安徽省利辛县阚疃金石中学2020-2021学年九年级上学期数学期中试卷
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每题4分,共40分)1.(4分)下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2B.y=3(x﹣1)2C.y=3(x﹣1)2+2D.y=2x22.(4分)下列四组线段中,不是成比例线段的是()A.a=3 b=6 c=2 d=4B.a=1 b=√2c=√6d=2√3C.a=4 b=6 c=5 d=10D.a=2 b=√5c=√15d=2√33.(4分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线的开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.当x≥2时,y随x增大而增大4.(4分)如图,反比例函数y=kx的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1B.x≥2C.x<0或0<x≤1D.x<0或x≥2 5.(4分)如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A .①②④B .①③④C .②③④D .①②③ 6.(4分)如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为( )A .2B .4C .5D .87.(4分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 8.(4分)已知抛物线y =12(x ﹣1)2+k 上有三点A (﹣2,y 1),B (﹣1,y 2),C (2,y 3),则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 3>y 1D .y 2>y 1>y 3 9.(4分)a ≠0,函数y =a x 与y =﹣ax 2+a 在同一直角坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图所示,已知点E,F分别是△ABC中AC、AB边的中点,BE,CF相交于点G,S△EFG=1,则四边形BCEF的面积是()A.7B.8C.9D.10二、填空题(每题5分,共20分)11.(5分)反比例函数y=m−1x的图象在第一、三象限,则m的取值范围是.12.(5分)赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=−125x2,当水面离桥拱顶的高度DO是4米时,这时水面宽度AB为米.13.(5分)如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.14.(5分)如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不运动至O,A 两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,B 点的坐标是.15.(8分)已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.16.(8分)装卸工人往一辆大型运货车上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图:(1)求y与x之间的函数关系式;(2)货车到达目的地后开始卸货,如果以1.5t/min的速度卸货,需要多长时间才能卸完货物?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图所示,小明从路灯下向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高是1.6米,那么路灯离地面的高度AB是多少米?18.(8分)如图,已知反比例函数y=6x的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)直接写出不等式6x≥kx+b的解集.19.(10分)如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)图中共有对相似而不全等的三角形;(2)选取其中一对进行证明.20.(10分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.六、(本题满分12分)21.(12分)如图是3×5的网格,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点的图形叫做格点图.(1)图1中的格点△ABC与△DEF相似吗?请说明理由;(2)请在图2中选择适当的位似中心作△A1B1C1与△ABC位似,且相似比不为1;(3)请在图3中画一个格点△A2B2C2与△ABC相似(注意:△A2B2C2与△ABC、△DEF、△A1B1C1都不全等).七、(本题满分12分)22.(12分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?八、(本题满分14分)23.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE 于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.。
2020-2021学年度上学期期中九年级数学试题

2020-2021学年度上学期期中九年级数学试卷一、选择题(本大题共10小题,每小题3分,满分30分)1.下列标志图中,既是轴对称图形,又是中心对称图形的是().A.B. C. D.2.方程(x +1)2=4的解是().A .x 1=2,x 2=-2B .x 1=3,x 2=-3C .x 1=1,x 2=-3D .x 1=1,x 2=-23.抛物线y =x 2-2x -3与y 轴的交点的纵坐标为().A .-3B .-1C .1D .34.如图所示,将Rt △ABC 绕点A 按顺时针旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上.若AB =1,∠CAB=90°,∠B =60°,则CD 的长为().A .0.5B .1.5C D .15.已知关于x 的一元二次方程mx 2+2x -1=0有两个不相等的实数根,则m 的取值范围是().A .m >-1且m ≠0B .m <1且m ≠0C .m <-1D .m >16.将函数y =x 2的图象向左、右平移后,得到的新图象的解析式不可能...是().A .y =(x +1)2B .y =x 2+4x +4C .y =x 2+4x +3D .y =x 2-4x +47.对于抛物线()21132y x =-++,下列结论:(1)抛物线的开口向下;(2)对称轴为直线1x =;(3)顶点坐标为()1,3-;(4)当1x >时,y 随x 的增大而减小。
其中正确结论的个数为()。
A .1B .2C .3D .48.两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第二年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第4题图第一年的年下降率,假设第一年的年下降率为x ,则可列方程().A .5000(1-x -2x )=2400B .5000(1-x )2=2400C .5000-x -2x =2400D .5000(1-x )(1-2x )=24009.如图所示,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为().A .a =b B .2a -b =1C .2a +b =-1D .2a +b =110.如图所示是抛物线y=ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a (c -n );④一元二次方程ax 2+bx +c =n -1有两个不相等的实根.其中正确结论的个数是().A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,满分24分)11.已知抛物线y =(m +1)x 2开口向上,则m 的取值范围是___________.12.若抛物线y =x 2-2x -3与x 轴分别交于A 、B 两点,则线段AB 的长为____________.13.如图所示,⊙O 的半径OA =4,∠AOB =120°,则弦AB 长为____________.14.12.如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=第14题第10题图MN第9题图第13题图15.把二次函数y=x 2﹣2x+3化成y=a(x﹣h)2+k 的形式为.16.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a=,b=.17.已知⊙O 半径为10,弦AB=12,CD=16,且AB ∥CD.则AB 与CD 之间的距离为.18.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,2),则点B 2020的坐标为.三、解答题(本大题共8小题,满分66分)19.(每题4分,共8分)解下列方程:(1)0542=--x x (2)x x -=-3)3(220.(8分)如果关于x的函数y=ax2+(a+2)x+a+1的图象与x轴只有一个公共点,求实数a的值21.(6分)如图所示,在⊙O中,半径OC⊥弦AB,垂足为D,AB=12,CD=2.求⊙O半径的长.22.(共8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k取值范围.23.(6分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△OA′B′与△OAB关于原点对称,写出点A′、B′的坐标.24.(6分)如图,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(互相垂570m,道路应为多宽?直),把耕地分成大小不等的六块试验田,要使试验田的面积为225.(12分)如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C、D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D 两点坐标及△BCD 的面积;(3)若点P 在x 轴上方的抛物线上,满足S △PCD =S △BCD ,求点P 的坐标.26.(12分)正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,与∠AFB相等的角为是.(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,运用旋转的思想证明:DQ+BP=PQ(提示:将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,再证△APQ≌△APE)(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.如果能写出你的说明过程。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含四套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、填空题(本大题共8个小题,每小题3分,共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE 绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(本大题共10个小题,每小题3分,共30分) 9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( )A .x 1=1,x 2=﹣3B .x 1=4,x 2=﹣2C .x 1=﹣1,x 2=3D .x 1=﹣4,x 2=211.已知a 、b 满足a+b=5且ab=6,以a 、b 为根的一元二次方程为( )题号一 二 三 总分 得分密封线A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A. B. C. D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B.C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题 (本大题共7个小题,共66分)解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分,每小题4分)解方程(1)(x ﹣2)2=(2x+5)2(2)=.20.(本小题满分7分)已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.(本小题满分8分)在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母; (2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.(本小题满分9分)如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.(本小题满分9分)如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB .(1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.24.(本小题满分12分)为了落实中央的惠农政策,积极推进农业机械化,某市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A 型、B 型农机设备所投资的金额x (万元)与政府补贴的金额y 1(万元)、y 2(万元)的函数关系如图所示(图中OA 段是抛物线,A 是抛物线的顶点).(1)分别写出y 1、y 2与x 的函数关系式;封线内不得答题(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.(本小题满分13分)如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(24分)1.解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1或m﹣=0.解得m=或m=.故答案为:或.2.解:根据题意得x1+x2=﹣,x1•x2=﹣,所以===,x12+x22=(x1+x2)2﹣2x1•x2=(﹣)2﹣2×(﹣)=.故答案为,.3.解:根据题意,顶点在x轴上,顶点纵坐标为0,即,解得c=9.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题4.解:∵P (2,3),∴P ′的坐标为(﹣3,2).5.解:由题意得:x 2﹣2x+1﹣(﹣x+1)>0, 即x 2﹣x=x (x ﹣)>0, 解得:x <0或x >. 故答案为:x <0或x >. 6.解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米. 故答案为:120.7.解:∵四边形ABCD 为平行四边形, ∴AB=CD=3,AD=BC=4,OA=OC ,OB=OD ,∵四边形ABFE 绕O 点旋转180度后能与四边形 CDEF 重合, ∴AE=CF ,OE=OF=1.5,∴四边形EFCD 的周长=DE+CF+OE+OF+CD=BC+2OE+CD =4+3+3 =10. 故答案为10.8.解:∵2a+b=0, ∴b=﹣2a ;又当x=﹣1时,y=3,∴3=a ﹣b+c=3a+c ,即3a+c=3; ∴当x=3时, y=9a+3b+c =9a ﹣6a+c =3a+c =3;故答案为:3. 二、选择题(30分)9.解:A 、是轴对称图形,不是中心对称图形.故错误; B 、是轴对称图形,也是中心对称图形.故正确; C 、不是轴对称图形,是中心对称图形.故错误; D 、是轴对称图形,不是中心对称图形.故错误. 故选B .得 答 题10.解:(x+1)(x ﹣3)=5, x 2﹣2x ﹣3﹣5=0, x 2﹣2x ﹣8=0,化为(x ﹣4)(x+2)=0, ∴x 1=4,x 2=﹣2. 故选:B .11.解:∵a+b=5,ab=6,∴以a ,b 为根的一元二次方程可以为x 2﹣5x+6=0. 故选B .12.