则所有满足条件的整数a 的个数是( )A .3B .4C .5D .64.(2022·河北·模拟预测)已知a是自然数,如果关于x的不等式(a-3) x>a-3的解集为x<1,那么a的值为() A.1,2 B.1,2,3 C.0,1,2 D.2,3【答案】C【分析】根据不等式(a-3)x>a-3的解集为x<1,得a-3<0,即可求解.【详解】解:∵(a-3)x>a-3,当不等式两边同时除以a-3,若a-3>0,不等式化为x>1,若a-3<0,则不等式化为x<1,∴a-3<0,即a<3,符合条件的自然数有0,1,2.故选:C.【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键. 5.(2022·山东德州·二模)已知不等式组{x2+3a ≤−22x +5>1的解集在数轴上表示如图所示,则a 的值为( )A .−56B .-1C .−13D .−166.(2022·广东·二模)已知不等式组{x +a ≥0x +b ≤0,的解集为2≤x ≤3,则(a −b)2022的值为( )A .1−B .2022C .1D .−2022【答案】C【分析】解不等式得出x≥-a ,x≤-b ,由不等式组的解集得出-b=3,-a=2,解之求得a 、b 的值,代入计算可得.【详解】解:由x+a≥0,得:x≥-a , 由x+b≤0,得:x≤-b , ∵解集是2≤x≤3, ∴-b=3,-a=2,解得:a=-2,b=-3,∴(a−b)2022=(−2+3)2022=1,故选:C.【点睛】本题考查了解一元一次不等式组,能求出不等式(或组)的解集是解此题的关键.7.(2022·四川成都·模拟预测)关于x的不等式组{3x−1>4(x−1)x<m的解集为3x<,那么m的取值范围是()A.m≥3B.m>3C.m<3D.m=3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x<,即可求解.【详解】解:{3x−1>4(x−1)①x<m②,解不等式①得:3x<,∵不等式组的解集为3x<,∴m≥3.故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.8.(2022·山东·日照市北京路中学二模)若关于x的不等式组{x+1<3x+124x−1≥3(a−x)的解集是x>1,关于y的分式方程ay−1=5y−8y−1−2的解为非负数,则所有符合条件的整数a的和为()A.-18 B.-15 C.0 D.2【答案】B【分析】根据不等式组的解集求出不等式的解集,确定a的取值范围,再根据分式方程的解是非负数确定a 的取值范围,注意排除增根的情况,最后两个a的取值范围合并,就可以算出所有整数a的和.【详解】解:x+1<3x+12,2x+2<3x+1,解得x>1,4x−1≥3(a−x),4x-1≥3a-3x,x≥3a+17,∵关于x 的不等式组的解集为x >1, ∴3a+17≤1,解得a≤2, 又∵ay−1=5y−8y−1−2的解为非负数,∴a=5y −8−2(y −1), ∴y=a+63≥0且y≠1,解得a≥-6且a≠-3,∴a 的取值范围为-6≤a≤2且a≠-3,符合条件的整数a 有:-6、-5、-4、-2、-1、0、1、2,所有的a 相加的和=(-6)+(-5)+(-4)+(-2)+(-1)+(0)+1+2 =-15. 故选:B .【点睛】本题考查含参的一元一次不等式组和含参的分式方程的解.注意含参的不等式的解法和增根的情况是解决本题的关键.9.(2020·河南·模拟预测)已知不等式组{2x −a <1x −4b >3的解集为﹣1<x <1,则(a +b )(b ﹣1)的值为_____.【点睛】本题考查不等式组的计算求解集,关键是和已知解集对应相等,求出a,b的值.10.(2022·甘肃武威·模拟预测)定义新运算“⊗”,规定:a⊗b=a−2b.若关于x的不等式x⊗m>3的解集为x>−1,则m的取值范围是________.【答案】m=-2【分析】根据定义的新运算得到x⊗m=x−2m>3,得x>3+2m,从而3+2m=-1,求得m的值.【详解】解:∵a⊗b=a−2b,∴x⊗m=x−2m,∵x⊗m>3,∴x−2m>3,∴x>2m+3,∵不等式x⊗m>3的解集为x>−1,∴2m+3=−1,∴m=-2,故答案为:m=-2.【点睛】本题考查了新定义运算在不等式的应用,解题的关键是准确理解新定义的运算.◆题型二:已知不等式的特殊解,求参数值或者范围若2<x<m恰有3个整数解,求m的取值范围。
中考数学与一元二次方程组有关的压轴题附详细答案

中考数学与一元二次方程组有关的压轴题附详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P ﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得1(舍去)或x=1,∴点P(1,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y1=-1,y2=3,∴3121xx=--或3321xx=-.解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.5.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.6.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.7.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值.【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯-⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥-∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m ≥-3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.8.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1. 【解析】 【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况. (2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.10.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米 【解析】 【分析】(1)设未知数,根据题目中的的量关系列出方程; (2)可以通过平移,也可以通过面积法,列出方程解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.11.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.12.已知关于x的方程x2-(m+2)x+(2m-1)=0。
