小学数学简便运算和巧算

合集下载

小学三年级数学速算巧算简便运算指导

小学三年级数学速算巧算简便运算指导

速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如: 87655→12345, 46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。

例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。

如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例 3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。

例4① 4723-(723+189)② 2356-159-256解:①式=4723-723-189②式=2356-256-159=2100-159=19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

三年级上册数学速算与巧算

三年级上册数学速算与巧算

三年级上册数学速算与巧算三年级上册数学速算与巧算一、加法中的巧算1.什么叫“补数”?补数”是指两个数相加,若能恰好凑成整十、整百、整千、整万等,就把其中的一个数叫做另一个数的“补数”。

例如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10.另外,对于一个较大的数,可以通过“凑数”的方法来快速计算出它的“补数”,即从最高位凑起,使各位数字相加得9,到最后个位数字相加得10.2.互补数先加。

利用“补数”巧算加法,通常称为“凑整法”。

其中一种方法是先将互为“补数”的数先加起来。

例如:36+87+64,99+136+101,1361+972+639+28.3.拆出补数来先加。

另一种方法是拆出补数,先加补数,再加剩下的数。

例如:188+873,548+996,9889+203.4.竖式运算中互补数先加。

在竖式运算中,也可以先将互为“补数”的数先加起来。

二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例如:300-73-27,1000-90-80-20-10.2.先减去那些与被减数有相同尾数的减数。

例如:4723-(723+189),2356-159-256.3.利用“补数”把接近整十、整百、整千等的数先变整,再运算(注意要将多加的数再减去,将多减的数再加上)。

例如:506-397,323-189,467+997,987-178-222-390.三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”。

例如:100+(10+20+30),100-(10+20+30),100-(30-10)。

2.计算加减混合式的算式。

例如:100+10+20+30,100-10-20-30.2.合并同类项的法则在一个算式中,如果有几个数或变量的指数相同,那么它们就是同类项,可以合并。

小学数学常用的巧算和速算方法集锦

小学数学常用的巧算和速算方法集锦
(三)拆数凑整法
根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。例:998+1413+9989,给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和,按照拆数凑整法,原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400。
第二部分例题解析
一、“凑整”先算1.计算:
(1)24+44+56
(2)53+36+47
解:(1)24+44+56=24+(44+56)=24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.
(2)53+36+47=53+47+36=(53+47)+36=100+36=136
=9×5中间数是9
=45共有5个数 (5)计算:4+8+12+16+20
=12×5中间数是12
=60共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算:1+2+3+4+5+6+7+8+9+10
=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。 例4①4723-(723+189)②2356-159-256

小升初数学简便运算例解

小升初数学简便运算例解

在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”; 19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