解:∵二次函数y=﹣x 2﹣4x+5中a=﹣1<0 ∴抛物线开口向下,对称轴为x=﹣=﹣=﹣2∵B (﹣1,y 2),C (,y 3)中横坐标均大于﹣2 ∴它们在对称轴的右侧y 3<y 2,A (﹣,y 1)中横坐标小于﹣2,∵它在对称轴的左侧,它关于x=﹣2的对称点为2×(﹣2)﹣(﹣)=﹣,>﹣>﹣1∵a <0时,抛物线开口向下,在对称轴的右侧y 随x 的增大而减小∴y 3<y 1<y 2. 故选C .13.解:∵△ABC 绕着点C 按顺时针方向旋转20°,B B ′位置,A 点落在A ′位置 ∴∠BCB ′=∠ACA ′=20° ∵AC ⊥A ′B ′,∴∠BAC=∠A ′=90°﹣20°=70°. 故选C .14.解:由图象可知,抛物线与x 轴的交点坐标分别为(﹣0)和(5,0),∴y <0时,x 的取值范围为x <﹣1或x >5. 故选C .15.解:∵函数y=ax+b 的图象经过二、三、四象限, ∴a <0,b <0, ∴x=﹣<0,即二次函数y=ax 2+bx+1的图象开口向下,对称轴位于y 故选:C .16.解:∵在Rt △ABC 中,∠B=30°,AC=1,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴AB=2AC=2,∴BB ′=2AB=4. 故选A .17.解:设平均一人传染了x 人,根据题意,得:x+1+(x+1)x=121 解得:x 1=10,x 2=﹣12(不符合题意舍去)∴经过三轮传染后患上流感的人数为:121+10×121=1331(人). 故选:D .18.解:由二次函数图象与x 轴有两个交点, ∴b 2﹣4ac >0,选项①正确; 又对称轴为直线x=1,即﹣=1,可得2a+b=0(i ),选项②错误; ∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a ﹣2b+c <0,选项③错误; ∵﹣1对应的函数值为0,∴当x=﹣1时,y=a ﹣b+c=0(ii ), 联立(i )(ii )可得:b=﹣2a ,c=﹣3a ,∴a :b :c=a :(﹣2a ):(﹣3a )=﹣1:2:3,选项④正确, 则正确的选项有:①④. 故选D三、解答题(共66分)19.解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5), 所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.(6分)解方程:x 2+x ﹣2=0.18.(8分)已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式. 19.(8分)已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值;密封线内不得(2)求2x12+6x2﹣2015的值.20.(10分)如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.(11分)如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.(11分)飞机着陆后滑行的距离S(单位:m间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.(14分)如图,△ABC是边长为6cm的等边三角形,点DB点出发沿B→A方向在线段BA上以a cm/s速度运动,时,点E从线段BC的某个端点出发,以b cm/s速度在线段上运动,当D到达A点后,D、E运动停止,运动时间为t密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.(14分)定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分) 1.解:∵3x 2﹣4x ﹣1=0,∴方程3x 2﹣4x ﹣1=0的二次项系数是3,一次项系数是﹣4; 故选B .2.解:y=x 2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x 2﹣2x+2的顶点坐标是(1,1). 故选:A .3.解:如图,△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则∠A 1OA=50°,OA=OA 1,OB=OB 1,AB=A 1B 1. 设直线AB 与直线A 1B 1交于点M . 由SSS 易得△OAB ≌△OA 1B 1, ∴∠OAB=∠OA 1B 1, ∴∠OAM=∠OA 1M , 设A 1M 与OA 交于点D , 在△OA 1D 与△MAD 中,题∵∠DAM=∠DA 1O ,∠ODA 1=∠MDA , ∴∠M=∠A 1OD=50°. 故选B .4.解:∵x 2+6x+4=0, ∴x 2+6x=﹣4,∴x 2+6x+9=5,即(x+3)2=5. 故选:C .5.解:A 、x 2﹣x ﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B 、x 2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C 、2015x 2+11x ﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D 、x 2+x+2=0,△=12﹣4×2=﹣7<0正确; 故选D .6.解:点P (﹣2,3)关于原点对称的点的坐标是(2,﹣3故选:D .7.解:如图所示,连接OA .⊙O 的直径CD=10cm , 则⊙O 的半径为5cm , 即OA=OC=5,又∵OM :OC=3:5, 所以OM=3,∵AB ⊥CD ,垂足为M , ∴AM=BM , 在Rt △AOM 中,AM==4,∴AB=2AM=2×4=8. 故选B .8密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴抛物线C 的解析式为y=ax 2+bx+c ,a 确定抛物线的形状与开口方向;若将抛物线C 沿y 轴平移,顶点发生了变化,对称轴没有变化,a 的值不变,则﹣不变,所以b 的值不变;若将抛物线C 沿直线l :y=x+2平移,则a 的值不变, 故选D .9.解:设AC=x ,四边形ABCD 面积为S ,则BD=16﹣x , 则:S=AC •BD=x (16﹣x )=﹣(x ﹣8)2+32, 当x=8时,S 最大=32;所以AC=BD=8时,四边形ABCD 的面积最大, 故选D .10.解:当a >0时, ∵a 2+ab+ac <0, ∴a+b+c <0, ∴b+c <0, 如图1,∴b 2﹣4ac >0,故①错误; a (b+c )<0,故②正确;∴方程ax 2+bx+c=0有两个不同根x 1、x 2,且x 1<1,x 2>1, ∴(x 1﹣1)(x 2﹣1)<0,即(x 1﹣1)(1﹣x 2)>0,故③正确;∴二次函数的图象与坐标轴有三个不同交点,故④正确; 故选C .二、填空题(共6小题,每小题3分,共18分) 11.解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣. 12.解:∵x=(b 2﹣4c >0),∴x 2+bx+c =()2+b+c=++c == =0.故答案为:0.13.解:作OE ⊥AB 于E ,交CD 于F ,连结OA 、OC ,如图,题∵AB ∥CD , ∴OF ⊥CD ,∴AE=BE=AB=12,CF=DF=CD=5, 在Rt △OAE 中,∵OA=13,AE=12, ∴OE==5,在Rt △OCF 中,∵OC=13,CF=5, ∴OF==12,当圆心O 在AB 与CD 之间时,EF=OF+OE=12+5=17; 当圆心O 不在AB 与CD 之间时,EF=OF ﹣OE=12﹣5=7; 即AB 和CD 之间的距离为7cn 或17cm . 故答案为7cn 或17cm .14.解:设AC=x ,则BC=AB ﹣AC=1﹣x , ∵AC 2=BC •AB , ∴x 2=1﹣x , 解得:x 1=,x 2=(不合题意,舍去),∴AC=,∵AD 2=CD •AC ,∴AD=×=,∵AE 2=DE •AD , ∴AE=×=﹣2;故答案为:﹣2.15.解:根据函数图象可知:抛物线的对称轴为x=1与x 轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x 轴的另一个交点坐标为0). ∵y <0,∴x >3或x <﹣1.故答案为:x >3或x <﹣1.16.解:当B 、D 重合或C 、E 重合时DE 长度最大,如图1∵∠BAE=30°,∠AEB=90°, ∴DE=AB=a ,当∠BAD=∠CAE=15°时,DE 长度最小,如图2, 作AF ⊥BC ,且AF=AB ,连接DF 、CF , ∵AF ⊥BC ,∴∠BAF=∠CAF=30°, ∵∠BAD=∠CAE=15°, ∴∠DAH=∠EAH=15°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BAD=∠DAH ,在△ADB 和△ADF 中,,∴△ABD ≌△ADF , ∴∠B=∠AFD ,BD=DF , ∵∠AHB=∠DHF=90°,∴△ABH ∽△DFH , AB :AH=DF :DH , ∴=, ∴=,∴DH=,其中BD+DH=a 、AH=a ,∴DH==a∴DE=(2﹣3)a ,故DE 长度的取值范围是(2﹣3)a ≤DE ≤a .三、解答题(共8小题,共72分) 17.解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作;密(2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2,解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°,∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,内不答题则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.24.解:(1)设抛物线上有一点(x,y),由定义知:x2+(y﹣)2=|y+|2,解得y=ax2;(2)如图1,由(1)得抛物线y=x2的焦点为(0,),准线为y=﹣,∴y=x2﹣n2由y=x2向下平移n2个单位所得,∴其焦点为A(0,﹣n2),准线为y=﹣﹣n2,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题由定义知P 为抛物线上的点,则PA=PH ,∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2,∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 不 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共15题,每题3分,共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( ) A .11 B .13 C .11或13 D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A .﹣4 B .﹣1 C .1 D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( ) A .y=2(x+1)2+3 B .y=2(x ﹣1)2﹣3 C .y=2(x+1)2﹣3 D .y=2(x ﹣1)2+310.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)12.已知二次函数y=ax 2+bx+c 的x 、y密线学校 班级 姓名 学号密 封 线 内 不 得 答 题x ﹣1 0 1 2 3 y51﹣1﹣11则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x=13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D . 15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.(4分)解方程:x 2﹣4x+2=0.17.(5分)已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.(6分)如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.(6分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时,y= ; (2)若该店日净收入为1560元,那么每份售价是多少元?20.(9分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.(10分)已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.(11分)某房地产开放商欲开发某一楼盘,于2018年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2020年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2022年初完工并还清银行贷款),售,开发总面积为5购买土地费用的5%,工程完工后不再上交土地管理费.若房价定位每平方米3000米上涨100元,则会少卖1000平方米,且卖房时间会延长个月.该房地产开发商预计售房净利润为8660万. (1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2商不再出售,准备作为商业用房对外出租)平方米多少元?23.(12分)正方形ABCD 点A 重合,一条直角边与边BC 交于点E (点E 不与点B 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD 交于G ,且点G 是斜边MN 的中点,连接EG EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.(12分)如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案与试题解析一、选择题(共15题,每题3分共45分)1.解:∵选项A 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形,∴选项A 不正确;∵选项B 中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形, ∴选项B 正确;∵选项C 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形, ∴选项C 不正确;∵选项D 中的图形旋转180°后能与原图形重合, ∴此图形是中心对称图形,但它不是轴对称图形, ∴选项D 不正确.故选:B .2.解:x 2﹣3x=0, x (x ﹣3)=0, x=0或x ﹣3=0, 所以x 1=0,x 2=3.故选C . 3.解:方程x 2﹣6x+8=0, 分解因式得:(x ﹣2)(x ﹣4)=0,可得x ﹣2=0或x ﹣4=0,解得:x 1=2,x 2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13. 故选B .4.解:根据韦达定理得x 1•x 2=1.故选:C . 5.解:∵a 为方程x 2+x ﹣5=0的解, ∴a 2+a ﹣5=0,∴a2+a=5 则a2+a+1=5+1=6.故选:B.6.解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选A.7.解:∵在等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∵将△ABC绕点 A逆时针旋转60°后得到的△AB′C′,∴∠BAB′=60°,∠B′AC′=∠BAC=45°,∴∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°,故选A.8.解:y=2(x﹣1)2+3中,a=2.故选D.9.解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.故选A.10.解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.11.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选B.12.解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:D.13.解:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,所以A正确.