中考题数学分类全集92取值范围3

(一)讲1.已知反比例函数y =- 2 x,当-4≤x ≤-1时,y 的最大值是 2. 在反比例函数y =1-2m x的图象上有A (x 1,y 1),B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A. m <0B. m >0C. m <12D. m >123、(2011•青岛)已知一次函数y 1=kx+b 与反比例函数y 2=在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是( )A 、x <﹣1或0<x <3B 、﹣1<x <0或x >3C 、﹣1<x <0D 、x >3 考点:反比例函数与一次函数的交点问题。
4. 如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y >,则x 的取值范围是A. 1-<x 或20<<xB. 1-<x 或2>xC. 01<<-x 或20<<xD. 01<<-x 或2>x(二)资料1.如图2,反比例函数11k y x=和正比例函数22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是()A. 10x -<<B. 11x -<<C. 1x <-或01x <<D. 10x -<<或1x >2、(2011•淮安)如图,反比例函数的图象经过点A (﹣1,﹣2).则当x >1时,函数值y 的取值范围是( ) A 、y >1 B 、0<y <l C 、y >2 D 、0<y <2考点:反比例函数的图象;反比例函数图象上点的坐标特征。
3、(2011•肇庆)如图.一次函数y=x+b 的图象经过点B (﹣1,0),且与反比例函数(k 为不等于0的常数)的图象在第一象限交于点A (1,n ).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y 的取值范围.考点:反比例函数与一次函数的交点问题。
初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)七下数学与中考试题中,经常出现已知不等式(组)的解集,确定其中字母的取值范围的问题,下面举例说明字母取值范围的确定方法,供同学们学习时参考.一、 根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B .例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。
则a 的范围是 .解:借助于数轴,如图1,可知: 1≤a<5并且 a+3≥5. 所以,2≤a<5 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .分析:由题意,可得原不等式组的解为8<x<2—4a ,又因为不等式组有四个整数解,所以8<x<2—4a 中包含了四个整数解9,10,11,12于是,有12<2—4a ≤13. 解之,得 114-≤a<52- .例4、已知不等式组⎩⎨⎧<+>-b x ax 122的整数解只有5、6。
求a 和b 的范围.解:解不等式组得⎪⎩⎪⎨⎧-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。
21-b 只能在6与7之间. ∴4≤2+a<5 6<21-b ≤7∴2≤a<3, 13<b ≤15.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( )图1图2A .m>一lB .m>lC .m<一1D .m<1分析:本题可先解方程组求出x 、y ,再代入x+y<0,转化为关于m 的不等式求解;也可以整体思考,将两方程相加,求出x+y 与m 的关系,再由x+y<0转化为m 的不等式求解. 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y =223m+<0.∴m<一l ,故选C . 例6、(江苏省南通市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,可得a=312x -;由3b -2x -16=0,可得b=2163x +. 又a ≤4<b , 所以,312x -≤4<2163x +, 解得:-2<x ≤3. 四、逆用不等式组解集求解例7、如果不等式组260x x m-≥⎧⎨≤⎩ 无解,则m 的取值范围是 .分析:由2x 一6≥0得x ≥3,而原不等式组无解,所以3>m ,∴m<3. 解:不等式2x-6≥0的解集为x ≥3,借助于数轴分析,如图3,可知m<3.例8、不等式组⎩⎨⎧>≤<m x x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2解:借助图4,可以发现:要使原不等式组有解,表示m 的点不能在2的右边,也不能在2上,所以,m<2.故选(A ).例9、(2007年泰安市)若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 .解:由x-3(x-2)<2可得x>2,由24a x x +>可得x<12a. 因为不等式组有解,所以12a>2. 所以,4a >.31 2图4图3例3、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。
中考数学:抛物线与参数的取值范围问题

(2)在二次函数的图象上是否存在点P,使 ,若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在 轴下方的部分沿 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线 与此图象有两个公共点时, 的取值范围.