六年级奥数简便运算

六年级奥数简便运算

六年级奥数简便运算六年级奥数是小学生们参加的一项数学竞赛,其中的运算题目是考察他们计算速度和思维能力的重要环节。

在奥数竞赛中,掌握一些简便运算方法可以帮助小学生们更快地解题,提高竞赛成绩。

一、快速计算乘法在六年级奥数中,乘法是一个经常出现的运算题型。

为了提高解题速度,我们可以运用一些简便的乘法方法。

下面是一些常用的快速计算乘法的技巧。

1. 乘法的交换律:a × b = b × a。

利用这个性质,我们可以调整乘法的顺序,选择较简单的计算方式。

例如,计算8 × 6,可以交换顺序为6 × 8,这样就可以利用6 × 10 = 60,再减去2个6,得到48。

2. 同尾巧算:当两个乘数的个位数相同,十位数之和为10的倍数时,可以利用同尾相乘的方法。

例如,计算23 × 27,可以先计算3 × 7 = 21,然后将2与7相乘得到14,最后将两个结果相加,得到621。

3. 同倍巧算:当两个乘数一个为10的倍数,另一个可以分解成10的倍数和个位数时,可以利用同倍相乘的方法。

例如,计算40 × 9,可以先计算4 × 9 = 36,然后在结果后面加一个0,得到360。

二、快速计算除法除法也是六年级奥数中的一个常见题型。

为了更快地解答除法题目,我们可以运用一些简便的除法方法。

1. 除法的逆运算:乘法和除法是相互逆运算。

如果我们知道一个乘法的结果和一个乘数,就可以通过除法来求另一个乘数。

例如,如果我们知道6 × 8 = 48,想要求出8,就可以用48除以6,得到8。

2. 除法的倍数法则:当除数和被除数都是10的倍数时,可以通过去掉末尾的0来简化计算。

例如,计算300 ÷ 10,可以直接去掉末尾的0,得到30。

三、快速计算加法和减法加法和减法是六年级奥数中的基本运算。

为了提高计算速度,我们可以运用一些简便的加法和减法方法。

四年级下册数学简便运算

四年级下册数学简便运算

四年级下册数学简便运算
四年级下册数学简便运算包括加法、减法、乘法和除法等运算。

以下是几种简便运算的方法:
1. 加法:
- 进位法:将两个数竖式对齐,从个位数开始逐位相加,大于10的就向前进位。

- 换行法:将两个数竖着写下来,从个位数开始逐位相加。

2. 减法:
- 对减法可以转换为加法,即利用补数的方法进行计算。

- 将减数前面补零,然后进行竖式补数运算。

3. 乘法:
- 乘法的竖式计算,从被乘数的个位数开始,逐渐乘以乘数,然后将所得乘积相加。

- 可以利用分配律和交换律进行乘法计算,这样可以大大简化计算过程。

4. 除法:
- 除法的列竖式计算,将被除数写在上方,除数写在下方,逐位进行计算。

- 可以利用估算和减法的方法进行除法运算,找到一个与余数最接近的数来计算商。

这些方法可以帮助学生在简便的情况下进行数学运算,并提高计算速度和准确性。

小学数学速算巧算

小学数学速算巧算

小学数学速算与巧算方法例解速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1. 计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+ (44+56 )=24+100=124这样想:因为44+56=100 是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47 )+36=100+36=136这样想:因为53+47=100 是个整百的数,所以先把+47 带着符号搬家,搬到+36 前面;然后再把53+47 的和算出来.2. 计算:(1)96+15(2)52+69解:(1)96+15=96+ (4+11 )=(96+4 )+11=100+11=111这样想:把15 分拆成15=4+11 ,这是因为96+4=100 ,可凑整先算.(2)52+69= (21+31 )+69=21+ (31+69 )=21+100=121这样想:因为69+31=100 ,所以把52 分拆成21 与31 之和,再把31+69=100 凑整先算.3. 计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+ (2+18 )+(1+19 )=60+20+20=100这样想:将63 分拆成63=60+2+1 就是因为2+18 和1+19 可以凑整先算.(2)28+28+28= (28+2 )+ (28+2 )+ (28+2 )-6=30+30+30-6=90-6=84这样想:因为28+2=30 可凑整,但最后要把多加的三个 2 减去.二、改变运算顺序:在只有“+、”“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+ (19-18 )=45+1=46这样想:把+19 带着符号搬家,搬到-18 的前面.然后先算19-18=1.(2)45+18-19=45+ (18-19 )=45-1=44这样想:加18 减19 的结果就等于减 1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12 ,154,8,12 ,16 ,20 等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9 个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5 个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5 个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5 个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5 个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10 )×5=11×5=55共10 个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17 )×4=20×4=80共8 个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20 )×5=110共10 个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20 ,所以可以把每个加数先按20 相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236 个加数都按20 相加,其和=20×6=120.23 按20 计算就少加了“3,”所以再加上“3;”19 按20 计算多加了“1,”所以再减去“1,”以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100 ,所以选100 为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将 5 个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100 ,个数是5.加法中的巧算1. 什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万,就把其中的一个数叫做另一个数的“补数”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学简便运算和巧算一、数的加减乘除有时可以运用运算定律、性质、或数量间的特殊关系进性较快的运算这就是简便运算。

