初中求取值范围的题型

合集下载

绝对值的和有最小值,怎么求x取值范围?13道练习题,你也来试试.doc

绝对值的和有最小值,怎么求x取值范围?13道练习题,你也来试试.doc

绝对值的和有最小值,怎么求x取值范围?13道练习题,你也来试试今天要讲的内容,绝对值的和有最小值,怎么求x的取值范围?还有绝对值方程和不等式。

岂不是更难,更抽象?总结归纳了4类题型,解决这一类问题,一定要结合数轴来解决。

没有数轴,怎么解决绝对值问题?题型一,绝对值和最小,求x的取值范围。

你是不是经常见到?然后不知道该怎么办?根据绝对值的几何意义,数轴上两个数a,b距离,可以表示为|a-b|,那么|x-1|就是x到1的距离,|x-2|就是x到2的距离。

然后|x-1|+|x-2|就是这两个距离之和。

我们通过数轴,得出当x位于1到2之间时,距离和有最小值。

后面几道题类似。

我们通过前面5道题的练习,知道绝对值的和,基本解题思路、方法和步骤。

那么第6题和第7题怎么解呢?6题,表示一个数x分别到自然数1,2,3…2009之间的距离总和。

求当x为何值时,总和最小。

我们总结规律,共有奇数个数的时候,当x取中间那个数的时候,原式有最小值。

7题,同样总结规律,共有偶数个数的时候,当x取中间两个数之间的取值的时候,原式有最小值。

一定要借助数轴,计算距离之和。

题型二、已知绝对值,或者绝对值的和求x的取值。

我们根据绝对值的代数意义和几何意义,就可以得解。

①小题和②小题,根据绝对值代数意义,轻松得出,大多数同学都可以解。

③小题怎么办?在草稿本上画出数轴,先找到这两个绝对值和等于7的两个取值可能,再分类讨论,判定绝对值符号里,数的正负性,去掉绝对值符号,转化成一般形式的方程。

题型三、绝对值代数意义,求x的最小值。

考试常见。

最主要的,就是掌握一条,一个数的绝对值是非负数。

题型四、绝对值几何意义解不等式。

在草稿本上画出数轴,找出x的可能取值范围,然后再判定绝对值符号里的数的正负性,去掉绝对值,转化成一般的不等式。

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)◆ 题型一:已知不等式确定的解集,求参数值或者范围几种常见考法: ① {若我们计算的结果为a <x <b 而题中给的结果为1<x 2,因为不等(组)的解集是确定的,则{a =1b =2② {若我们计算到ax <a ,因为未知a 的正负,无法下一步运算而题中给的结果为x <1,根据不等式的性质,则a >0③ {若我们计算的结果为{x <bx <2而题中给的结果为x <2,根据不等式解集的取法,“同小取小”,则b ≥2④ {若我们计算的结果为{x <bx <2而题中给的结果为x <b ,根据不等式解集的取法,“同小取小”,则b ≤2⑤ {若我们计算的结果为{x >b x >2而题中给的结果为x >2,根据不等式解集的取法,“同大取大”,则b ≤2⑥ {若我们计算的结果为{x >b x >2而题中给的结果为x >b ,根据不等式解集的取法,“同大取大”,则b ≥21. (2022·河北·模拟预测)已知a 是自然数,如果关于x 的不等式(a -3) x >a -3的解集为x <1,那么a 的值为( )A .1,2B .1,2, 3C .0,1, 2D .2,3【答案】C【分析】根据不等式(a -3)x >a -3的解集为x <1,得a -3<0,即可求解. 【详解】解:∵(a -3)x >a -3,当不等式两边同时除以a -3,若a -3>0,不等式化为x >1, 若a -3<0,则不等式化为x <1, ∴a -3<0,即a <3,符合条件的自然数有0,1,2. 故选:C .【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键.2. (2022·四川成都·模拟预测)关于x 的不等式组{3x −1>4(x −1)x <m 的解集为3x <,那么m 的取值范围是( )A .m ≥3B .m >3C .m <3D .m =3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x <,即可求解. 【详解】解:{3x −1>4(x −1)①x <m ②,解不等式①得:3x <, ∵不等式组的解集为3x <, ∴m ≥3. 故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.1.(2022·重庆市第三十七中学校二模)若数a 既使得关于x 的不等式组{x−a 2+1≤x+a 3x −2a >6无解,又使得关于y的分式方程5y−2−a−y2−y =1的解不小于1,则满足条件的所有整数a 的和为( ) A .−4 B .−3 C .−2 D .−52.(2022·重庆·模拟预测)若关于x 的不等式组{3<0x −4>3(x −2)的解集为x <1,且关于x 的分式方程x+2x−1+m 1−x=3有非负整数解,则符合条件的m 的所有值的和是( )A .6B .8C .11D .143.(2022·重庆市开州区德阳初级中学模拟预测)若关于x 的一元一次不等式组{3x −2≥2(x +2)a −2x <−5的解集为x ≥6,且关于y 的分式方程y+2a y−1−8−3y 1−y=2的解是正整数,则所有满足条件的整数a 的个数是( )A .3B .4C .5D .64.(2022·河北·模拟预测)已知a是自然数,如果关于x的不等式(a-3) x>a-3的解集为x<1,那么a的值为() A.1,2 B.1,2,3 C.0,1,2 D.2,3【答案】C【分析】根据不等式(a-3)x>a-3的解集为x<1,得a-3<0,即可求解.【详解】解:∵(a-3)x>a-3,当不等式两边同时除以a-3,若a-3>0,不等式化为x>1,若a-3<0,则不等式化为x<1,∴a-3<0,即a<3,符合条件的自然数有0,1,2.故选:C.【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键. 5.(2022·山东德州·二模)已知不等式组{x2+3a ≤−22x +5>1的解集在数轴上表示如图所示,则a 的值为( )A .−56B .-1C .−13D .−166.(2022·广东·二模)已知不等式组{x +a ≥0x +b ≤0,的解集为2≤x ≤3,则(a −b)2022的值为( )A .1−B .2022C .1D .−2022【答案】C【分析】解不等式得出x≥-a ,x≤-b ,由不等式组的解集得出-b=3,-a=2,解之求得a 、b 的值,代入计算可得.【详解】解:由x+a≥0,得:x≥-a , 由x+b≤0,得:x≤-b , ∵解集是2≤x≤3, ∴-b=3,-a=2,解得:a=-2,b=-3,∴(a−b)2022=(−2+3)2022=1,故选:C.【点睛】本题考查了解一元一次不等式组,能求出不等式(或组)的解集是解此题的关键.7.(2022·四川成都·模拟预测)关于x的不等式组{3x−1>4(x−1)x<m的解集为3x<,那么m的取值范围是()A.m≥3B.m>3C.m<3D.m=3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x<,即可求解.【详解】解:{3x−1>4(x−1)①x<m②,解不等式①得:3x<,∵不等式组的解集为3x<,∴m≥3.故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.8.(2022·山东·日照市北京路中学二模)若关于x的不等式组{x+1<3x+124x−1≥3(a−x)的解集是x>1,关于y的分式方程ay−1=5y−8y−1−2的解为非负数,则所有符合条件的整数a的和为()A.-18 B.-15 C.0 D.2【答案】B【分析】根据不等式组的解集求出不等式的解集,确定a的取值范围,再根据分式方程的解是非负数确定a 的取值范围,注意排除增根的情况,最后两个a的取值范围合并,就可以算出所有整数a的和.【详解】解:x+1<3x+12,2x+2<3x+1,解得x>1,4x−1≥3(a−x),4x-1≥3a-3x,x≥3a+17,∵关于x 的不等式组的解集为x >1, ∴3a+17≤1,解得a≤2, 又∵ay−1=5y−8y−1−2的解为非负数,∴a=5y −8−2(y −1), ∴y=a+63≥0且y≠1,解得a≥-6且a≠-3,∴a 的取值范围为-6≤a≤2且a≠-3,符合条件的整数a 有:-6、-5、-4、-2、-1、0、1、2,所有的a 相加的和=(-6)+(-5)+(-4)+(-2)+(-1)+(0)+1+2 =-15. 故选:B .【点睛】本题考查含参的一元一次不等式组和含参的分式方程的解.注意含参的不等式的解法和增根的情况是解决本题的关键.9.(2020·河南·模拟预测)已知不等式组{2x −a <1x −4b >3的解集为﹣1<x <1,则(a +b )(b ﹣1)的值为_____.【点睛】本题考查不等式组的计算求解集,关键是和已知解集对应相等,求出a,b的值.10.(2022·甘肃武威·模拟预测)定义新运算“⊗”,规定:a⊗b=a−2b.若关于x的不等式x⊗m>3的解集为x>−1,则m的取值范围是________.【答案】m=-2【分析】根据定义的新运算得到x⊗m=x−2m>3,得x>3+2m,从而3+2m=-1,求得m的值.【详解】解:∵a⊗b=a−2b,∴x⊗m=x−2m,∵x⊗m>3,∴x−2m>3,∴x>2m+3,∵不等式x⊗m>3的解集为x>−1,∴2m+3=−1,∴m=-2,故答案为:m=-2.【点睛】本题考查了新定义运算在不等式的应用,解题的关键是准确理解新定义的运算.◆题型二:已知不等式的特殊解,求参数值或者范围若2<x<m恰有3个整数解,求m的取值范围。