6.(2010年浙江省绍兴,24,14)如图,设抛物线C1: ,C2: ,C1与C2的交点为A,B,点A的坐标是 ,点B的横坐标是-2.
【4】已知:直角梯形OABC的四个顶点是O(0,0),A( ,1),B(s,t),C( ,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.
(1)求s与t的值,并在直角坐标系中画出直角梯形OABC;
(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.
∵-1≤c≤0,
∴(k+1)2-4c≥0.
∴方程x2-(k+1) x+c=0有实数根.……7分
∵x1+x2=0,
∴k+1=0.
∴k=-1.
∴直线DE:y=-x.……8分
若 则有x2+c+ =0.即x2=-c- .
①当-c- =0时,即c=- 时,方程x2=-c- 有相同的实数根,
即直线y=-x与抛物线y=x2-x+c+ 有唯一交点.……9分
②当-c- >0时,即c<- 时,即-1≤c<- 时,
方程x2=-c- 有两个不同实数根,
即直线y=-x与抛物线y=x2-x+c+ 有两个不同的交点.……10分
③当-c- <0时,即c>- 时,即- <c≤0时,
方程x2=-c- 没有实数根,
即直线y=-x与抛物线y=x2-x+c+ 没有交点.……11分
2020年数学中考分类编汇含分析点评- 函数自变量取值范围

13、(2020•牡丹江)在函数y=
题:
分 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式
析: 即可求解.
解 解:依题意,值范围的求法.函数自变量的范围一般从三个方面考
评: 虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分
2、(2020•泸州)函数
自变量x的取值范围是( )
A.x≥1且x≠3
B.x≥1
C.x≠3
D.x>1且x≠3
考 函数自变量的取值范围. 点: 分 根据被开方数大于等于0,分母不等于0列式进行计算即可得解. 析: 解 解:根据题意得,x﹣1≥0且x﹣3≠0, 答: 解得x≥1且x≠3.
故选A. 点 本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 评:
3、(2020•包头)函数y= 中,自变量x的取值范围是( )
A.x>﹣1
B.x<﹣1
C.x≠﹣1
D.x≠0
考 函数自变量的取值范围. 点: 分 根据分母不等于0列式计算即可得解. 析: 解 解:根据题意得,x+1≠0, 答: 解得x≠﹣1.
故选C. 点 本题考查了函数自变量的范围,一般从三个方面考虑: 评: (1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.
4、(2020•铁岭)函数y=
有意义,则自变量x的取值范围是 x≥1且x≠2 .
考 函数自变量的取值范围. 点: 分 根据被开方数大于等于0,分母不等于0列式进行计算即可得解. 析: 解 解:根据题意得,x﹣1≥0且x﹣2≠0, 答: 解得x≥1且x≠2.