故选A.14.解:A、由二次函数的图象可知a<0,此时直线应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在ya、b异号,b>0,此时直线y=ax+b故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b三象限,故C可排除;正确的只有D.故选:D.15.解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.二、解答题(本大题共9小题,共75分)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题16.解:x 2﹣4x=﹣2x 2﹣4x+4=2 (x ﹣2)2=2或∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元; 20.解:(1)作图如右:△A 1B 1C 1即为所求; (2)作图如右:△A 2B 2C 2即为所求; (3)x 的值为6或7.21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2,原方程为x2﹣5x+6=0⇒x1=2,x2=3即,等腰三角形的三边为3,3,2.则周长为8,面积为若底为3,则原方程为x2﹣4x+4=0⇒x1=x2=2即,等腰三角形的三边为2,2,3.则周长为7,面积为22.解:(1)15×100=1500万,1500×10%×2=300万,1500+3500+3500×5%×2=5350万,1500×5%×2=150万,四者相加1500+300+5350+150=7300万.答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x个100元,依题意有(5﹣0.1x)=8660+7300,解得x1=12,x2=8,又因为当x1=12时,卖房时间为30个月,此时超过两年,舍去;当x2=8时,卖房时间为20个月;则房价为3000+8×100=3800元.答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD是正方形,∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.∵∠EAF=90°,∴∠EAF=∠BAD,∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,∴∠BAE=∠DAF.在△ABE和△ADF 中,∴△ABE≌△ADF(ASA)∴AE=AF;(2)如图②,连接AG,∵∠MAN=90°,∠M=45°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠N=∠M=45°,∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x ,∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,密 封 线 内 不答 题∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0. ∴抛物线开口向下; (3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0①由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含四套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、填空题(本大题共8个小题,每小题3分,共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE 绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(本大题共10个小题,每小题3分,共30分) 9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( )A .x 1=1,x 2=﹣3B .x 1=4,x 2=﹣2C .x 1=﹣1,x 2=3D .x 1=﹣4,x 2=211.已知a 、b 满足a+b=5且ab=6,以a 、b 为根的一元二次方程为( )题号一 二 三 总分 得分密封线A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A. B. C. D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B.C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题 (本大题共7个小题,共66分)解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分,每小题4分)解方程(1)(x ﹣2)2=(2x+5)2(2)=.20.(本小题满分7分)已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.(本小题满分8分)在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母; (2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.(本小题满分9分)如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.(本小题满分9分)如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB .(1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.24.(本小题满分12分)为了落实中央的惠农政策,积极推进农业机械化,某市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A 型、B 型农机设备所投资的金额x (万元)与政府补贴的金额y 1(万元)、y 2(万元)的函数关系如图所示(图中OA 段是抛物线,A 是抛物线的顶点).(1)分别写出y 1、y 2与x 的函数关系式;封线内不得答题(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.(本小题满分13分)如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(24分)1.解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1或m﹣=0.解得m=或m=.故答案为:或.2.解:根据题意得x1+x2=﹣,x1•x2=﹣,所以===,x12+x22=(x1+x2)2﹣2x1•x2=(﹣)2﹣2×(﹣)=.故答案为,.3.解:根据题意,顶点在x轴上,顶点纵坐标为0,即,解得c=9.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题4.解:∵P (2,3),∴P ′的坐标为(﹣3,2).5.解:由题意得:x 2﹣2x+1﹣(﹣x+1)>0, 即x 2﹣x=x (x ﹣)>0, 解得:x <0或x >. 故答案为:x <0或x >. 6.解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米. 故答案为:120.7.解:∵四边形ABCD 为平行四边形, ∴AB=CD=3,AD=BC=4,OA=OC ,OB=OD ,∵四边形ABFE 绕O 点旋转180度后能与四边形 CDEF 重合, ∴AE=CF ,OE=OF=1.5,∴四边形EFCD 的周长=DE+CF+OE+OF+CD=BC+2OE+CD =4+3+3 =10. 故答案为10.8.解:∵2a+b=0, ∴b=﹣2a ;又当x=﹣1时,y=3,∴3=a ﹣b+c=3a+c ,即3a+c=3; ∴当x=3时, y=9a+3b+c =9a ﹣6a+c =3a+c =3;故答案为:3. 二、选择题(30分)9.解:A 、是轴对称图形,不是中心对称图形.故错误; B 、是轴对称图形,也是中心对称图形.故正确; C 、不是轴对称图形,是中心对称图形.故错误; D 、是轴对称图形,不是中心对称图形.故错误. 故选B .得 答 题10.解:(x+1)(x ﹣3)=5, x 2﹣2x ﹣3﹣5=0, x 2﹣2x ﹣8=0,化为(x ﹣4)(x+2)=0, ∴x 1=4,x 2=﹣2. 故选:B .11.解:∵a+b=5,ab=6,∴以a ,b 为根的一元二次方程可以为x 2﹣5x+6=0. 故选B .12.解:∵二次函数y=﹣x 2﹣4x+5中a=﹣1<0 ∴抛物线开口向下,对称轴为x=﹣=﹣=﹣2∵B (﹣1,y 2),C (,y 3)中横坐标均大于﹣2 ∴它们在对称轴的右侧y 3<y 2,A (﹣,y 1)中横坐标小于﹣2,∵它在对称轴的左侧,它关于x=﹣2的对称点为2×(﹣2)﹣(﹣)=﹣,>﹣>﹣1∵a <0时,抛物线开口向下,在对称轴的右侧y 随x 的增大而减小∴y 3<y 1<y 2. 故选C .13.解:∵△ABC 绕着点C 按顺时针方向旋转20°,B B ′位置,A 点落在A ′位置 ∴∠BCB ′=∠ACA ′=20° ∵AC ⊥A ′B ′,∴∠BAC=∠A ′=90°﹣20°=70°. 故选C .14.解:由图象可知,抛物线与x 轴的交点坐标分别为(﹣0)和(5,0),∴y <0时,x 的取值范围为x <﹣1或x >5. 故选C .15.解:∵函数y=ax+b 的图象经过二、三、四象限, ∴a <0,b <0, ∴x=﹣<0,即二次函数y=ax 2+bx+1的图象开口向下,对称轴位于y 故选:C .16.解:∵在Rt △ABC 中,∠B=30°,AC=1,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴AB=2AC=2,∴BB ′=2AB=4. 故选A .17.解:设平均一人传染了x 人,根据题意,得:x+1+(x+1)x=121 解得:x 1=10,x 2=﹣12(不符合题意舍去)∴经过三轮传染后患上流感的人数为:121+10×121=1331(人). 故选:D .18.解:由二次函数图象与x 轴有两个交点, ∴b 2﹣4ac >0,选项①正确; 又对称轴为直线x=1,即﹣=1,可得2a+b=0(i ),选项②错误; ∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a ﹣2b+c <0,选项③错误; ∵﹣1对应的函数值为0,∴当x=﹣1时,y=a ﹣b+c=0(ii ), 联立(i )(ii )可得:b=﹣2a ,c=﹣3a ,∴a :b :c=a :(﹣2a ):(﹣3a )=﹣1:2:3,选项④正确, 则正确的选项有:①④. 故选D三、解答题(共66分)19.解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5), 所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.(6分)解方程:x 2+x ﹣2=0.18.(8分)已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式. 19.(8分)已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值;密封线内不得(2)求2x12+6x2﹣2015的值.20.(10分)如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.(11分)如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.(11分)飞机着陆后滑行的距离S(单位:m间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.(14分)如图,△ABC是边长为6cm的等边三角形,点DB点出发沿B→A方向在线段BA上以a cm/s速度运动,时,点E从线段BC的某个端点出发,以b cm/s速度在线段上运动,当D到达A点后,D、E运动停止,运动时间为t密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.(14分)定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分) 1.解:∵3x 2﹣4x ﹣1=0,∴方程3x 2﹣4x ﹣1=0的二次项系数是3,一次项系数是﹣4; 故选B .2.解:y=x 2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x 2﹣2x+2的顶点坐标是(1,1). 故选:A .3.解:如图,△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则∠A 1OA=50°,OA=OA 1,OB=OB 1,AB=A 1B 1. 设直线AB 与直线A 1B 1交于点M . 由SSS 易得△OAB ≌△OA 1B 1, ∴∠OAB=∠OA 1B 1, ∴∠OAM=∠OA 1M , 设A 1M 与OA 交于点D , 在△OA 1D 与△MAD 中,题∵∠DAM=∠DA 1O ,∠ODA 1=∠MDA , ∴∠M=∠A 1OD=50°. 故选B .4.解:∵x 2+6x+4=0, ∴x 2+6x=﹣4,∴x 2+6x+9=5,即(x+3)2=5. 故选:C .5.解:A 、x 2﹣x ﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B 、x 2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C 、2015x 2+11x ﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D 、x 2+x+2=0,△=12﹣4×2=﹣7<0正确; 故选D .6.解:点P (﹣2,3)关于原点对称的点的坐标是(2,﹣3故选:D .7.解:如图所示,连接OA .⊙O 的直径CD=10cm , 则⊙O 的半径为5cm , 即OA=OC=5,又∵OM :OC=3:5, 所以OM=3,∵AB ⊥CD ,垂足为M , ∴AM=BM , 在Rt △AOM 中,AM==4,∴AB=2AM=2×4=8. 故选B .8密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴抛物线C 的解析式为y=ax 2+bx+c ,a 确定抛物线的形状与开口方向;若将抛物线C 沿y 轴平移,顶点发生了变化,对称轴没有变化,a 的值不变,则﹣不变,所以b 的值不变;若将抛物线C 沿直线l :y=x+2平移,则a 的值不变, 故选D .9.解:设AC=x ,四边形ABCD 面积为S ,则BD=16﹣x , 则:S=AC •BD=x (16﹣x )=﹣(x ﹣8)2+32, 当x=8时,S 最大=32;所以AC=BD=8时,四边形ABCD 的面积最大, 故选D .10.解:当a >0时, ∵a 2+ab+ac <0, ∴a+b+c <0, ∴b+c <0, 如图1,∴b 2﹣4ac >0,故①错误; a (b+c )<0,故②正确;∴方程ax 2+bx+c=0有两个不同根x 1、x 2,且x 1<1,x 2>1, ∴(x 1﹣1)(x 2﹣1)<0,即(x 1﹣1)(1﹣x 2)>0,故③正确;∴二次函数的图象与坐标轴有三个不同交点,故④正确; 故选C .二、填空题(共6小题,每小题3分,共18分) 11.解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣. 12.解:∵x=(b 2﹣4c >0),∴x 2+bx+c =()2+b+c=++c == =0.故答案为:0.13.解:作OE ⊥AB 于E ,交CD 于F ,连结OA 、OC ,如图,题∵AB ∥CD , ∴OF ⊥CD ,∴AE=BE=AB=12,CF=DF=CD=5, 在Rt △OAE 中,∵OA=13,AE=12, ∴OE==5,在Rt △OCF 中,∵OC=13,CF=5, ∴OF==12,当圆心O 在AB 与CD 之间时,EF=OF+OE=12+5=17; 当圆心O 不在AB 与CD 之间时,EF=OF ﹣OE=12﹣5=7; 即AB 和CD 之间的距离为7cn 或17cm . 故答案为7cn 或17cm .14.解:设AC=x ,则BC=AB ﹣AC=1﹣x , ∵AC 2=BC •AB , ∴x 2=1﹣x , 解得:x 1=,x 2=(不合题意,舍去),∴AC=,∵AD 2=CD •AC ,∴AD=×=,∵AE 2=DE •AD , ∴AE=×=﹣2;故答案为:﹣2.15.