解三角形取值范围常见题型

解三角形取值范围常见题型

解三角形取值范围常见题型三角形是几何学中常见的形状,它由三条边和三个角组成。

在解三角形问题中,我们经常遇到需要确定三角形角度和边长取值范围的题型。

本文将介绍一些常见的解三角形取值范围问题,并提供相应的解决方法。

1. 直角三角形取值范围直角三角形是一种特殊的三角形,其中一个角是直角(90度)。

在直角三角形中,两条边的长度关系遵循勾股定理,即较短的两条边的平方和等于最长边的平方。

因此,直角三角形的两个锐角的取值范围都是0到90度。

2. 锐角三角形取值范围锐角三角形是指三个角都是锐角(小于90度),没有直角和钝角。

在锐角三角形中,我们可以使用三角函数(正弦、余弦和正切)来确定角的取值范围。

假设三角形的三个角分别为A、B和C,对应的边长分别为a、b和c。

2.1. 三角形角度和为180度根据三角形的性质,三个角的和总是等于180度。

因此,锐角三角形的三个角度满足A + B + C = 180度。

2.2. 正弦函数的取值范围正弦函数(sin)表示三角形的某个角的对边与斜边的比值。

在锐角三角形中,正弦函数的取值范围为0到1之间(不包括0和1),即0 < sinA, sinB, sinC < 1。

2.3. 余弦函数的取值范围余弦函数(cos)表示三角形的某个角的邻边与斜边的比值。

在锐角三角形中,余弦函数的取值范围也是0到1之间(不包括0和1),即0 < cosA, cosB, cosC < 1。

2.4. 正切函数的取值范围正切函数(tan)表示三角形的某个角的对边与邻边的比值。

在锐角三角形中,正切函数的取值范围为0到无穷大(不包括0),即0 < tanA, tanB, tanC。

3. 钝角三角形取值范围钝角三角形是指三个角中有一个角是钝角(大于90度),没有直角和锐角。

在钝角三角形中,我们同样可以利用三角函数来确定角的取值范围。

3.1. 三角形角度和为180度与锐角三角形相同,钝角三角形的三个角度之和也等于180度。

八年级数学下册一次函数经典题型

八年级数学下册一次函数经典题型

八年级数学下册一次函数经典题型Revised on July 13, 2021 at 16:25 pm函数的定义1.下列各图给出了变量x与y之间的函数是:1x2+7;321+=xy;42-=xy.2.求下列函数中自变量x的取值范围:1y=-2x-5x2;3y=xx+3;336+=xxy;412-=xy.10.2009 黑龙江大兴安岭函数1-=xxy中;自变量x的取值范围是.1.下列函数中;自变量x的取值范围是x≥2的是A... D.求值求下列函数当x = 2时的函数值:1y = 2x-5 ;2y =-3x2;312-=xy;4xy-=2.22.12分一次函数y=kx+b的图象如图所示:1求出该一次函数的表达式;2当x=10时;y的值是多少3当y=12时;•x的值是多少3.一架雪橇沿一斜坡滑下;它在时间t秒滑下的距离s米由下式给出:s=10t+2t2.假如滑到坡底的时间为8秒;试问坡长为多少作图象例1画出函数y=x+1的图象.分析要画出一个函数的图象;关键是要画出图象上的一些点;为此;首先要取一些自变量的值;并求出对应的函数值.解取自变量x的一些值;例如x=-3;-2;-1;0;1;2;3 …;计算出对应的函数值.为表达方便;可列表如下:由这一系列的对应值;可以得到一系列的有序实数对:A B D…;-3;-2;-2;-1;-1;0;0;1;1;2;2;3;3;4;…在直角坐标系中;描出这些有序实数对坐标的对应点;如图所示.通常;用光滑曲线依次把这些点连起来;便可得到这个函数的图象;如图所示.这里画函数图象的方法;可以概括为列表、描点、连线三步;通常称为描点法.例2 画出函数x y 21=的图象. 分析 用描点法画函数图象的步骤:分为列表、描点、连线三步.解 列表:描点:用光滑曲线连线:1.在所给的直角坐标系中画出函数x y 21=的图象先填写下表;再描点、连线. 利用图像解决实际问题问题 王教授和孙子小强经常一起进行早锻炼;主要活动是爬山.有一天;小强让爷爷先上;然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离米与爬山所用时间分的关系从小强开始爬山时计时.问 图中有一个直角坐标系;它的横轴x 轴和纵轴y 轴各表示什么问 如图;线段上有一点P ;则P 的坐标是多少 表示的实际意义是什么看上面问题的图;回答下列问题:1小强让爷爷先上多少米2山顶离山脚的距离有多少米 谁先爬上山顶三、实践应用例1 王强在电脑上进行高尔夫球的模拟练习;在某处按函数关系式x x y 58512+-=击球;球正好进洞.其中;y m 是球的飞行高度;x m 是球飞出的水平距离.1试画出高尔夫球飞行的路线;2从图象上看;高尔夫球的最大飞行高度是多少 球的起点与洞之间的距离是多少 解 1列表如下:在直角坐标系中;描点、连线;便可得到这个函数的大致图象.2高尔夫球的最大飞行高度是3.2 m;球的起点与洞之间的距离是8 m .例2 小明从家里出发;外出散步;到一个公共阅报栏前看了一会报后;继续散步了一段时间;然后回家.下面的图描述了小明在散步过程中离家的距离s 米与散步所用时间t 分之间的函数关系.请你由图具体说明小明散步的情况.解 小明先走了约3分钟;到达离家250米处的一个阅报栏前看了5分钟报;又向前走了2分钟;到达离家450米处返回;走了6分钟到家.2.一枝蜡烛长20厘米;点燃后每小时燃烧掉5厘米;则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h 厘米与点燃时间t 之间的函数关系的是 .正比例函数和待定系数法特别地;当b =0时;一次函数y =kx 常数k ≠0出叫正比例函数正比例函数也是一次函数;它是一次函数的特例.