2023年中考数学压轴题专题17 二次函数与公共点及交点综合问题【含答案】

专题17二次函数与公共点及交点综合问题【例1】.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y =x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【例3】.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【例4】.(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF 的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L 上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.5.(2022•清镇市模拟)在平面直角坐标系中,抛物线y=ax2﹣2a2x+1(a≠0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)抛物线的对称轴为直线x=;(用含字母a的代数式表示)(2)若AB=2,求二次函数的表达式;(3)已知点P(a+4,1),Q(0,2),如果抛物线与线段PQ恰有一个公共点,求a的取值范围.6.(2022•五华区三模)已知抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4).(1)求a的值;(2)若抛物线与y轴的公共点为(0,﹣1),抛物线与x轴是否有公共点,若有,求出公共点的坐标;若没有,请说明理由;(3)当2≤x≤4时,设二次函数y=ax2﹣mx+2m﹣3的最大值为M,最小值为N,若=,求m的值.7.(2022•秦淮区二模)在平面直角坐标系中,一个二次函数的图象的顶点坐标是(2,1),与y轴的交点坐标是(0,5).(1)求该二次函数的表达式;(2)在同一平面直角坐标系中,若该二次函数的图象与一次函数y=x+n(n为常数)的图象有2个公共点,求n的取值范围.8.(2022•盐城二模)若二次函数y=ax2+bx+a+2的图象经过点A(1,0),其中a、b为常数.(1)用含有字母a的代数式表示抛物线顶点的横坐标;(2)点B(﹣,1)、C(2,1)为坐标平面内的两点,连接B、C两点.①若抛物线的顶点在线段BC上,求a的值;②若抛物线与线段BC有且只有一个公共点,求a的取值范围.9.(2022•滑县模拟)如图,已知二次函数y=x2+2x+c与x轴正半轴交于点B(另一个交点为A),与y轴负半轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)设直线AC的解析式为y=kx+b,求点A的坐标,并结合图象写出不等式x2+2x+c≥kx+b的解集;(3)已知点P(﹣3,1),Q(2,2t+1),且线段PQ与抛物线y=x2+2x+c有且只有一个公共点,直接写出t的取值范围.10.(2022春•龙凤区期中)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x 的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a,动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.11.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.12.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.13.(2022•南京一模)已知二次函数y=a(x﹣1)(x﹣1﹣a)(a为常数,且a≠0).(1)求证:该函数的图象与x轴总有两个公共点;(2)若点(0,y1),(3,y2)在函数图象上,比较y1与y2的大小;(3)当0<x<3时,y<2,直接写出a的取值范围.14.(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.15.(2022•花溪区模拟)已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣2,1),B(2,﹣3)两点(1)求分别以A(﹣2,1),B(2,﹣3)两点为顶点的二次函数表达式;(2)求b的值,判断此二次函数图象与x轴的交点情况,并说明理由;(3)设(m,0)是该函数图象与x轴的一个公共点.当﹣3<m<﹣1时,结合函数图象,写出a的取值范围.16.(2022•无锡模拟)在平面直角坐标系中,A,B两点的坐标分别是(0,﹣3),(0,4),点P(m,0)(m≠0)是x轴上一个动点,过点A作直线AC⊥BP于点D,直线AC与x轴交于点C,过点P作PE∥y轴,交AC于点E.(1)当点P在x轴的正半轴上运动时,是否存在点P,使△OCD与△OBD相似?若存在,请求出m的值;若不存在,请说明理由.(2)小明通过研究发现:当点P在x轴上运动时,点E(x,y)也相应的在二次函数y=ax2+bx+c (a≠0)的图象上运动,为了确定函数解析式小明选取了一些点P的特殊的位置,计算了点E(x,y)的坐标,列表如下:xy请填写表中空格,并根据表中数据求出二次函数的函数解析式;(3)把(2)中所求的抛物线向左平移n个单位长度,把直线y=﹣2x﹣4向下平移n个单位长度,如果平移后的抛物线对称轴右边部分与平移后的直线有公共点,那么请直接写出n 的取值范围.17.