解:根据函数图象可知:抛物线的对称轴为x=1与x 轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x 轴的另一个交点坐标为0). ∵y <0,∴x >3或x <﹣1.故答案为:x >3或x <﹣1.16.解:当B 、D 重合或C 、E 重合时DE 长度最大,如图1∵∠BAE=30°,∠AEB=90°, ∴DE=AB=a ,当∠BAD=∠CAE=15°时,DE 长度最小,如图2, 作AF ⊥BC ,且AF=AB ,连接DF 、CF , ∵AF ⊥BC ,∴∠BAF=∠CAF=30°, ∵∠BAD=∠CAE=15°, ∴∠DAH=∠EAH=15°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BAD=∠DAH ,在△ADB 和△ADF 中,,∴△ABD ≌△ADF , ∴∠B=∠AFD ,BD=DF , ∵∠AHB=∠DHF=90°,∴△ABH ∽△DFH , AB :AH=DF :DH , ∴=, ∴=,∴DH=,其中BD+DH=a 、AH=a ,∴DH==a∴DE=(2﹣3)a ,故DE 长度的取值范围是(2﹣3)a ≤DE ≤a .三、解答题(共8小题,共72分) 17.解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作;密(2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2,解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°,∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,内不答题则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.24.解:(1)设抛物线上有一点(x,y),由定义知:x2+(y﹣)2=|y+|2,解得y=ax2;(2)如图1,由(1)得抛物线y=x2的焦点为(0,),准线为y=﹣,∴y=x2﹣n2由y=x2向下平移n2个单位所得,∴其焦点为A(0,﹣n2),准线为y=﹣﹣n2,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题由定义知P 为抛物线上的点,则PA=PH ,∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2,∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 不 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共15题,每题3分,共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( ) A .11 B .13 C .11或13 D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A .﹣4 B .﹣1 C .1 D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( ) A .y=2(x+1)2+3 B .y=2(x ﹣1)2﹣3 C .y=2(x+1)2﹣3 D .y=2(x ﹣1)2+310.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)12.已知二次函数y=ax 2+bx+c 的x 、y密线学校 班级 姓名 学号密 封 线 内 不 得 答 题x ﹣1 0 1 2 3 y51﹣1﹣11则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x=13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D . 15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.(4分)解方程:x 2﹣4x+2=0.17.(5分)已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.(6分)如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.(6分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时,y= ; (2)若该店日净收入为1560元,那么每份售价是多少元?20.(9分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.(10分)已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.(11分)某房地产开放商欲开发某一楼盘,于2018年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2020年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2022年初完工并还清银行贷款),售,开发总面积为5购买土地费用的5%,工程完工后不再上交土地管理费.若房价定位每平方米3000米上涨100元,则会少卖1000平方米,且卖房时间会延长个月.该房地产开发商预计售房净利润为8660万. (1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2商不再出售,准备作为商业用房对外出租)平方米多少元?23.(12分)正方形ABCD 点A 重合,一条直角边与边BC 交于点E (点E 不与点B 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD 交于G ,且点G 是斜边MN 的中点,连接EG EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.(12分)如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案与试题解析一、选择题(共15题,每题3分共45分)1.解:∵选项A 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形,∴选项A 不正确;∵选项B 中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形, ∴选项B 正确;∵选项C 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形, ∴选项C 不正确;∵选项D 中的图形旋转180°后能与原图形重合, ∴此图形是中心对称图形,但它不是轴对称图形, ∴选项D 不正确.故选:B .2.解:x 2﹣3x=0, x (x ﹣3)=0, x=0或x ﹣3=0, 所以x 1=0,x 2=3.故选C . 3.解:方程x 2﹣6x+8=0, 分解因式得:(x ﹣2)(x ﹣4)=0,可得x ﹣2=0或x ﹣4=0,解得:x 1=2,x 2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13. 故选B .4.解:根据韦达定理得x 1•x 2=1.故选:C . 5.解:∵a 为方程x 2+x ﹣5=0的解, ∴a 2+a ﹣5=0,∴a2+a=5 则a2+a+1=5+1=6.故选:B.6.解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选A.7.解:∵在等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∵将△ABC绕点 A逆时针旋转60°后得到的△AB′C′,∴∠BAB′=60°,∠B′AC′=∠BAC=45°,∴∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°,故选A.8.解:y=2(x﹣1)2+3中,a=2.故选D.9.解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.故选A.10.解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.11.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选B.12.解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:D.13.解:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,所以A正确.故选A.14.解:A、由二次函数的图象可知a<0,此时直线应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在ya、b异号,b>0,此时直线y=ax+b故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b三象限,故C可排除;正确的只有D.故选:D.15.解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.二、解答题(本大题共9小题,共75分)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题16.解:x 2﹣4x=﹣2x 2﹣4x+4=2 (x ﹣2)2=2或∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元; 20.解:(1)作图如右:△A 1B 1C 1即为所求; (2)作图如右:△A 2B 2C 2即为所求; (3)x 的值为6或7.21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2,原方程为x2﹣5x+6=0⇒x1=2,x2=3即,等腰三角形的三边为3,3,2.则周长为8,面积为若底为3,则原方程为x2﹣4x+4=0⇒x1=x2=2即,等腰三角形的三边为2,2,3.则周长为7,面积为22.解:(1)15×100=1500万,1500×10%×2=300万,1500+3500+3500×5%×2=5350万,1500×5%×2=150万,四者相加1500+300+5350+150=7300万.答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x个100元,依题意有(5﹣0.1x)=8660+7300,解得x1=12,x2=8,又因为当x1=12时,卖房时间为30个月,此时超过两年,舍去;当x2=8时,卖房时间为20个月;则房价为3000+8×100=3800元.答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD是正方形,∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.∵∠EAF=90°,∴∠EAF=∠BAD,∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,∴∠BAE=∠DAF.在△ABE和△ADF 中,∴△ABE≌△ADF(ASA)∴AE=AF;(2)如图②,连接AG,∵∠MAN=90°,∠M=45°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠N=∠M=45°,∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x ,∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,密 封 线 内 不答 题∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0. ∴抛物线开口向下; (3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0①由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
安徽省初三年级数学上学期期中测试卷(含答案解析)

安徽省2021初三年级数学上学期期中测试卷(含答案解析)安徽省2021初三年级数学上学期期中测试卷(含答案解析)一、选择题1.抛物线y=x2﹣2的顶点坐标是〔〕A.〔0,2〕 B.〔0,﹣2〕 C.〔﹣2,0〕 D.〔2,0〕2.在反比例函数图象的每一支曲线上,y都随x的增大而减小,那么k的取值范围是〔〕A. k<0 B. k>0 C. k<1 D. k>13.假如两个相似三角形的面积比是1:4,那么它们的周长比是〔〕A. 1: B.:4 C. 1:2 D. 1:44.如图,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,假设AC= ,BC=2.那么sin∠ACD的值为〔〕A. B. C. D.5.如图,AB∥CD∥EF,那么以下结论正确的选项是〔〕A. B. C. D.6.如图,假设∠1=∠2=∠3,那么图中的相似三角形有〔〕A. 1对 B. 2对 C. 3对 D. 4对7.图中的两个三角形是位似图形,它们的位似中心是〔〕A.点P B.点O C.点M D.点N8.如图,为了测量河岸A,B两点的间隔,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于〔〕A.a?sinα B.a?cosα C.a?tanα D.9.如图,△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,那么 =〔〕A.sin∠BAC B.cos∠BAC C.tan∠BAC D.cot∠BAC 10.二次函数y=ax2+bx+c的图象如下图,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c ﹣a>1,其中所有正确结论的序号是〔〕A.①② B.①③④ C.①②③⑤ D.①②③④⑤二、填空题11.计算:sin60°?cos30°﹣tan45°=.12.如图,假设∠B=∠DAC,那么△ABC∽,对应边的比例式是.13.如图,假设点A在反比例函数y= 〔k≠0〕的图象上,AM ⊥x轴于点M,△AMO的面积为3,那么k=.14.二次函数y=ax2+bx+c〔a≠0〕,其中a,b,c满足a+b+c=0和9a﹣3b+c=0,那么该二次函数图象的对称轴是直线.15.如图,DE∥BC,EF∥AB,且S△ADE=4,S△EFC=9,那么△ABC的面积为.三、解答题16.如图,△ ABC是一仓库的屋顶的横截面,假设∠B=30°,∠C=45°,AC=2,求线段AB的长.17.如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度〔准确到1米〕.〔供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4.〕18.如图,A〔﹣4,2〕、B〔n,﹣4〕是一次函数y=kx+b的图象与反比例函数的图象的两个交点.〔1〕求此反比例函数和一次函数的解析式;〔2〕根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.19.如图,在平面直角坐标系中,OA=12厘米,OB=6厘米.点P从点O开场沿OA边向点A以1厘米/秒的速度挪动;点Q 从点B开场沿BO边向点O以1厘米/秒的速度挪动.假如P、Q同时出发,用t〔秒〕表示挪动的时间〔0≤t≤6〕,那么,当t为何值时,△POQ与△AOB相似?20.如图,在△ABC中,∠CAB=120°,AD是∠CAB的平分线,AC=6,AB=10.〔1〕求;〔2〕求AD的长.21.某公司经销一种绿茶,每千克本钱为50元.市场调查发现,在一段时间内,销售量w〔千克〕随销售单价x〔元/千克〕的变化而变化,详细关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y〔元〕,解答以下问题:〔1〕求y与x的关系式;〔2〕当x取何值时,y的值最大?〔3〕假如物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?安徽省2021初三年级数学上学期期中测试卷(含答案解析)参考答案及试题解析一、选择题1.抛物线y=x2﹣2的顶点坐标是〔〕A.〔0,2〕 B.〔0,﹣2〕 C.〔﹣2,0〕 D.〔2,0〕考点:二次函数的性质.分析:抛物线的解析式满足顶点坐标式y=a〔x﹣h 〕2+k 的形式,直接写出顶点坐标即可.解答:解:∵抛物线y=x2﹣2,∴抛物线y=x2﹣2的顶点坐标是〔0,﹣2〕,应选B.