一次函数y=kx+bk ≠0三、实践应用例1 下列函数关系中;哪些属于一次函数;其中哪些又属于正比例函数1面积为10cm 2的三角形的底a cm 与这边上的高h cm ;2长为8cm 的平行四边形的周长L cm 与宽b cm ;3食堂原有煤120吨;每天要用去5吨;x 天后还剩下煤y 吨;4汽车每小时行40千米;行驶的路程s 千米和时间t 小时.例2 已知函数y =k -2x +2k +1;若它是正比例函数;求k 的值.若它是一次函数;求k 的值.例3 已知y+2与x -3成正比例;当x =4时;y =3.1写出y 与x 之间的函数关系式;2y 与x 之间是什么函数关系;3求x =2.5时;y 的值.22. 8分 已知y=y 1+y 2;y 1与x 成正比例;y 2与x-1成正比例;且x=3时y=4;x=•1时y=2;求y 与x 之间的函数关系式;并在直角坐标系中画出这个函数的图象.一次函数、正比例函数以及它们的关系:函数的解析式都是用自变量的一次整式表示的;我们称它们为一次函数一次函数通常可以表示为y =kx +b 的形式;其中k 、b 是常数;k ≠0.特别地;当b =0时;一次函数y =kx 常数k ≠0出叫正比例函数direct proportional function .正比例函数也是一次函数;它是一次函数的特例.正比例图象快速作图直线的平移请同学们在同一平面直角坐标系中画出下列函数的图象.1y =-x 、y =-x +1与y =-x -2;2y =2x 、y =2x +1与y =2x -2.例2 直线521,321--=+-=x y x y 分别是由直线x y 21-=经过怎样的移动得到的. 例3 说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 五、检测反馈2.1将直线y =3x 向下平移2个单位;得到直线 ;2将直线y =-x -5向上平移5个单位;得到直线 ;3将直线y =-2x +3向下平移5个单位;得到直线 .3.函数y =kx -4的图象平行于直线y =-2x ;求函数的表达式.4.一次函数y =kx +b 的图象与y 轴交于点0;-2;且与直线213-=x y 平行;求它的函数表达式.1.一次函数y =kx +b ;当x =0时;y =b ;当y =0时;kb x -=.所以直线y =kx +b 与y 轴的交点坐标是0;b ;与x 轴的交点坐标是⎪⎭⎫ ⎝⎛-0,k b ; 3.已知函数y =2x -4.1作出它的图象;2标出图象与x 轴、y 轴的交点坐标;3由图象观察;当-2≤x ≤4时;函数值y 的变化范围.4.一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24;求b .图像位置与k;b 的关系和单调性2.在同一直角坐标系中;画出函数132+=x y 和y =3x -2的图象. 问 在你所画的一次函数图象中;直线经过几个象限.一次函数y =kx +b 有下列性质:1当k >0时;y 随x 的增大而增大;这时函数的图象从左到右上升;2当k <0时;y 随x 的增大而减小;这时函数的图象从左到右下降.特别地;当b =0时;正比例函数也有上述性质.当b >0;直线与y 轴交于正半轴;当b <0时;直线与y 轴交于正半轴.下面;我们把一次函数中k 与b 的正、负与它的图象经过的象限归纳列表为: 三、实践应用例1 已知一次函数y =2m -1x +m +5;当m 是什么数时;函数值y 随x 的增大而减小 例2 已知一次函数y =1-2mx +m -1;若函数y 随x 的增大而减小;并且函数的图象经过二、三、四象限;求m 的取值范围. 例3 已知一次函数y =3m -8x +1-m 图象与y 轴交点在x 轴下方;且y 随x 的增大而减小;其中m 为整数.1求m 的值;2当x 取何值时;0<y <41.已知点M1;a 和点N2;b 是一次函数y=﹣2x+1图象上的两点;则a 与b 的大小关系是A .a >bB .a=bC .a <bD .以上都不对6.已知正比例函数y=kxk <0的图象上两点Ax 1;y 1、Bx 2;y 2;且x 1<x 2;则下列不等式中恒成立的是A .y 1+y 2>0B .y 1+y 2<0C .y 1﹣y 2>0D .y 1﹣y 2<0 9.已知直线y=kx+b 不经过第三象限则下列结论正确的是A .k >0; b >0;B .k <0; b >0;C .k <0; b <0;D .k <0; b ≥0;10. 已知一次函数y=kx+b;y 随着x 的增大而减小;且kb<0;则在直角坐标系内它的大致图象是A B CA .B .C .D .一次函数快速作图待定系数法k 、b 的符号 k >0b >0 k >0 b <0 k <0 b >0 k <0b <0图像的大致位置 经过象限 第 象限 第 象限 第 象限 第 象限 性质 y 随x 的增大 而 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而问题1 已知一个一次函数当自变量x =-2时;函数值y =-1;当x =3时;y =-3.能否写出这个一次函数的解析式呢问题2 已知弹簧的长度y 厘米在一定的限度内是所挂物质量x 千克的一次函数.现已测得不挂重物时弹簧的长度是6厘米;挂4千克质量的重物时;弹簧的长度是7.2厘米;求这个一次函数的关系式.考虑 这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时;弹簧的长度7.2厘米;与一次函数关系式中的两个x 、y 有什么关系问题3 若一次函数y =mx -m -2过点0;3;求m 的值三、实践应用例1 已知一次函数y =kx +b 的图象经过点-1;1和点1;-5;求当x =5时;函数y 的值. 例2 已知一次函数的图象如下图;写出它的关系式.求交点坐标例3 求直线y =2x 和y =x +3的交点坐标.例4 已知两条直线y 1=2x -3和y 2=5-x .1在同一坐标系内作出它们的图象;2求出它们的交点A 坐标;3求出这两条直线与x 轴围成的三角形ABC 的面积;4k 为何值时;直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限.