(2022•朝阳区校级一模)在平面直角坐标系中,二次函数y=﹣x2+2mx﹣6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.平面内有点C(﹣2,﹣2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.(1)当m=﹣2,求图象G的最高点坐标;(2)若图象G过点(3,﹣9),求出m的取值范围;(3)若矩形ABCD为正方形时,求点A坐标;(4)图象G与矩形ABCD的边有两个公共点时,直接写出m的取值范围.18.(2022•如东县一模)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.19.(2022•南京模拟)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,在△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0,直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤2,则b的取值范围是.20.(2022•南京模拟)若一个函数图象上存在横纵坐标互为相反数的点,我们将其称之为“反值点”,例如直线y=x+2的图象上的(﹣1,1)即为反值点.(1)判断反比例函数的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(2)判断关于x的函数(a是常数)的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(3)将二次函数y=x2﹣2x﹣3的图象向上平移m(m为常数,且m>0)个单位后,若在其图象上存在两个反值点,求m的取值范围.【例1】(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y =x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【分析】(1)由二次函数的对称轴直接可求b的值;(2)①求出M(2﹣,0),N(2+,0),再求出MN=2,MN的中点坐标为(2,0),利用直角三角形斜边的中线等于斜边的一半,列出方程即可求解;②求出抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),再求出y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0)当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),结合图像可得﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;(3)通过画函数的图象,分类讨论求解即可.【解析】(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,∴b=﹣4;(2)如图1:①令x2+bx+m=0,解得x=2﹣或x=2+,∵M在N的左侧,∴M(2﹣,0),N(2+,0),∴MN=2,MN的中点坐标为(2,0),∵△MNP为直角三角形,∴=,解得m=0(舍)或m=﹣1;②∵m=﹣1,∴y=x2﹣4x﹣1(x≥0),令x2﹣4x﹣1=﹣4,解得x=1或x=3,∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),∴﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;(3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),如图2,当y=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,解得m=﹣4,∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,∴m=﹣4时,当线段AB与图象C恰有两个公共点;如图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,此时图象C与线段AB有三个公共点,∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,此时图象C与线段AB有两个公共点,当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,解得m=3,此时图象C与线段AB有一个公共点,∴1≤m<3时,线段AB与图象C恰有两个公共点;综上所述:﹣4≤m<﹣1或1≤m<3时,线段AB与图象C恰有两个公共点.