点评:此题主要考察了二次函数的性质,二次函数y=a〔x ﹣h〕2+k的顶点坐标为〔h,k〕,对称轴为x=h,此题根底题,比拟简单.2.在反比例函数图象的每一支曲线上,y都随x的增大而减小,那么k的取值范围是〔〕A. k<0 B. k>0 C. k<1 D. k>1考点:反比例函数的性质.专题:计算题.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.应选D.点评:此题考察了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3.假如两个相似三角形的面积比是1:4,那么它们的周长比是〔〕A. 1: B.:4 C. 1:2 D. 1:4考点:相似三角形的性质.分析:由两个相似三角形的面积比是1:4,根据相似三角形的面积比等于相似比的平方,即可求得它们的相似比,又由相似三角形周长的比等于相似比,即可求得它们的周长比.解答:解:∵两个相似三角形的面积比是1:4,∴这两个相似三角形的相似比是1:2,∴它们的周长比是1:2.应选:C.点评:此题考察了相似三角形的性质.此题比拟简单,解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形周长的比等于相似比性质的应用.4.如图,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,假设AC= ,BC=2.那么sin∠ACD的值为〔〕A. B. C. D.考点:解直角三角形.分析:先根据勾股定理列式求出AB的长,再根据同角的余角相等求出∠ACD=∠B,然后根据锐角的正弦等于对边比斜边列式计算即可得解.解答:解:∵在Rt△ABC中,∠ACB=90,AC= ,BC=2,∴AB= = =3,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B,∴sin∠ACD=sin∠B= = .应选C.点评:此题考察理解直角三角形,锐角三角函数的定义,勾股定理,根据同角的余角相等求出∠ACD=∠B是解题的关键.5.如图,AB∥CD∥EF,那么以下结论正确的选项是〔〕A. B. C. D.考点:平行线分线段成比例.分析:AB∥CD∥EF,根据平行线分线段成比例定理,对各项进展分析即可.解答:解:∵AB∥CD∥EF,应选D.点评:此题考察平行线分线段成比例定理,找准对应关系,防止错选其他答案.6.如图,假设∠1=∠2=∠3,那么图中的相似三角形有〔〕A. 1对 B. 2对 C. 3对 D. 4对考点:相似三角形的断定.分析:题目中给的角相等,从而根据两个角对应相等的两个三角形互为相似三角形,从而找出图中的相似三角形.解答:解:①∵∠A=∠A,∠1=∠3,∴△ADE∽△ABC.②∵∠3=∠2,∠A=∠A,∴△ABC∽△ADC.③∵∠A=∠A,∠1=∠2,∴△ADE∽△ABC.④∵∠1=∠2,∠BCD=∠CDE,∴△CDE∽△BCD.所以有4对.应选:D.点评:此题考察相似三角形的断定定理,关键是知道两个角相等的三角形互为相似三角形.7.图中的两个三角形是位似图形,它们的位似中心是〔〕A.点P B.点O C.点M D.点N考点:位似变换.分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解答:解:点P在对应点M和点N所在直线上,应选A.点评:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考察位似图形的概念.8.如图,为了测量河岸A,B两点的间隔,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于〔〕A.a?sinα B.a?cosα C.a?tanα D.考点:解直角三角形的应用.分析:根据角的正切值表示即可.解答:解:∵AC=a,∠ACB=α,在直角△ABC中tanα= ,∴AB=a?tanα.应选:C.点评:此题主要考察理解直角三角形的应用,正确记忆三角函数的定义是解决此题的关键.9.如图,△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,那么 =〔〕A.sin∠BAC B.cos∠BAC C.tan∠B AC D.cot∠BAC 考点:锐角三角函数的定义;角平分线的性质.分析:过点D作DE⊥AB于E,由角的平分线的性质得CD=DE,证明AB﹣AC=BE,那么=tan∠BDE,再证明∠BAC=∠BDE即可.解答:解:过点D作DE⊥AB于E.∵AD是∠BAC的角平分线,DE⊥AB于E,DC⊥AC于C,∴CD=DE.∴Rt△ADE≌Rt△ADC〔HL〕∴AE=AC.∴ = =tan∠BDE.∵∠BAC=∠BDE,〔同角的余角相等〕∴ =tan∠BDE=tan∠BAC,应选C.点评:此题主要考察锐角三角函数的定义,利用了角平分线的性质.10.二次函数y=ax2+bx+c的图象如下图,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c ﹣a>1,其中所有正确结论的序号是〔〕A.①② B.①③④ C.①②③⑤ D.①②③④⑤考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号,由抛物线与y 轴的交点判断c的符号,然后根据对称轴及抛物线当x=1、x=﹣1和x=﹣2时的情况进展推理,进而对所得结论进展判断.解答:解:①当x=1时,y=a+b+c<0,故①正确;②当x=﹣1时,y=a﹣b+c>1,故②正确;③由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x= =﹣1,得2a=b,∴a、b同号,即b<0,∴abc>0,故③正确;④∵对称轴为x= =﹣1,∴点〔0,1〕的对称点为〔﹣2,1〕,∴当x=﹣2时,y=4a﹣2b+c=1,故④错误;⑤∵x=﹣1时,a﹣b+c>1,又﹣ =﹣1,即b=2a,∴c﹣a>1,故⑤正确.应选:①②③⑤.点评:此题考察的是二次函数图象与系数的关系,掌握二次函数的性质、灵敏运用数形结合思想是解题的关键,解答时,要纯熟运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式二、填空题11.计算:sin60°?cos30°﹣tan45°= .考点:特殊角的三角函数值.专题:计算题.分析:先把sin60°= ,tan45°=1,cos30°= 代入原式,再根据实数的运算法那么进展计算.解答:解:sin60°?cos30°﹣tan45°,= ? ﹣1,故答案为:﹣.点评:此题考察的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.如图,假设∠B=∠DAC,那么△ABC∽△DAC,对应边的比例式是 = = .考点:相似三角形的性质.分析:根据两角对应相等的两个三角形相似可解,再根据相似三角形的性质写出对应边的比例式.解答:解:在△ABC和△DAC中,∵∠C=∠C,∠B=∠DAC;∴△ABC∽△DAC;点评:考察相似三角形的断定定理:〔1〕两角对应相等的两个三角形相似.〔2〕两边对应成比例且夹角相等的两个三角形相似.〔3〕三边对应成比例的两个三角形相似.13.如图,假设点A在反比例函数y= 〔k≠0〕的图象上,AM⊥x轴于点M,△AMO的面积为3,那么k=﹣6.考点:反比例函数系数k的几何意义.专题:数形结合.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S= |k|.解答:解:因为△AOM的面积是3,所以|k|=2×3=6.又因为图象在二,四象限,k<0,所以k=﹣6.故答案为:﹣6.点评:主要考察了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.14.二次函数y=ax2+bx+c〔a≠0〕,其中a,b,c满足a+b+c=0和9a﹣3b+c=0,那么该二次函数图象的对称轴是直线x=﹣1.考点:二次函数图象与系数的关系.专题:压轴题.分析:解方程求出a,b的值,再根据对称轴公式即可求出该二次函数图象的对称轴.解答:解:方程9a﹣3b+c=0减去方程a+b+c=0,可得8a﹣4b=0,根据对称轴公式整理得:对称轴为x= =﹣1.故该二次函数图象的对称轴是直线x=﹣1.点评:解决此题的关键是根据对称轴公式的特点巧妙整理方程,运用技巧不但可以进步速度,还能进步准确率.15.如图,DE∥BC,EF∥AB,且S△ADE=4,S△EFC=9,那么△ABC的面积为25.考点:相似三角形的断定与性质.专题:计算题.分析:相似三角形的面积比等于对应边之比的平方,所以可先利用△EFC∽△ADE,得出对应线段的比,进而得出面积比,最后求出面积的值.解答:解:∵DE∥BC,EF∥AB∴∠C=∠AED,∠FEC=∠A,∴△EFC∽△ADE,而S△ADE=4,S△EFC=9,∴〔〕2= ,∴EC:AE=3:2,∴EC:AC=3:5,∴S△EFC:S△ABC=〔〕2=〔〕2= ,∴S△ABC=9× =25.故答案为25.点评:此题考察了相似三角形的断定和性质,纯熟掌握平行线分线段成比例的性质,理解相似三角形的面积比等于对应边长的平方比.三、解答题16.如图,△ABC是一仓库的屋顶的横截面,假设∠B=30°,∠C=45°,AC=2,求线段AB的长.考点:解直角三角形的应用.分析:过点A作AD⊥BC,根据题意可以求得AD的值,再根据含30°角直角三角形中斜边长为30°角所对直角边一半,根据勾股定理即可解题.解答:解:过点A作AD⊥BC,∵∠C=45°,∴∠DAC=45°,∴AD=CD,∵AD2+CD2=AC2.∴AD= ,在Rt△ABD中,AB2=AD2+BD2,∵∠BAD=30°,∴AB=2AD,解得AB=2 .点评:此题考察了勾股定理的运用,考察了含30°角直角三角形中斜边长为30°角所对直角边一半的性质,考察了等腰直角三角形腰长相等的性质.17.如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度〔准确到1米〕.〔供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4.〕考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:首先根据题意分析图形,此题涉及到两个直角三角形,分别解可得AD与DF的大小.再利用13+EF=13×1.4,进而可求出答案.解答:解:易知四边形ABCD为矩形.∴CD=AB=1.5米.在等腰直角三角形ADE中,AD=DE÷tan45°=14.5﹣1.5=13米.在直角三角形ADF中,DF=AD?×tan55°.∴13+EF=13×1.4.∴EF=5.2≈5〔米〕.点评:此题考察俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.18.如图,A〔﹣4,2〕、B〔 n,﹣4〕是一次函数y=kx+b的图象与反比例函数的图象的两个交点.〔1〕求此反比例函数和一次函数的解析式;〔2〕根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题;数形结合.分析:〔1〕先把A〔﹣4,2〕代入y= 求出m=﹣8,从而确定反比例函数的解析式为y=﹣;再把B〔n,﹣4〕代入y=﹣求出n=2,确定B点坐标为〔2,﹣4〕,然后利用待定系数法确定一次函数的解析式;〔2〕观察图象得到当﹣4<x<0或x>2 时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.解答:解:〔1〕把A〔﹣4,2〕代入y= 得m=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣;把B〔n,﹣4〕代入y=﹣得﹣4n=﹣8,解得n=2,∴B点坐标为〔2,﹣4〕,把A〔﹣4,2〕、B〔2,﹣4〕分别代入y=kx+b得,解方程组得,∴一次函数的解析式为y=﹣x﹣2;〔2〕﹣4<x<0或x>2.点评:此题考察了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标同时满足两个函数的解析式;求反比例函数图象与一次函数图象的交点坐标就是把两个图象的解析式组成方程组,方程组的解就是交点的坐标.也考察了待定系数法以及观察函数图象的才能.19.如图,在平面直角坐标系中,OA=12厘米,OB=6厘米.点P从点O开场沿OA边向点A以1厘米/秒的速度挪动;点Q 从点B开场沿BO边向点O以1厘米/秒的速度挪动.假如P、Q同时出发,用t〔秒〕表示挪动的时间〔0≤t≤6〕,那么,当t为何值时,△POQ与△AOB相似?考点:相似三角形的断定;坐标与图形性质.专题:动点型.分析:此题要分△OPQ∽△OAB和△OPQ∽△OBA两种情况进展求解,可根据各自得出的对应成比例相等求出t的值.解答:解:①假设△POQ∽△AOB时, = ,即 = ,整理得:12﹣2t=t,解得:t=4.②假设△POQ∽△BOA时, = ,即 = ,整理得:6﹣t=2t,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.点评:此题主要考察了相似三角形的断定和性质.要注意解题时要根据不同的相似三角形进展分类讨论,以防漏解.20.如图,在△ABC中,∠CAB=120°,AD是∠CAB的平分线,AC=6,AB=10.〔1〕求;〔2〕求AD的长.考点:相似三角形的断定与性质;等边三角形的断定与性质;平行线分线段成比例.分析:〔1〕过点C作CE∥AB,交AD的延长线于E,易得△ACE是等边三角形与△CDE∽△BDA,根据相似三角形的对应边成比例,即可求得;〔2〕利用平行线分线段成比例定理,即可求得AD的长.解答:解:〔1〕过点C作CE∥AB,交AD的延长线于E,∵AD平分∠CAB,∠CAB=120°,∴∠CAD=∠BAD=60°.∵CE∥AB,∴∠E=∠BAD=60°,∴△ACE是等边三角形,∴CE=AC=6.又∵CE∥AB,∴△CDE∽△BDA,〔2〕由〔1〕知,△ACE是等边三角形,∴AE=6.∵CE∥AB,即,∴AD= AE= ×6= .点评:此题考察了等边三角形的断定与性质,以及相似三角形的断定与性质.解此题的关键是辅助线的作法,因此需要同学们多积累经历.21.某公司经销一种绿茶,每千克本钱为50元.市场调查发现,在一段时间内,销售量w〔千克〕随销售单价x〔元/千克〕的变化而变化,详细关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y〔元〕,解答以下问题:〔1〕求y与x 的关系式;〔2〕当x取何值时,y的值最大?〔3〕假如物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?考点:二次函数的应用.分析:〔1〕因为y=〔x﹣50〕w,w=﹣2x+240故y与x的关系式为y=﹣2x2+34 0x﹣12021.〔2〕用配方法化简函数式求出y的最大值即可.〔3〕令y=2250时,求出x的解即可.解答:解:〔1〕y=〔x﹣50〕?w=〔x﹣50〕?〔﹣2x+240〕=﹣2x2+340x﹣12021,∴y与x的关系式为:y=﹣2x2+340x﹣12021.〔2〕y=﹣2x2+340x﹣12021=﹣2〔x﹣85〕2+2450∴当x=85时,y的值最大.〔3〕当y=2250时,可得方程﹣2〔x﹣85〕2+2450=2250 解这个方程,得x1=75,x2=95根据题意,x2=95不合题意应舍去∴当销售单价为75元时,可获得销售利润2250元.点评:此题考察的是二次函数的实际应用.求二次函数的最大〔小〕值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.第 21 页。