(一)其方法有:一:利用运算定律、性质或法则。

(1) 加法:交换律,a+b=b+a, 结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c, a-(b-c)=a-b+c, a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法:利用运算定律、性质或法则。

交换律,a×b=b×a, 结合律,(a×b)×c=a×(b×c),分配率,(a+b)×c=a×c+b×c, (a-b)×c=a×c-b×c.(4)除法运算性质:a÷(b×c)=a÷b÷c, a÷(b÷c)=a÷b×c, a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c, (a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。

其规律是同级运算中,加号或乘号后面加上或去掉括号,。

后面数值的运算符号不变。

例1:283+52+117+148=(283+117)+(52+48)=400+200=600(运用加法交换律和结合律)。

减号或除号后面加上或去掉括号,后面数值的运算符号要改变。

例2:657-263-257=657-257-263=400-263=147.(运用减法性质,相当加法交换律。

)例3:195-(95+24)=195-95-24=100-24=76 (运用减法性质)例4; 150-(100-42)=150-100+42=50+42=92. (同上)例5:(0.75+125)×8=0.75×8+125×8=6+1000=1006. (运用乘法分配律))例6:( 125-0.25)×8=125×8-0.25×8=1000-2=998. (同上)例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。

(运用除法性质)例8: (450+81)÷9=450÷9+81÷9=50+9=59. (同上,相当乘法分配律)例9: 375÷(125÷0.5)=375÷125*0.5=3*0.5=1.5. (运用除法性质)例10:4.2÷(0。

6×0.35)=4.2÷0.6÷0.35=7÷0.35=20. (同上)例11:12×125×0.25×8=(125×8)×(12×0.25)=1000×3=3000(运用乘法交换律和结合律)例12: (175+45+55+27)-75=175-75+(45+55)+27=100+100+27=227(运用加法性质和结合律)例13:(48×25×3)÷8=48÷8×25×3=6×25×3=450. (运用除法性质, 相当加法性质)(5)和、差、积、商不变的规律。

1:和不变:如果a+b=c,那么,(a+d)+(b-d)=c,2: 差不变:如果 a-b=c, 那么,(a+d)-(b+d)=c, (a-d)-(b-d)=c3: 积不变:如果a*b=c, 那么,(a*d)*(b÷d)=c,4: 商不变:如果 a÷b=c, 那么,(a*d)÷(b*d)=c, (a÷d)÷(b÷d)=c.例14:3.48+0.98=(3.48-0.02)+(0.98+0.02)=3.46+1=4.46(和不变)例15:3576-2997=(3576+3)-(2997+3)=3579-3000=579(差不变)例16: 74.6×6.4+7.46×36=7.46×64+7.46×36=7.46×(64+36)=7.46×100=746.(积不变和分配律)例17: 12.25÷0.25 =(12.25*4)÷(0.25*4)=49÷1=49. (商不变)。

二:拆数法:(1)凑整法,19999+1999+198+6=(19999+1)+(1999+1)+(198+2)+2 =22202 (2)利用规律,7.5×2.3+1.9×2.5-2.5×0.4=7.5×(0.4+1.9)+1.9×2.5-2.5×0.4 =7.5×0.4+7.5×1.9+1.9×2.5-2.5×0.4=0.4×(7.5-2.5)+1.9×(7.5+2.5)=2+19=21.2. 1992×20052005-2005×19921992=1992×2005×(10000+1)-2005×1992×(10000+1)=0三:利用基准数:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21=10311四:改变顺序,重新组合。

(1):(215+357+429+581)-(205+347+419+571)=215+357+429+581-205-347-419-571=(215-205)+(429-419)+(357-347)+(581-571)=40(2):(378×5×25)×(4×0.8÷3.78)=378×5×25×4×0.8÷3.78=(378÷3.78)×(25×4)x(5×0.8)=100x100x4=40000,五:1:求等差连续自然数的和。