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【分析】(1)求出A、B、C三点坐标,再用待定系数法求直线AC的解析式即可;(2)分四种情况讨论:①当m>1时,p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,p﹣q=m2﹣2m﹣3+4=2,解得m=+1(舍)或m=﹣+1;(3)分两种情况讨论:①当抛物线向左平移h个单位,则向上平移h个单位,平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,求出直线BA的解析式为y=x﹣5,联立方程组,由Δ=0时,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②当抛物线向右平移k个单位,则向下平移k 个单位,平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点;当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,由此可求解.【解析】(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点A(1,﹣4),令x=0,则y=﹣3,∴C(0,﹣3),∵CB∥x轴,∴B(2,﹣3),设直线AC解析式为y=kx+b,,解得,∴y=﹣x﹣3;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=1,①当m>1时,x=m时,q=m2﹣2m﹣3,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,x=m时,p=m2﹣2m﹣3,x=m+2时,q=(m+2)2﹣2(m+2)﹣3,∴p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,x=1时,q=﹣4,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,x=1时,q=﹣4,x=m时,p=m2﹣2m﹣3,∴p﹣q=m2﹣2m﹣3+4=2,解得m=1+(舍)或m=1﹣,综上所述:m的值﹣1或1﹣;(3)设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,①如图1,当抛物线向左平移h个单位,则向上平移h个单位,∴平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,设直线BA的解析式为y=k'x+b',∴,解得,∴y=x﹣5,联立方程组,整理得x2﹣(3﹣2h)x+h2﹣h+2=0,当Δ=0时,(3﹣2h)2﹣4(h2﹣h+2)=0,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②如图2,当抛物线向右平移k个单位,则向下平移k个单位,∴平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,(2﹣1﹣k)2﹣4﹣k=﹣3,解得k=0(舍)或k=3,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点,当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,∴综上所述:1<n≤4或n=.【例3】(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【分析】(1)二次函数表达式可设为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3,解方程可得a和b的值,再利用顶点坐标公式可得点D的坐标;(2)根据t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.分两种情形,当△EMN∽△OBC时,得,解得t=;当△EMN∽△OCB时,得,解得t=;(3)首先利用中点坐标公式可得点G的坐标,利用待定系数法求出直线AG和BG的解析式,再根据直线l:y=kx+m与抛物线只有一个公共点,联立两函数解析式,可得Δ=0,再求出点H和k的横坐标,从而解决问题.【解析】(1)设二次函数表达式为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3得:,解得,∴抛物线的函数表达式为:,又∵=,==,∴顶点为D;(2)依题意,t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.①当△EMN∽△OBC时,∴,解得t=;②当△EMN∽△OCB时,∴,解得t=;综上所述,当或时,以M、E、N为顶点的三角形与△BOC相似;(3)∵点关于点D的对称点为点G,∴,∵直线l:y=kx+m与抛物线只有一个公共点,∴只有一个实数解,∴Δ=0,即:,解得:,利用待定系数法可得直线GA的解析式为:,直线GB的解析式为:,联立,结合已知,解得:x H=,同理可得:x K=,则:GH==,GK==×,∴GH+GK=+×=,∴GH+GK的值为.【例4】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF 的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.