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠A O C的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x,2017)、(x,2017)是12该函数图象上的两个点,则当x=122时,函数值y=(A.﹣2017B.c C.0)D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x<x<x<x<x<x<x,根据表中所提供的信息,以下判断正确的是()①a 1234567>0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x… (x1x2)mx3x4kx5x6mx7……y169916 A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x,x,那么(1+x)(1+x)的值1212是.10.(3分)如图,将△AB C绕点A逆时针方向旋转到△A DE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:.①二次三项式ax2++的最大值为4;②4+2+<0;③一元二次方程2++=1的bx c a b c ax bx c 两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x2﹣2x﹣15=0.̂̂14.(6分)如图,在⊙O中,=A40D,∠=°,求∠的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽1度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池41面积的,求道路的宽.616.(6分)如图,将△ABC绕点A逆时针旋转得到△AB′C′.若点B′落到BC边上,∠B=50°.求∠CB′C′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BA D是它的个外角,OP⊥B C交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BA D的角平分线A G.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且O D∥B C,O D与AC 交于点E.(1)若∠B=70°,求∠CA D的度数;(2)若AB=4,A C=3,求DE的长.21.(8分)如图,△OB D中,O D=B D,△OB D绕点O逆时针旋转一定角度后得到△OA C,此时B,D,C三点正好在一条直线上,且点D是B C的中点.(1)求∠C O D度数;(2)求证:四边形O D A C是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?123.(9分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于23点C.抛物线y=ax2+bx+c的对称轴是x=−且经过A、C两点,与x轴的另一交点为点2B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PA C的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△A D E为等边三角形,M,N分别为EB,C D的中点.(1)如图1,试证C D=BE时,△A M N是等边三角形;(2)当把△A D E绕点A旋转到图2的位置时C D=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△A D E绕点A旋转到图3的位置时,△AM N还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。
利辛九年级上册期中试卷【含答案】
利辛九年级上册期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 利辛九年级上册期中试卷中,关于物质的基本单位,下列哪项是正确的?A. 分子B. 原子C. 离子D. 电子2. 在利辛九年级上册期中试卷的数学部分,以下哪个是二次方程?A. 2x + 3 = 5B. x^2 + 2x + 1 = 0C. 3x + 4y = 7D. 4x 5 = 2x + 33. 利辛九年级上册期中试卷的生物学部分提到,细胞的基本结构不包括以下哪项?A. 细胞膜B. 细胞核C. 细胞壁D. 叶绿体4. 在利辛九年级上册期中试卷的历史部分,以下哪位不是我国古代的四大发明家?A. 张衡B. 祖冲之C. 郭守敬D. 毕昇5. 利辛九年级上册期中试卷的地理部分提到,我国最大的淡水湖是?A. 鄱阳湖B. 洞庭湖C. 太湖D. 巢湖二、判断题(每题1分,共5分)1. 利辛九年级上册期中试卷中,地球是太阳系中的第九颗行星。
()2. 在利辛九年级上册期中试卷的物理部分,能量守恒定律指出能量不能被创造或销毁,只能从一种形式转换为另一种形式。
()3. 利辛九年级上册期中试卷的化学部分提到,氧气是一种无色、无味、无毒的气体。
()4. 在利辛九年级上册期中试卷的英语部分,一般现在时用于描述经常发生的事情。
()5. 利辛九年级上册期中试卷的数学部分提到,勾股定理只适用于直角三角形。
()三、填空题(每题1分,共5分)1. 利辛九年级上册期中试卷中,我国的首都是______。
2. 在利辛九年级上册期中试卷的物理部分,光的传播速度是______。
3. 利辛九年级上册期中试卷的化学部分提到,水的化学式是______。
4. 在利辛九年级上册期中试卷的英语部分,一般现在时的构成是______。
5. 利辛九年级上册期中试卷的数学部分提到,三角形的内角和等于______。
四、简答题(每题2分,共10分)1. 利辛九年级上册期中试卷中,请简述我国的历史发展脉络。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含五套题)
密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、填空题(本大题共8个小题,每小题3分,共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE 绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(本大题共10个小题,每小题3分,共30分) 9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( )A .x 1=1,x 2=﹣3B .x 1=4,x 2=﹣2C .x 1=﹣1,x 2=3D .x 1=﹣4,x 2=211.已知a 、b 满足a+b=5且ab=6,以a 、b 为根的一元二次方程为( )题号一 二 三 总分 得分密封线A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A. B. C. D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B.C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题 (本大题共7个小题,共66分)解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分,每小题4分)解方程(1)(x ﹣2)2=(2x+5)2(2)=.20.(本小题满分7分)已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.(本小题满分8分)在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母; (2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.(本小题满分9分)如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.(本小题满分9分)如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB .(1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.24.(本小题满分12分)为了落实中央的惠农政策,积极推进农业机械化,某市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A 型、B 型农机设备所投资的金额x (万元)与政府补贴的金额y 1(万元)、y 2(万元)的函数关系如图所示(图中OA 段是抛物线,A 是抛物线的顶点).(1)分别写出y 1、y 2与x 的函数关系式;封线内不得答题(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.(本小题满分13分)如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(24分)1.解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1或m﹣=0.解得m=或m=.故答案为:或.2.解:根据题意得x1+x2=﹣,x1•x2=﹣,所以===,x12+x22=(x1+x2)2﹣2x1•x2=(﹣)2﹣2×(﹣)=.故答案为,.3.解:根据题意,顶点在x轴上,顶点纵坐标为0,即,解得c=9.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题4.解:∵P (2,3),∴P ′的坐标为(﹣3,2).5.解:由题意得:x 2﹣2x+1﹣(﹣x+1)>0, 即x 2﹣x=x (x ﹣)>0, 解得:x <0或x >. 故答案为:x <0或x >. 6.解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米. 故答案为:120.7.解:∵四边形ABCD 为平行四边形, ∴AB=CD=3,AD=BC=4,OA=OC ,OB=OD ,∵四边形ABFE 绕O 点旋转180度后能与四边形 CDEF 重合, ∴AE=CF ,OE=OF=1.5,∴四边形EFCD 的周长=DE+CF+OE+OF+CD=BC+2OE+CD =4+3+3 =10. 故答案为10.8.解:∵2a+b=0, ∴b=﹣2a ;又当x=﹣1时,y=3,∴3=a ﹣b+c=3a+c ,即3a+c=3; ∴当x=3时, y=9a+3b+c =9a ﹣6a+c =3a+c =3;故答案为:3. 二、选择题(30分)9.解:A 、是轴对称图形,不是中心对称图形.故错误; B 、是轴对称图形,也是中心对称图形.故正确; C 、不是轴对称图形,是中心对称图形.故错误; D 、是轴对称图形,不是中心对称图形.故错误. 故选B .得 答 题10.解:(x+1)(x ﹣3)=5, x 2﹣2x ﹣3﹣5=0, x 2﹣2x ﹣8=0,化为(x ﹣4)(x+2)=0, ∴x 1=4,x 2=﹣2. 故选:B .11.解:∵a+b=5,ab=6,∴以a ,b 为根的一元二次方程可以为x 2﹣5x+6=0. 故选B .12.解:∵二次函数y=﹣x 2﹣4x+5中a=﹣1<0 ∴抛物线开口向下,对称轴为x=﹣=﹣=﹣2∵B (﹣1,y 2),C (,y 3)中横坐标均大于﹣2 ∴它们在对称轴的右侧y 3<y 2,A (﹣,y 1)中横坐标小于﹣2,∵它在对称轴的左侧,它关于x=﹣2的对称点为2×(﹣2)﹣(﹣)=﹣,>﹣>﹣1∵a <0时,抛物线开口向下,在对称轴的右侧y 随x 的增大而减小∴y 3<y 1<y 2. 故选C .13.解:∵△ABC 绕着点C 按顺时针方向旋转20°,B B ′位置,A 点落在A ′位置 ∴∠BCB ′=∠ACA ′=20° ∵AC ⊥A ′B ′,∴∠BAC=∠A ′=90°﹣20°=70°. 故选C .14.解:由图象可知,抛物线与x 轴的交点坐标分别为(﹣0)和(5,0),∴y <0时,x 的取值范围为x <﹣1或x >5. 故选C .15.解:∵函数y=ax+b 的图象经过二、三、四象限, ∴a <0,b <0, ∴x=﹣<0,即二次函数y=ax 2+bx+1的图象开口向下,对称轴位于y 故选:C .16.解:∵在Rt △ABC 中,∠B=30°,AC=1,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴AB=2AC=2,∴BB ′=2AB=4. 故选A .17.解:设平均一人传染了x 人,根据题意,得:x+1+(x+1)x=121 解得:x 1=10,x 2=﹣12(不符合题意舍去)∴经过三轮传染后患上流感的人数为:121+10×121=1331(人). 故选:D .18.解:由二次函数图象与x 轴有两个交点, ∴b 2﹣4ac >0,选项①正确; 又对称轴为直线x=1,即﹣=1,可得2a+b=0(i ),选项②错误; ∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a ﹣2b+c <0,选项③错误; ∵﹣1对应的函数值为0,∴当x=﹣1时,y=a ﹣b+c=0(ii ), 联立(i )(ii )可得:b=﹣2a ,c=﹣3a ,∴a :b :c=a :(﹣2a ):(﹣3a )=﹣1:2:3,选项④正确, 则正确的选项有:①④. 故选D三、解答题(共66分)19.解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5), 所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.(6分)解方程:x 2+x ﹣2=0.18.(8分)已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式. 19.(8分)已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值;密封线内不得(2)求2x12+6x2﹣2015的值.20.(10分)如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.(11分)如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.(11分)飞机着陆后滑行的距离S(单位:m间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.(14分)如图,△ABC是边长为6cm的等边三角形,点DB点出发沿B→A方向在线段BA上以a cm/s速度运动,时,点E从线段BC的某个端点出发,以b cm/s速度在线段上运动,当D到达A点后,D、E运动停止,运动时间为t密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.(14分)定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分) 1.解:∵3x 2﹣4x ﹣1=0,∴方程3x 2﹣4x ﹣1=0的二次项系数是3,一次项系数是﹣4; 故选B .2.解:y=x 2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x 2﹣2x+2的顶点坐标是(1,1). 故选:A .3.解:如图,△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则∠A 1OA=50°,OA=OA 1,OB=OB 1,AB=A 1B 1. 设直线AB 与直线A 1B 1交于点M . 由SSS 易得△OAB ≌△OA 1B 1, ∴∠OAB=∠OA 1B 1, ∴∠OAM=∠OA 1M , 设A 1M 与OA 交于点D , 在△OA 1D 与△MAD 中,题∵∠DAM=∠DA 1O ,∠ODA 1=∠MDA , ∴∠M=∠A 1OD=50°. 故选B .4.解:∵x 2+6x+4=0, ∴x 2+6x=﹣4,∴x 2+6x+9=5,即(x+3)2=5. 故选:C .5.解:A 、x 2﹣x ﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B 、x 2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C 、2015x 2+11x ﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D 、x 2+x+2=0,△=12﹣4×2=﹣7<0正确; 故选D .6.解:点P (﹣2,3)关于原点对称的点的坐标是(2,﹣3故选:D .7.解:如图所示,连接OA .⊙O 的直径CD=10cm , 则⊙O 的半径为5cm , 即OA=OC=5,又∵OM :OC=3:5, 所以OM=3,∵AB ⊥CD ,垂足为M , ∴AM=BM , 在Rt △AOM 中,AM==4,∴AB=2AM=2×4=8. 故选B .8密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴抛物线C 的解析式为y=ax 2+bx+c ,a 确定抛物线的形状与开口方向;若将抛物线C 沿y 轴平移,顶点发生了变化,对称轴没有变化,a 的值不变,则﹣不变,所以b 的值不变;若将抛物线C 沿直线l :y=x+2平移,则a 的值不变, 故选D .9.解:设AC=x ,四边形ABCD 面积为S ,则BD=16﹣x , 则:S=AC •BD=x (16﹣x )=﹣(x ﹣8)2+32, 当x=8时,S 最大=32;所以AC=BD=8时,四边形ABCD 的面积最大, 故选D .10.解:当a >0时, ∵a 2+ab+ac <0, ∴a+b+c <0, ∴b+c <0, 如图1,∴b 2﹣4ac >0,故①错误; a (b+c )<0,故②正确;∴方程ax 2+bx+c=0有两个不同根x 1、x 2,且x 1<1,x 2>1, ∴(x 1﹣1)(x 2﹣1)<0,即(x 1﹣1)(1﹣x 2)>0,故③正确;∴二次函数的图象与坐标轴有三个不同交点,故④正确; 故选C .