解 12⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭⎫ ⎝⎛37,38. 3当y 1=0时;x =23所以直线y 1=2x -3与x 轴的交点坐标为B 23;0;当y 2=0时;x =5;所以直线y 2=5-x 与x 轴的交点坐标为C 5;0.过点A 作AE ⊥x 轴于点E ;则124937272121=⨯⨯=⨯=∆AE BC S ABC . 4两个解析式组成的方程组为⎩⎨⎧+=+=+.32,4512y x k y x k 解这个关于x 、y 的方程组;得⎪⎪⎩⎪⎪⎨⎧-=+=.72,732k y k x 由于交点在第四象限;所以x >0;y <0.即⎪⎪⎩⎪⎪⎨⎧<->+.072,0732k k 解得223<<-k . 14.若解方程x+2=3x-2得x=2;则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点m;8;则a+b=_________.1、已知直线m 经过两点1;6、-3;-2;它和x 轴、y 轴的交点式B 、A;直线n 过点2;-2;且与y 轴交点的纵坐标是-3;它和x 轴、y 轴的交点是D 、C ;(1) 分别写出两条直线解析式;并画草图;(2) 计算四边形ABCD 的面积; (3) 若直线AB 与DC 交于点E;求△BCE 的面积..2.直线232-=x y 分别交x 轴、y 轴于A 、B 两点;O 是原点.1求△AOB 的面积; 2过△AOB 的顶点能不能画出直线把△AOB 分成面积相等的两部分 如能;可以画出几条 写出这样的直线所对应的函数关系式.2、如图;A 、B 分别是x 轴上位于原点左右两侧的点;点P2;p 在第一象限;直线PA 交y 轴于点C0;2;直线PB 交y 轴于点D;△AOP 的面积为6; (1) 求△COP 的面积; (2) 求点A 的坐标及p 的值;(3) 若△BOP 与△DOP 的面积相等;求直线BD 的函数解析式..4.一次函数y =kx +bk ≠0的图象经过点3;3和1;-1.求它的函数关系式;并画出图象.5.陈华暑假去某地旅游;导游要大家上山时多带一件衣服;并介绍当地山区海拔每增加100米;气温下降0.6℃.陈华在山脚下看了一下随带的温度计;气温为34℃;乘缆车到山顶发现温度为32.2℃.求山高. 一次函数与方程、方程组和不等式问题 画出函数y =323+x 的图象;根据图象;指出: 1 x 取什么值时;函数值 y 等于零2 x 取什么值时;函数值 y 始终大于零例1 画出函数y =-x -2的图象;根据图象;指出:1 x 取什么值时;函数值 y 等于零2 x 取什么值时;函数值 y 始终大于零解 过-2;0;0;-2作直线;如图.例2.已知直线y=x-3与y=2x+2的交点为-5;-8;则方程组30220x y x y --=⎧⎨-+=⎩的解是________.例3 利用图象解不等式12x -5>-x +1;2 2x -5<-x +1.解 设y 1=2x -5;y 2=-x +1;在直角坐标系中画出这两条直线;如下图所示.两条直线的交点坐标是2; -1 ;由图可知:12x -5>-x +1的解集是y 1>y 2时x 的取值范围;为x >-2;22x -5<-x +1的解集是y 1<y 2时x 的取值范围;为x <-2.13.一次函数y 1=kx+b 与y 2=x+a 的图象如图;则kx+b >x+a 的解集是 _________ .9.如图;已知函数y=2x+b 与函数y=kx ﹣3的图象交于点P;则不等式kx ﹣3>2x+b 的解集是 _________ .12.如图;直线y=kx+b 过A ﹣1;2、B ﹣2;0两点;则0≤kx+b≤﹣2x 的解集为 _________ . 实际应用23.12分一农民带了若干千克自产的土豆进城出售;为了方便;他带了一些零钱备用;按市场价售出一些后;又降价出售.售出土豆千克数与他手中持有的钱数含备用零钱的关系如图所示;结合图象回答下列问题:1农民自带的零钱是多少2降价前他每千克土豆出售的价格是多少3降价后他按每千克0.4元将剩余土豆售完;这时他手中的钱含备用零钱是26元;问他一共带了多少千克土豆问题 学校有一批复印任务;原来由甲复印社承接;按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费;则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:1乙复印社的每月承包费是多少2当每月复印多少页时;两复印社实际收费相同3如果每月复印页数在1200页左右;那么应选择哪个复印社实践应用例1 小张准备将平时的零用钱节约一些储存起来.他已存有50元;从现在起每个月节存12元.小张的同学小王以前没有存过零用钱;听到小张在存零用钱;表示从小张存款当月起每个月存18元;争取超过小张.请你写出小张和小王存款和月份之间的函数关系;并计算半年以后小王的存款是多少;能否超过小张 至少几个月后小王的存款能超过小张解 设小张存x 个月的存款是y 1元;小王的存x 个月的存款是y 2元;则y 1=50+12x ;y 2=18x ;当x =6时;y 1=50+12×6=122元; y 2=18×6=108元.所以半年后小王的存款不能超过小张.由y 2>y 1;即18x > 50+12x ;得x >318; 所以9个月后;小王的存款能超过小张.思考:①求⎩⎨⎧=+=.18,1250x y x y 的解.②观察两直线交点坐标与这个方程组的解有什么关系.例3 下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象分别是正比例函数图象和一次函数图象.根据图象解答下列问题: 1请分别求出表示轮船和快艇行驶过程的函数解析式不要求写出自变量的取值范围;2轮船和快艇在途中不包括起点和终点行驶的速度分别是多少3问快艇出发多长时间赶上轮船解 1设表示轮船行驶过程的函数解析式为y =kxk ≠0;由图象知:当x =8时;y =160.