【分析】(1)运用待定系数法即可求得抛物线解析式和直线AD的解析式;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,根据三角形面积关系可得=,由EM∥FN,可得△BFN∽△BEM,得出===,可求得F(2+t,t2﹣t﹣2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,利用待定系数法可得:直线BC的解析式为y=x﹣3,直线C′G′的解析式为y=x+3,由四边形C′G′QP是平行四边形,分类讨论即可.【解析】(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C(0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.【分析】(1)利用待定系数法即可求得答案;(2)令y=0,可求得:A(﹣5,0),B(﹣1,0),再运用待定系数法求得直线AC的解析式为y=﹣x﹣,如图1,设P(t,﹣t2﹣3t﹣),过点P作PH∥y轴交直线AC于点H,则PH=﹣t2﹣t,利用S△P AC=S△P AH+S△PCH=﹣(t+)2+,即可运用二次函数求最值的方法求得答案;(3)运用翻折变换的性质可得图象G的函数解析式为:y=(x+3)2﹣2,顶点坐标为(﹣3,﹣2),进而根据平移规律可得:图象M的函数解析式为:y=(x﹣n)2﹣n﹣,顶点坐标为(n,﹣n﹣),当图象M经过点C(0,﹣)时,可求得:n=﹣1或n=2,当图象M的端点B在PC上时,可求得:n=﹣或n=(舍去),就看得出:图象M的顶点横坐标n的取值范围为:﹣≤n≤﹣1或n=2.【解析】(1)∵抛物线y=﹣x2+mx+m+与y轴交于点C(0,﹣),∴m+=﹣,解得:m=﹣3,∴该抛物线的解析式为:y=﹣x2﹣3x﹣;(2)在y=﹣x2﹣3x﹣中,令y=0,得:﹣x2﹣3x﹣=0,解得:x1=﹣5,x2=﹣1,∴A(﹣5,0),B(﹣1,0),设直线AC的解析式为y=kx+b,∵A(﹣5,0),C(0,﹣),∴,解得:,∴直线AC的解析式为y=﹣x﹣,如图1,设P(t,﹣t2﹣3t﹣),过点P作PH∥y轴交直线AC于点H,则H(t,﹣t﹣),∴PH=﹣t2﹣3t﹣﹣(﹣t﹣)=﹣t2﹣t,=S△P AH+S△PCH∴S△P AC=•PH•(x P﹣x A)+•PH•(x C﹣x P)=•PH•(x C﹣x A)=×(﹣t2﹣t)×[0﹣(﹣5)]=t2﹣t=﹣(t+)2+,取得最大值,∴当t=﹣时,S△P AC此时,点P的坐标为(﹣,);(3)如图2,抛物线y=﹣x2﹣3x﹣在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G,∵y=﹣x2﹣3x﹣=(x+3)2+2,顶点为(﹣3,2),∴图象G的函数解析式为:y=(x+3)2﹣2,顶点坐标为(﹣3,﹣2),∵图象G沿直线AC平移,得到新的图象M,顶点运动的路径为直线y=﹣x﹣,∴图象M的顶点坐标为(n,﹣n﹣),∴图象M的函数解析式为:y=(x﹣n)2﹣n﹣,当图象M经过点C(0,﹣)时,则:﹣=(0﹣n)2﹣n﹣,解得:n=﹣1或n=2,当图象M的端点B在PC上时,∵线段PC的解析式为:y=﹣x﹣(﹣≤x≤0),点B(﹣1,0)运动的路径为直线y =﹣x﹣,∴联立可得:,解得:,将代入y=(x﹣n)2﹣n﹣,可得:(﹣﹣n)2﹣n﹣=,解得:n=﹣或n=(舍去),∴图象M的顶点横坐标n的取值范围为:﹣≤n≤﹣1或n=2.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L 上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.【分析】(1)当t=1时,抛物线为y=x2﹣2x﹣2,可求得它的对称轴为直线x=1,由点P 与点Q关于直线x=1对称得m+n=2,即可求得n关于m的关系式;(2)将y=x2﹣2x+t2+2t﹣5配成顶点式y=(x﹣1)2+t2+2t﹣6,则抛物线的对称轴为直线x=1,顶点坐标为(1,t2+2t﹣6),再说明线段AB在直线x=1上,由L与线段AB有公共点可列不等式组得0≤t2+2t﹣6≤1,解不等式组求出它的解集即可;(3)分三种情况,一是直线x=2t﹣1在抛物线的对称轴的左侧,在2t﹣3<x<2t﹣1范围内图象不存在最低点,因此不存在y的最小值;二是直线x=1在直线x=2t﹣3与直线x=2t﹣1之间时,抛物线的顶点为最低点,可列方程t2+2t﹣6=﹣,解方程求出符合题意的t值;三是直线x=2t﹣3在抛物线的对称轴的右侧,在2t﹣3<x<2t﹣1范围内图象不存在最低点,因此不存在y的最小值.【解析】(1)如图1,当t=1时,L为抛物线y=x2﹣2x﹣2,∵y=x2﹣2x﹣2=(x﹣1)2﹣3,∴该抛物线的对称轴为直线x=1,∵点P、Q分别是对称轴右侧、左侧L上的点,且PQ⊥y轴,∴m+n=2,∴n=﹣m+2(m>1).(2)如图2,L为抛物线y=x2﹣2x+t2+2t﹣5=(x﹣1)2+t2+2t﹣6,∴L的对称轴为直线x=1,顶点坐标为(1,t2+2t﹣6),∵A(1,0),B(1,1),∴线段AB在直线x=1上,∵L与线段AB有公共点,∴0≤t2+2t﹣6≤1,解得﹣1﹣2≤t≤﹣1﹣或﹣1+≤t≤﹣1+2,∴t的取值范围是﹣1﹣2≤t≤﹣1﹣或﹣1+≤t≤﹣1+2.(3)当2t﹣1<1,即t<1时,如图3,∵在2t﹣3<x<2t﹣1范围内图象不存在最低点,∴此时不存在y的最小值;当2t﹣1≥1且2t﹣3≤1,即1≤t≤2时,如图4,∵L的顶点为最低点,∴t2+2t﹣6=﹣,解得t1=,t2=,∵<1,∴t2=不符合题意,舍去;当2t﹣3>1,即t>2时,如图5,∵在2t﹣3<x<2t﹣1范围内图象不存在最低点,∴此时不存在y的最小值,综上所述,t的值为.