二、填空题(共6小题,每小题3分,共18分) 11.解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣. 12.解:∵x=(b 2﹣4c >0),∴x 2+bx+c =()2+b+c=++c == =0.故答案为:0.13.解:作OE ⊥AB 于E ,交CD 于F ,连结OA 、OC ,如图,题∵AB ∥CD , ∴OF ⊥CD ,∴AE=BE=AB=12,CF=DF=CD=5, 在Rt △OAE 中,∵OA=13,AE=12, ∴OE==5,在Rt △OCF 中,∵OC=13,CF=5, ∴OF==12,当圆心O 在AB 与CD 之间时,EF=OF+OE=12+5=17; 当圆心O 不在AB 与CD 之间时,EF=OF ﹣OE=12﹣5=7; 即AB 和CD 之间的距离为7cn 或17cm . 故答案为7cn 或17cm .14.解:设AC=x ,则BC=AB ﹣AC=1﹣x , ∵AC 2=BC •AB , ∴x 2=1﹣x , 解得:x 1=,x 2=(不合题意,舍去),∴AC=,∵AD 2=CD •AC ,∴AD=×=,∵AE 2=DE •AD , ∴AE=×=﹣2;故答案为:﹣2.15.解:根据函数图象可知:抛物线的对称轴为x=1与x 轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x 轴的另一个交点坐标为0). ∵y <0,∴x >3或x <﹣1.故答案为:x >3或x <﹣1.16.解:当B 、D 重合或C 、E 重合时DE 长度最大,如图1∵∠BAE=30°,∠AEB=90°, ∴DE=AB=a ,当∠BAD=∠CAE=15°时,DE 长度最小,如图2, 作AF ⊥BC ,且AF=AB ,连接DF 、CF , ∵AF ⊥BC ,∴∠BAF=∠CAF=30°, ∵∠BAD=∠CAE=15°, ∴∠DAH=∠EAH=15°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BAD=∠DAH ,在△ADB 和△ADF 中,,∴△ABD ≌△ADF , ∴∠B=∠AFD ,BD=DF , ∵∠AHB=∠DHF=90°,∴△ABH ∽△DFH , AB :AH=DF :DH , ∴=, ∴=,∴DH=,其中BD+DH=a 、AH=a ,∴DH==a∴DE=(2﹣3)a ,故DE 长度的取值范围是(2﹣3)a ≤DE ≤a .三、解答题(共8小题,共72分) 17.解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作;密(2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2,解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°,∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,内不答题则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.24.解:(1)设抛物线上有一点(x,y),由定义知:x2+(y﹣)2=|y+|2,解得y=ax2;(2)如图1,由(1)得抛物线y=x2的焦点为(0,),准线为y=﹣,∴y=x2﹣n2由y=x2向下平移n2个单位所得,∴其焦点为A(0,﹣n2),准线为y=﹣﹣n2,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题由定义知P 为抛物线上的点,则PA=PH ,∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2,∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 不 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共15题,每题3分,共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( ) A .11 B .13 C .11或13 D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A .﹣4 B .﹣1 C .1 D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( ) A .y=2(x+1)2+3 B .y=2(x ﹣1)2﹣3 C .y=2(x+1)2﹣3 D .y=2(x ﹣1)2+310.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)12.已知二次函数y=ax 2+bx+c 的x 、y密线学校 班级 姓名 学号密 封 线 内 不 得 答 题x ﹣1 0 1 2 3 y51﹣1﹣11则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x=13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D . 15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.(4分)解方程:x 2﹣4x+2=0.17.(5分)已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.(6分)如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.(6分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时,y= ; (2)若该店日净收入为1560元,那么每份售价是多少元?20.(9分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.(10分)已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.(11分)某房地产开放商欲开发某一楼盘,于2018年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2020年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2022年初完工并还清银行贷款),售,开发总面积为5购买土地费用的5%,工程完工后不再上交土地管理费.若房价定位每平方米3000米上涨100元,则会少卖1000平方米,且卖房时间会延长个月.该房地产开发商预计售房净利润为8660万. (1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2商不再出售,准备作为商业用房对外出租)平方米多少元?23.(12分)正方形ABCD 点A 重合,一条直角边与边BC 交于点E (点E 不与点B 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD 交于G ,且点G 是斜边MN 的中点,连接EG EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.(12分)如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案与试题解析一、选择题(共15题,每题3分共45分)1.解:∵选项A 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形,∴选项A 不正确;∵选项B 中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形, ∴选项B 正确;∵选项C 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形, ∴选项C 不正确;∵选项D 中的图形旋转180°后能与原图形重合, ∴此图形是中心对称图形,但它不是轴对称图形, ∴选项D 不正确.故选:B .2.解:x 2﹣3x=0, x (x ﹣3)=0, x=0或x ﹣3=0, 所以x 1=0,x 2=3.故选C . 3.解:方程x 2﹣6x+8=0, 分解因式得:(x ﹣2)(x ﹣4)=0,可得x ﹣2=0或x ﹣4=0,解得:x 1=2,x 2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13. 故选B .4.解:根据韦达定理得x 1•x 2=1.故选:C . 5.解:∵a 为方程x 2+x ﹣5=0的解, ∴a 2+a ﹣5=0,∴a2+a=5 则a2+a+1=5+1=6.故选:B.6.解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选A.7.解:∵在等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∵将△ABC绕点 A逆时针旋转60°后得到的△AB′C′,∴∠BAB′=60°,∠B′AC′=∠BAC=45°,∴∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°,故选A.8.解:y=2(x﹣1)2+3中,a=2.故选D.9.解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.故选A.10.解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.11.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选B.12.解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:D.13.解:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,所以A正确.故选A.14.解:A、由二次函数的图象可知a<0,此时直线应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在ya、b异号,b>0,此时直线y=ax+b故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b三象限,故C可排除;正确的只有D.故选:D.15.解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.二、解答题(本大题共9小题,共75分)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题16.解:x 2﹣4x=﹣2x 2﹣4x+4=2 (x ﹣2)2=2或∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元; 20.解:(1)作图如右:△A 1B 1C 1即为所求; (2)作图如右:△A 2B 2C 2即为所求; (3)x 的值为6或7.21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2,原方程为x2﹣5x+6=0⇒x1=2,x2=3即,等腰三角形的三边为3,3,2.则周长为8,面积为若底为3,则原方程为x2﹣4x+4=0⇒x1=x2=2即,等腰三角形的三边为2,2,3.则周长为7,面积为22.解:(1)15×100=1500万,1500×10%×2=300万,1500+3500+3500×5%×2=5350万,1500×5%×2=150万,四者相加1500+300+5350+150=7300万.答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x个100元,依题意有(5﹣0.1x)=8660+7300,解得x1=12,x2=8,又因为当x1=12时,卖房时间为30个月,此时超过两年,舍去;当x2=8时,卖房时间为20个月;则房价为3000+8×100=3800元.答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD是正方形,∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.∵∠EAF=90°,∴∠EAF=∠BAD,∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,∴∠BAE=∠DAF.在△ABE和△ADF 中,∴△ABE≌△ADF(ASA)∴AE=AF;(2)如图②,连接AG,∵∠MAN=90°,∠M=45°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠N=∠M=45°,∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x ,∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,密 封 线 内 不答 题∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0. ∴抛物线开口向下; (3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0①由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含5套题)
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、填空题(共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(共30分)9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( ) A .x 1=1,x 2=﹣3 B .x 1=4,x 2=﹣2 C .x 1=﹣1,x 2=3 D .x 1=﹣4,x 2=2密封线内不11.已知a、b满足a+b=5且ab=6,以a、b为根的一元二次方程为()A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A.B.C.D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B. C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题(共66分) 19.解方程(1)(x ﹣2)2=(2x+5)2 (2)=.20.已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB . (1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.得答题24.为了落实中央的惠农政策,积极推进农业机械化,黄冈市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A型、B型农机设备所投资的金额x(万元)与政府补贴的金额y1(万元)、y2(万元)的函数关系如图所示(图中OA段是抛物线,A是抛物线的顶点).(1)分别写出y1、y2与x的函数关系式;(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,四边形OEAF是以OA为对角线的平行四边形,求▱OEAFS与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E标;若不存在,请说明理由.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、填空题( 共24分) 1.或. 2.,.3.c=9.4.P ′的坐标为(﹣3,2).5. x <0或x >.6.120.7.10.8.3. 二、选择题(共30分)9.B .10.B .11.B .12.C .13.C .14.C .15.C.16.A 17.D 18.D 三、解答题(共66分)19. 解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5),所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.解方程:x 2+x ﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式.19.已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值; (2)求2x 12+6x 2﹣2015的值.