代入上式;得8k =160;可解得k =20.所以轮船行驶过程的函数解析式为y =20x .设表示快艇行驶过程的函数解析式为y =ax +ba ≠0;由图象知:当x =2时;y =0;当x =6时;y =160.代入上式;得⎩⎨⎧=+=+.1606,02b a b a 可解得⎩⎨⎧-==.,8040b a 所以快艇行驶过程的函数解析式为y =40x -80.2由图象可知;轮船在8小时内行驶了160千米;快艇在4小时内行驶了160千米;所以轮船的速度是208160=千米/时;快艇的速度是404160=千米/时. 3设轮船出发x 小时快艇赶上轮船;20x =40x -80得x =4;x -2=2.答 快艇出发了2小时赶上轮船.3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元;且都表示对学生优惠.甲旅行社表示: 全部8折收费;乙旅行社表示: 若人数不超过30人则按9折收费;超过30人按7折收费.1设学生人数为x ;甲、乙两旅行社实际收取总费用为y 1、y 2元;试分别列出y 1、y 2与x 的函数关系式y 2应分别就人数是否超过30两种情况列出;2讨论应选择哪家旅行社较优惠;3试在同一直角坐标系内画出1题两个函数的图象;并根据图象解释题2题讨论的结果.7.汽车开始行驶时;油箱内有油40升;如果每小时耗油5升;则油箱内余油量y 升与行驶时间t 时的函数关系用图象表示应为下图中的4.药品研究所开发一种抗菌新药.经多年动物实验;首次用于临床人体试验.测得成人服药后血液中药物浓度y 微克/毫升与服药后时间x 时之间的函数关系如下图.请你根据图象:1说出服药后多少时间血液中药物浓度最高2分别求出血液中药物浓度上升和下降阶段y 与x 的函数关系式.例5 某军加油飞机接到命令;立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中;设运输飞机的油箱余油量为Q 1吨;加油飞机的加油油箱的余油量为Q 2吨;加油时间为t 分钟;Q 1、Q 2与t 之间的函数图象如图所示;结合图象回答下列问题:1加油飞机的加油油箱中装载了多少吨油 将这些油全部加给运输飞机需要多少分钟 2求加油过程中;运输飞机的余油量Q 1吨与时间t 分钟的函数关系式;3求运输飞机加完油后;以原速继续飞行;需10小时到达目的地;油料是否够用 说明理由. 解 1由图象知;加油飞机的加油油箱中装载了30吨油;全部加给运输飞机需10分钟. 2设Q 1=kt +b ;把0;40和10;69代入;得解得⎩⎨⎧==.40,9.2b k 所以Q 1=2.9t +400≤t ≤10.3根据图象可知运输飞机的耗油量为每分钟0.1吨.所以10小时耗油量为:10×60×0.1=60吨<69吨;所以油料够用.一次函数与方案设计问题一次函数是最基本的函数;它与一次方程、一次不等式有密切联系;在实际生活中有广泛的应用..例如;利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策..近几年来一些省市的中考或竞赛试题中出现了这方面的应用题;这些试题新颖灵活;具有较强的时代气息和很强的选拔功能..1.生产方案的设计例1 某工厂现有甲种原料360千克;乙种原料290千克;计划利用这两种原料生产A 、B 两种产品;共50件..已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克;可获利润700元;生产一件B 种产品;需用甲种原料4千克、乙种原料10千克;可获利润1200元..1要求安排A 、B 两种产品的生产件数;有哪几种方案 请你设计出来;2生产A 、B 两种产品获总利润是y 元;其中一种的生产件数是x;试写出y 与x 之间的函数关系式;并利用函数的性质说明1中的哪种生产方案获总利润最大最大利润是多少98年河北解 1设安排生产A种产品x件;则生产B种产品是50-x件..由题意得解不等式组得 30≤x≤32..因为x是整数;所以x只取30、31、32;相应的50-x的值是20、19、18..所以;生产的方案有三种;即第一种生产方案:生产A种产品30件;B种产品20件;第二种生产方案:生产A种产品31件;B种产品19件;第三种生产方案:生产A种产品32件;B种产品18件..2设生产A种产品的件数是x;则生产B种产品的件数是50-x..由题意得y=700x+120050-x=-500x+6000..其中x只能取30;31;32..因为 -500<0; 所以此一次函数y随x的增大而减小;所以当x=30时;y的值最大..因此;按第一种生产方案安排生产;获总利润最大;最大利润是:-500·3+6000=4500元..本题是利用不等式组的知识;得到几种生产方案的设计;再利用一次函数性质得出最佳设计方案问题..2.调运方案设计例2北京某厂和上海某厂同时制成电子计算机若干台;北京厂可支援外地10台;上海厂可支援外地4台;现在决定给重庆8台;汉口6台..如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台;从上海运往汉口、重庆的运费分别是3百元/台、5百元/台..求:1若总运费为8400元;上海运往汉口应是多少台2若要求总运费不超过8200元;共有几种调运方案3求出总运费最低的调运方案;最低总运费是多少元解 设上海厂运往汉口x 台;那么上海运往重庆有4-x 台;北京厂运往汉口6-x 台;北京厂运往重庆4+x 台;则总运费W 关于x 的一次函数关系式:W=3x+46-x+54-x+84+x=76+2x..1 当W=84百元时;则有76+2x=84;解得x=4..若总运费为8400元;上海厂应运往汉口4台..2 当W ≤82元;则⎩⎨⎧≤+≤≤8227640x x 解得0≤x ≤3;因为x 只能取整数;所以x 只有四种可的能值:0、1、2、3..