当加数个数为奇数时,有:和=中间数x个数。

当加数个数为偶数时,有:和=(首+尾)x个数的一半。

(1):3+6+9+12+15=9*5=45, (2):1+2+3+4+……+10=(1+10)*10÷2=55.2:求分数串的和。

因为1/n-1/n+1=1/n(n+1), 1/n+1/n+1=n+(n+1)/[n(n+1)].所以:(1):1/42+1/56+1/72+1/90+1/110=1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11=1/6-1/11=5/66(2):5/6-7/12+9/20-11/30+13/42-15/56+。

+41/400-43/460=(1/2+1/3)-(1/3+1/4)+(1/4+1/5)-(1/5+1/6)+(1/6+1/7)-(1/7+1/8)。

+(1/20+1/21)-(1/21+1/22)=1/2-1/22=5/113:变形约分法。

求:(1.2+2.3+3.4+4.5)÷(12+23+34+45)的值。

因为分母各项是分子各项的10倍。

所以有:原式=0.1六:设数法:求(1+0.23+0.34)*(0.23+0.34+0.65)-(1+0.23+0.34+0.65)*(0.23+0.34)的值。

设a=0.23+0.34 . b=0.23+0.34+0.65.原式=(1+a)*b-(1+b)*a=b+ab-a-ab=b-a=(0.23+0.34+0.65)-(0.23+0.34)=0.65.(二):巧算的方法:除运用上面所说的简便方法外,最重要的是抓住题目(特别是应用题)中的数量关系,充分利用逻辑推理,变解法不明为解法明确,把一般问题转化为特殊问题,以小见大,以少见多,以简驭繁。

从而达到巧算的目的。

一:利用数的整除特征和某些特殊规律。

特殊问题来求解。

重在一个“巧”。

(1):一个三位数连续写两次得到的六位数一定能被7、11、13整除。

为什麽?解;六位数abcabc=abc×1000+abc=abc×1001. 1001=7×13×11.六位数abcabc必能被7、11、13整除。

(2):六位数865abc能被3、4、5整除,当这个数最小时,a,b,c各是数字几?解:因为该数能被4,5整除,b,c必都是零,要使该数能被3整除,它各位数字和应能被3整除,a只能是2。

所以a,b,c分别是2 ,0 ,0。

(3):化简:(1+2+3+4+5+6+7+8+7+6+5+4+3+2+1)÷(888888×888888) =8×8÷(888888×888888)=1÷(111111×111111)=1/12345654321.(因为:11*11=121,111*111=12321,1111*1111=1234321,所以。

)二:估算法:求:a=1÷(1/1992+1/1993+1/1994+……+1/2003)的整数部分。

解:用一般通分求他得值太繁琐,可巧用“放缩法”估算。

假定除数部分各加数都是1/1992,则a=1÷(12/1992)=166。

若除数部分各加数都是1/2003,则a=1÷(12/2003)=166+11/12所以它的整数部分是166。

三:正难则反法。

直接求解困难时,换个角度从反面求解。

(1):除了本身,合数7854321的最大因数是多少?一般想法是将其分解质因数求之,但这个数很大,做起来很繁琐。

巧解:先求它的最小因数,再通过“除”求它的最大因数。

因为该数各位数字和能被3整除,所以这个数的最小因数是3,最大因数是:7854321÷3=261807。

(2):某厂人数在90----110之间,做工间操排队时,站3列正好;站5列少2人;站7列少4人,这厂有多少人?解:按所给数值正面求解很难,若换个角度从反面做,把它转化为:该厂工人站3列多3人;站5列多3人;站7列多3人求这厂人数的问题。

即求比3,5,7的最小公倍数多3的数是多少。

【3,5,7】=105, 105+3=108人。

相关文档
最新文档