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.【分析】(1)联立两函数解析式求出交点坐标,然后根据一次函数的增减性解答;(2)根据一次函数的增减性判断出x≥2,再根据二次函数解析式求出对称轴,然后根据二次函数的增减性可得x<4,从而得解;(3)①若函数y=x2﹣8x+c与y0=﹣x+6只有一个交点,联立两函数解析式整理得到关于x的一元二次方程,利用根的判别式Δ=0求出c的值,然后求出x的值,若在x的取值范围内,则符合;②若函数y=x2﹣8x+c与y0=﹣x+6有两个交点,先利用根的判别式求出c 的取值范围,先求出x=2与x=4时的函数值,然后利用一个解在x的范围内,另一个解不在x的范围内列出不等式组求解即可.【解析】(1)∵,∴,∴函数y1和y2图象交点坐标(2,4);y0关于x的函数关系式为y0=;(2)∵对于函数y0,y0随x的增大而减小,∴y0=﹣x+6(x≥2),又∵函数y=x2﹣8x+c的对称轴为直线x=4,且a=1>0,∴当x<4时,y随x的增大而减小,∴2≤x<4;(3)①若函数y=x2﹣8x+c与y0=﹣x+6只有一个交点,且交点在2<x<4范围内,则x2﹣8x+c=﹣x+6,即x2﹣7x+(c﹣6)=0,∴Δ=(﹣7)2﹣4(c﹣6)=73﹣4c=0,解得c=,此时x1=x2=,符合2<x<4,∴c=;②若函数y=x2﹣8x+c与y0=﹣x+6有两个交点,其中一个在2<x<4范围内,另一个在2<x<4范围外,∴Δ=73﹣4c>0,解得c<,∵对于函数y0,当x=2时,y0=4;当x=4时y0=2,又∵当2<x<4时,y随x的增大而减小,若y=x2﹣8x+c与y0=﹣x+6在2<x<4内有一个交点,则当x=2时y>y0;当x=4时y<y0,即当x=2时,y≥4;当x=4时,y≤2,∴,解得16<c<18,又c<,∴16<c<18,综上所述,c的取值范围是:c=或16<c<18.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.【分析】(1)由m=1代入抛物线解析式,将二次函数解析式化为顶点式求解;(2)①将x=2m代入抛物线解析式求出点A坐标,由正方形的性质即可求解;②分类讨论,数形结合解题,根据A点在图象G上,再在图象G上找一个点可以满足条件,然后根据m的取值范围进行分类讨论进行解题即可.【解析】(1)m=1时,y=x2﹣2x+6=(x﹣1)2+5,∴顶点为(1,5),∵x≤2,∴图象G的最低点坐标为(1,5);(2)①当x=2m时,y=6m,∴A(2m,6m),∵C(﹣2,2),∵正方形ABCD中,AB与x轴平行,BC与y轴平行,∴B(﹣2,6m),同理得D(2m,2),∵AD=CD,∴|6m﹣2|=|2m+2|,∴2m+2=﹣6m+2或2m+2=﹣2+6m,解得m=0或m=1,∴点A的坐标为(0,0)或(2,6);②∵点A在图象G上,∴图象G与矩形ABCD已经有一个公共点A,∵图象G与矩形ABCD的边有两个公共点,∴只需图象G与矩形ABCD的边再由一个公共点即可;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学:求取值范围问题
中考数学:求取值范围问题
求取值范围问题
近几年的中考题,我们经常遇到求参数取值范围的问题。
解答这类题型时,如果能够将不等式问题转化为方程,往往会有出奇制胜的效果,不信你看看:
解析:本题答案是关于a的不等式。
考虑到不等式的“边界”是方程,因此只需要考查两个极端情形:抛物线的开口变大时,有公共点和没有公共点的“边界”是点B(2,1);当抛物线的开口变小时,有公共点和没有公共点的“边界”是点D(1,2)。
分别代入抛物线的解析式可得a1=1/4,a2=2,考虑到题目只关注有公共点,因此本题的答案是1/4≤a≤2。
再看例题4:
例题4如果运用常规解法是比较麻烦的:需要先解方程组,用a的代数式表示交点,然后再根据点在第二象限列出不等式组,最后解不等式组。
如果同学们巧用方程和不等式的关系就可以简化解题过程。
例5如图2,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4),动点C 从点M(5,0)出发,以1个单位长度每秒的速度沿x轴向左做匀速运动,以点C为圆心、[12t]个单位长度为半径作⊙C,设运动时间为t秒.当⊙C与射线DE有公共点时,求t的取值范围.
【分析】在⊙C的运动过程中,与射线DE的公共点个数分别是0个、1个、2个、1个、0个,因此,若要求t的取值范围,只要解决圆刚刚接触到射线的“边界”位置和圆即将脱离射线的另一个“边界”(如图3中⊙C1、⊙C2)即可,分别解得t1=[43],t2=[163],因此,本题的答案是:[43]≤t≤[163].
三、分类讨论问题
分类讨论题综合性强,在历年中考试题中多以压轴题出现,难度很大,对同学们的能力要求很高。
在分类讨论的时候,最关键的是如何分类,确保不遗漏、不重复。
我们利用方程和不等式的关系,利用数轴可以很好地解决这一难点。
看例题6:
方程与不等式是相等与不等的代数情况,我们不但要理解性质,掌握解题的一般方法,还要熟能生巧。
要领悟和掌握一些特殊的解题技巧和规律,在学习中必能事半功倍。