答:若要求总运费不超过8200元;共有4种调运方案..3 因为一次函数W=76+2x 随着x 的增大而增大;又因为0≤x ≤3;所以当x=0时;函数W=76+2x 有最小值;最小值是W=76百元;即最低总运费是7600元..此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台;运往重庆4台..本题运用了函数思想得出了总运费W 与变量x 的一般关系;再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题..并求出了最低运费价..3. 营方案的设计例11杨嫂在再就业中心的支持下;创办了“润扬”报刊零售点;对经营的某种晚报;杨嫂提供了如下信息.①买进每份0.2元;卖出每份0.3元;②一个月以30天计内;有20天每天可以卖出200份;其余10天每天只能卖出120份.③一个月内;每天从报社买进的报纸份数必须相同;当天卖不掉的报纸;以每份0.1元退回给报社.1填表:2x之间的函数关系式;并求月利润的最大值.4.优惠方案的设计例4某校校长暑假将带领该校市级“三好生”去北京旅游..甲旅行社说:“如果校长买全票一张;则其余学生可享受半价优待..”乙旅行社说:“包括校长在内;全部按全票价的6折即按全票价的60%收费优惠..”若全票价为240元..1设学生数为x;甲旅行社收费为y;乙旅行社收费为y;分别计算两家旅行社的收费建立表达式;2当学生数是多少时;两家旅行社的收费一样;3就学生数x讨论哪家旅行社更优惠..解 1y=120x+240; y=240·60%x+1=144x+144..2根据题意;得120x+240=144x+144; 解得 x=4..答:当学生人数为4人时;两家旅行社的收费一样多..3当y>y;120x+240>144x+144; 解得 x<4..当y<y;120x+240<144x+144; 解得 x>4..答:当学生人数少于4人时;乙旅行社更优惠;当学生人数多于4人时;甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识;解决了优惠方案的设计问题..综上所述;利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题;如果学生能切实理解和掌握这方面的知识与应用;对解决方案问题的数学题是很有效的..练习1.某童装厂现有甲种布料38米;乙种布料26米;现计划用这两种布料生产L 、M 两种型号的童装共50套;已知做一套L 型号的童装需用甲种布料0.5米;乙种布料1米;可获利45元;做一套M 型号的童装需用甲种布料0.9米;乙种布料0.2米;可获利润30元..设生产L 型号的童装套数为x;用这批布料生产这两种型号的童装所获利润为y 元..1写出y 元关于x 套的函数解析式;并求出自变量x 的取值范围;2该厂在生产这批童装中;当L 型号的童装为多少套时;能使该厂所获的利润最大 最大利润为多少2.A 城有化肥200吨;B 城有化肥300吨;现要把化肥运往C 、D 两农村;如果从A 城运往C 、D 两地运费分别是20元/吨与25元/吨;从B 城运往C 、D 两地运费分别是15元/吨与22元/吨;现已知C 地需要220吨;D 地需要280吨;如果个体户承包了这项运输任务;请帮他算一算;怎样调运花钱最小24.9分 A 市和B 市分别库存某种机器12台和6台;现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.1设B 市运往C 市机器x 台;•求总运费Y 元关于x 的函数关系式.2若要求总运费不超过9000元;问共有几种调运方案3求出总运费最低的调运方案;最低运费是多少例4 某公司到果园基地购买某种优质水果;慰问医务工作者.果园基地对购买量在3000千克以上含3000千克的有两种销售方案;甲方案:每千克9元;由基地送货上门;乙方案:每千克8元;由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.1分别写出该公司两种购买方案的付款y 元与所买的水果量x 千克之间的函数关系式;并写出自变量x 的取值范围.2当购买量在什么范围时;选择哪种购买方案付款最少 并说明理由.解 1)3000(9 x x y =甲;.=xx)+y30008≥(5000乙18. 下面有两处移动电话计费方式全球通神州行月租费50元/月0本地通话0.40元/分0.60元/分你知道如何选择计费方式更省钱吗4.有批货物;若年初出售可获利2000元;然后将本利一起存入银行..银行利息为10%;若年末出售;可获利2620元;但要支付120元仓库保管费;问这批货物是年初还是年末出售为好10. 如图;在边长为2的正方形ABCD的一边BC上;一点P从B点运动到C点;设BP=x;四边形APCD的面积为y.⑴写出y与x之间的函数关系式及x的取值范围;⑵说明是否存在点P;使四边形APCD的面积为1.52.宁夏回族自治区已知:等边三角形的边长为4厘米;长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动运动开始时;点与点重合;点到达点时运动终止;过点分别作边的垂线;与的其它边交于两点;线段运动的时间为秒.1线段在运动的过程中;为何值时;四边形恰为矩形并求出该矩形的面积;2线段在运动的过程中;四边形的面积为;运动的时间为.求四边形的面积随运动时间变化的函数关系式;并写出自变量的取值范围.6、金华如图1;在平面直角坐标系中;已知点;点在正半轴上;且.动点在线段上从点向点以每秒个单位的速度运动;设运动时间为秒.在轴上取两点作等边.1求直线的解析式;2求等边的边长用的代数式表示;并求出当等边的顶点运动到与原点重合时的值;2. 如右图;在矩形ABCD中;AB=20cm;BC=4cm;点P从A开始沿折线A—B—C—D以4cm/s的速度运动;点Q从C开始沿CD边1cm/s的速度移动;如果点P、Q分别从A、C同时出发;当其中一点到达点D时;另一点也随之停止运动;设运动时间为ts;t为何值时;四边形APQD也为矩形。

初二函数自变量的取值范围方法和经典题型

初二函数自变量的取值范围方法和经典题型

班级_______ 姓名______ 耀华学号______ 分数___________中考宝典之----确定函数自变量的取值范围的秘诀:(1)关系式为整式时,自变量的取值范围为全体实数;如:27y x =- 中,x 可以取任意实数(2)关系式分母含有变量时,整个分母不等于零;如:y =中,分母含有变量x ,分母为 1x + ,故分母10x +≠(3)关系式含有二次根式时,被开放方数大于等于零;中,被开方数为 21x -,则 210x -≥(4)关系式中含有指数为零的式子时,底数不等于零;即:()010a a =≠,如:()01y x =+ ,底数为1x + ,则 10x +≠ (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

如:某汽车的油箱内装有200 升的油,行驶时每百公里耗油10升,设行使的里程为 x (百公里),则油箱中所剩下的油 y (升)与 x 之间的函数关系式是:20010y x =-,则自变量 x 的范围是 020x ≤≤我一定都能过关!1、(2009·哈尔滨中考)函数y =22x x -+的自变量x 的取值范围是 . 2、(2010黑龙江哈尔滨)函数21-+=x x y 的自变量的取值范围是 。

3、(2010江苏苏州)函数11y x =-的自变量x 的取值范围是( ) A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1 4、(2009·桂林中考)在函数y =x 的取值范围是 .5、函数x x y 中自变量1-=的取值范围是 ,当2=x 时,函数值y= .6、(2010·威海中考)在函数x y -=3中,自变量x 的取值范围是 .7、(2010湖南常德)函数y =x 的取值范围是 .8、函数y =x 的取值范围是___________.9、(2010广东湛江)函数1-=x y 的自变量x 的取值范围是( )A.1≥xB. 1-≥xC. 1-≤xD. 1≤x10、(2009·牡丹江中考)函数12y x =-中,自变量x 的取值范围是 . 11、函数y=11+x 中自变量x 的取值范围是____________.12、函数中,自变量的取值范围应是( )、 、 、 、13、在函数3y x =-中,自变量x 的取值范围是 。

人教版初中数学求一次函数自变量取值范围的基本方法

人教版初中数学求一次函数自变量取值范围的基本方法

求一次函数自变量取值范围的基本方法
一次函数自变量取值范围的问题相对复杂一些,题型多、解法活、难度大,本文将求一次函数自变量取值范围的基本策略呈现于后,供大家参考。

一.图像法
例1.已知函数的图像如图1所示,则x的取值范围是()
A.一切实数
B.
C. D.
图1
解析:仔细观察图像,就会发现正确答案是D。

二.单调性法
例2.已知函数的函数值范围是。

求该函数自变量x的取值范围。

解析:当时,由得;
当时,
对于函数,y随x的增大而增大
即自变量x的取值范围是。

三.极限位置法
例3.已知:如图2,在中,,D、E分别是AB、AC边上的动点,在运动过程中,始终保持,设,求y与x之间的函数关系式,并求自变量的取值范围。

图2
解析:在中,
,即
所以y与x之间的函数关系式为。

当D与B重合时,CE最小,此时。

则,即,

当时,
自变量的取值范围是。

四.生活经验法
例4.拖拉机开始工作时,油箱中有油40升,如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式,并写出自变量取值范围。

解析:由题意得
油箱中的油最多是40升,同时拖拉机工作需要燃油提供能量,所以,即自变量t 应满足,解得。

需要补充说明的是,在求一次函数解析式时,有的题目本身没有提出求自变量取值范围的要求,解题时我们最好还是把自变量的取值范围写出来,因为离开自变量的取值范围,函数就失去存在的依据了。

数学求取值范围技巧

数学求取值范围技巧

数学求取值范围技巧
求取值范围的题型是数学中常见的一类问题,通常在初中阶段的数学课程中出现。

这类问题通常需要根据给定的条件,确定变量的取值范围,进而求得问题的答案。

在求解取值范围问题时,需要注意以下几点:
1. 读懂问题:在解决问题之前,首先要仔细阅读问题,理解问题中所涉及的概念和条件,明确问题的要求。

2. 找对关键词:在问题中,通常会有一些关键词,如“最大”、“最小”、“最高”、“最低”等,这些关键词可以帮助我们确定变量的取值范围。

3. 画图辅助:对于一些比较复杂的问题,可以通过画图来辅助理解,从而更好地确定变量的取值范围。

4. 利用公式:在一些问题中,可以利用已知的公式来确定变量的取值范围。

例如,当函数 y=ax+b 的导数为零时,可以得到 a=0,从而确定 y 的取值范围。

5. 分类讨论:对于一些比较复杂的问题,需要进行分类讨论,从而确定变量的取值范围。

例如,当一个问题涉及多个变量时,需要分别考虑各变量的取值情况,进而确定答案。

在初中阶段,求取值范围的题型主要有填空题、选择题和计算题等。

在求解此类问题时,需要掌握一些基本的技巧和方法,如画图、分类讨论、化简和代入等。

通过不断的练习,可以提高自己的解题能力和水平。

自变量的取值范围

自变量的取值范围

函数自变量的取值范围青海省互助县红崖子沟下寨学校星小龙初三数学学习函数时,就遇到了求函数的自变量的取值范围,其实,取值范围并非只有在函数中出现,在各种运算和代数式中都有讨论字母的取值范围的题型。

但只要掌握了函数的自变量的取值范围,各种类型的题都能按照这种方法去解决。

现将初中阶段出现的自变量的取值范围归纳如下,供参考。

一:用整式或奇次根式表示的函数式,其自变量的取值范围是全体实数。

例1:求下列函数的自变量的取值范围。

1. y=2x+82. y=4x2-3x-53. y=3324+x解: 1 根据题意x取任意实数时,都能使2x+8有意义,所以自变量x的取值范围是全体实数。

2 根据题意x取任意实数时,都能使4x2-3x-5有意义,所以自变量x的取值范围是全体实数。

3根据题意x取任意实数时,都能使332+x有意义,所以自变量x的取值范围是全体实数。

二: 用偶次根式表示的函数式,其自变量的取值范围是被开方数为非负数(被开方数≥0)。

例2:求函数y =x 63-的自变量的取值范围。

解: 根据题意有3-6x ≥0解这个不等式得x ≤21 所以自变量的取值范围x ≤21。

例3:x ________时 ,126+x 有意义。

解: 根据题意有6x+12≥0解这个不等式得x ≥-2因此可添≥-2 三:用分式表示的函数式,其自变量的取值范围是分母不为零的实数(分母≠0)。

例4:求函数y =1053-+x x 的自变量的取值范围。

解: 根据题意有0105≠-x ① 03≥+x ②由①得x ≠2 由②得 3-≥x所以自变量的取值范围是3-≥x 且x ≠2四:当偶次根式在分母上时,其自变量的取值范围是被开方数为正数(被开方数>0)。

例5求函数y =9332-+x x 的自变量的取值范围:解: 根据题意有93-x >0解这个不等式得x >3所以自变量的取值范围是x >3常用对数的系统记忆星小龙常用对数一章是对数这一领域中的基础知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中求取值范围的题型
初中数学中涉及到求取值范围的题型有很多种,涵盖了代数、几何、函数等多个方面。

接下来,我们将逐个介绍其中的一些常见题型。

一、代数方面的求取值范围题型
1. 绝对值的求取值范围
对于一个绝对值表达式,我们常常需要求出其取值范围。

例如,对于一个绝对值不等式 |x - 2| ≤ 5,我们需要求解出 x 的取值范围。

解题思路:根据绝对值的定义,我们可以将不等式分为两种情况进行讨论:当 x - 2 ≥ 0 时,即x ≥ 2 时,绝对值不起作用,此时不等式化为 x - 2 ≤ 5,解得x ≤ 7;当 x - 2 < 0 时,即 x < 2 时,绝对值前面需要取相反数,即 2 - x ≤ 5,解得x ≥ -3。

因此,综合两种情况,可以得出 x 的取值范围为 -3 ≤ x ≤ 7。

2. 一元二次方程的求取值范围
对于一元二次方程ax² + bx + c = 0,我们经常需要求出 x 的取值范围。

解题思路:如果该方程的系数 a > 0,则可以直接通过求解方程的根得到 x 的取值范围。

如果该方程的系数 a < 0,则可以利用完全平方公式将方程转化为 a(x - h)² + k = 0 的形式,再求解出 x 的取值范围。

需要注意的是,
当 a = 0 时,方程退化为一次方程,取值范围可以直接确定。

二、几何方面的求取值范围题型
1. 直线与圆的求交点个数
给定一个圆和一条直线,我们常常需要求出这两者的交点个数。

解题思路:如果直线与圆相离,交点个数为 0;如果直线切线与圆相切,交点个数为 1;如果直线与圆相交于两个不同的点,交点个数为 2。

2. 三角形顶点位置的确定
给定一个三角形的三个顶点坐标,我们常常需要求出这三个顶点的位置关系。

解题思路:根据坐标系中的三角形顶点的位置关系,我们可以用向量、坐标、斜率等多种方法求解出这三个顶点的位置关系。

例如,若三个点坐标分别为 A(x1, y1)、B(x2, y2)、C(x3, y3),我们可以通过计算三个点之间的距离来判断三角形的类型(等腰三角形、直角三角形、锐角三角形、钝角三角形等),从而确定这三个顶点的位置关系。

三、函数方面的求取值范围题型
1. 函数定义域的确定
对于一个给定的函数,我们常常需要确定其定义域,即函数能够取值的范围。

解题思路:对于一个函数 f(x),我们需要找出使得
f(x) 有意义的 x 的取值范围。

例如,对于分式函数 f(x) = 1/(x + 2),由于分母不能为零,所以x ≠ -2,因此 x 的取值范围为x ≠ -2。

2. 函数值域的确定
对于一个给定的函数,我们常常需要确定其值域,即函数可以取到的值的范围。

解题思路:对于一个函数 f(x),我们需要找出使得
f(x) 可以取到的值的范围。

例如,对于二次函数 f(x) = x²,由于x² ≥ 0,所以 f(x) 的值域为y ≥ 0。

综上所述,初中数学中的求取值范围的题型涵盖了代数、几何、函数等多个方面。

通过熟练掌握不同题型的解题思路,我们可以更好地理解数学知识,并提高解题的能力。

因此,在学习初中数学时,我们应该注重对这些题型的掌握和练习,以提高自己的数学水平。

相关文档
最新文档