密封线内不得20.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC是边长为6cm的等边三角形,点D从B发沿B→A方向在线段BA上以a cm/s点E从线段BC的某个端点出发,以b cm/s速度在线段BC运动,当D到达A点后,D、E运动停止,运动时间为t密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .密封线内不得答题8.D.9.D.10.C.二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.12.已知x=(b2﹣4c>0),则x2+bx+c的值为0 .13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm .14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为﹣2 .15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1 .16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是(2﹣3)a≤DE≤a..密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°,密 内 不 得 答∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来, 则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°.设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y ,∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣6. ∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形,密 封 线 内 不 得 答 题∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°, ∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,∴M 点运动的路径为过点C 垂直于BC 的一条线段. 当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3. 24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2,由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共15题,每题3分共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A .﹣4B .﹣1C .1D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( )A .12B .6C .9D .166.关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于( )A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x ﹣1)2﹣3C .y=2(x+1)2﹣3D .y=2(x ﹣1)2+3 10.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1) 11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1) 12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:密 封 线 内 不x ﹣1 0 1 2 3 y51﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.解方程:x 2﹣4x+2=0.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0)该抛物线的解析式.18.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19的成本为5元,该店每天固定支出费用为600元本).若每份售价不超过10元,每天可销售400价超过10元,每提高1元,每天的销售量就减少40便于结算,每份套餐的售价x (元)取整数,用y 该店日净收入.( 日净收入=固定支出 )(1)当5<x ≤10时,y= ;当x >10时, y= ;(2)若该店日净收入为1560密学校 班级 姓名 学号密 封 线 内 不 得 答 题20.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.某房地产开放商欲开发某一楼盘,于2010年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2012年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2014年初完工并还清银行贷款),同时开始房屋出售,开发总面积为5万平方米,动工后每年的土地管理费降为购买土地费用的5%,工程完工后不再上交土地管理费.出售之前,该开发商聘请调查公司进行了市场调研,发现在该片区,若房价定位每平方米3000元,则会销售一空.若房价每平方米上涨100元,则会少卖1000平方米,且卖房时间会延长2.5个月.该房地产开发商预计售房净利润为8660万.(1)问:该房地产开发商总的投资成本是多少万? (2)若售房时间定为2年(2年后,对于未出售的面积,开发商不再出售,准备作为商业用房对外出租),则房价应定为每平方米多少元?23.正方形ABCD 中,将一个直角三角板的直角顶点与点A 重合,一条直角边与边BC 交于点E (点E 不与点B 和点C 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边MN 与边CD 交于G ,且点G 是斜边MN 的中点,连接EG ,求证:EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.封线内24.如图,已知点A(0,1),C(4,3),E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的一动点,点D在y轴上,抛物线y=ax2+bx+1以P为顶点.(1)说明点A,C,E在一条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点,这时能确定a、b的值吗?若能,请求出a,b的值;若不能,请确定a、b的取值范围.参考答案一、选择题(共15题,每题3分共45分)1.B.2. C.3. B.4. C.5.B.6.A.7.A.8.D.910.B.11.B.12.D.13.A.14.D.15.C.二、解答题(本大题共9小题,共75分)16.解:x2﹣4x=﹣2x2﹣4x+4=2(x﹣2)2=2或∴,.17.解:设抛物线的解析式为y=a(x﹣1)2﹣4,∵抛物线经过点B(3,0),∴a(3﹣1)2﹣4=0,解得:a=1,∴y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.18.(1)证明:∵将△BOC绕点C按顺时针方向旋转60ADC,∴∠OCD=60°,CO=CD,∴△OCD是等边三角形;(2)解:△AOD为直角三角形.密学校 班级 姓名 学号密 封 线 内 不 得 答 题理由:∵△COD 是等边三角形.∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元;20.解:(1)作图如右:△A 1B 1C 1即为所求;(2)作图如右:△A 2B 2C 2即为所求;(3)x 的值为6或7.密 封 线 内 不 得 答 题21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3 即,等腰三角形的三边为3,3,2. 则周长为8,面积为若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万. 答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有(5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD .∵∠EAF=90°, ∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°, ∴∠N=∠M=45°, ∴AM=AN .密学校 班级 姓名 学号密 封 线 内 不 得 答 题∵点G 是斜边MN 的中点,∴∠EAG=∠NAG=45°. ∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°,即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x , ∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得(6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0.∴抛物线开口向下;密 封 线 内不 得 答 题(3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0①由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A 段AE 有两个不同的交点,则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m+2的值等于( )A .4B .1C .0D .﹣13.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是( )A .(﹣3,﹣2)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣2,3) 4.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <﹣2 B . k <2 C .k >2 D .k <2且k ≠1 6.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出下列结论:①b 2﹣4ac >0;②2a+b <0;③4a ﹣2b+c=0;④a :b :c=﹣1:2:3.其中正确的是( )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2﹣3x=0的根是 .得 答 题8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c ≤mx+n 时,x 的取值范围是 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为 .12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、(本大题共4小题,每小题6分,共24分) 15.解方程:x (2x+3)=4x+6.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△≌△CDE ,并且△CDE 可由△ABC 尺规作出旋转中心O 墨水笔加黑),并直接写出旋转角度是 .17长为1个单位长度;已知△ABC .(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1(只画出图形).(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,形),写出B 2和C 2的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.已知x 1,x 2是关于x 的一元二次方程x 2﹣6x+k=0的两个实数根,且x 12x 22﹣x 1﹣x 2=115. (1)求k 的值; (2)求x 12+x 22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy 中,二次函数y=x 2+(2k ﹣1)x+k+1的图象与x 轴相交于O 、A 两点. (1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6,求点B 的坐标.20.已知等腰△ABC 的一边长a=3,另两边长b 、c 恰好是关于x 的方程x 2﹣(k+2)x+2k=0的两个根,求△ABC 的周长.21.如图,矩形ABCD 的两边长AB=18cm ,AD=4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.22.在同一平面内,△ABC 和△ABD 如图①放置,其中AB=BD . 小明做了如下操作:将△ABC 绕着边AC 的中点旋转180°得到△CEA ,将△ABD 绕着边AD 的中点旋转180°得到△DFA ,如图②,请完成下列问题: (1)试猜想四边形ABDF 是什么特殊四边形,并说明理由; (2)连接EF ,CD ,如图③,求证:四边形CDEF 是平行四边形.五、(本大题共10分)23.如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系(如图1),y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m ,宽2.4m ,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2)道正中间设有0.4m 吗?六、(本大题共12分)24.如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过B 两点的抛物线交x 轴于另一点C (3,0). (1)求A、B的坐标; (2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P ,使得△PAB 并求出最小值;(4)在抛物线的对称轴上是否存在点Q ,使△ABQ 形?若存在,求出符合条件的Q 由.密 学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.D .2. A .3.D .4.B .5.D .6.D二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x 2﹣3x=0的根是 x 1=0,x 2=3 .8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 20% .9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 ②⑤ . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c ≤mx+n 时,x 的取值范围是 ﹣2≤x ≤1 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为﹣1 . 12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 x ≤1 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 3或﹣5 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 (,2) .三、(本大题共4小题,每小题6分,共24分) 15.解:x (2x+3)﹣2(2x+3)=0, ∴(2x+3)(x ﹣2)=0, ∴2x+3=0或x ﹣2=0, ∴x 1=﹣,x 2=2.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△ABC ≌△CDE ,并且△CDE 可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O (保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 90° .内 答17.解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示, B 2(4,﹣1),C 2(1,﹣2).18.解:(1)∵x 1,x 2是方程x 2﹣6x+k=0的两个根, ∴x 1+x 2=6,x 1x 2=k , ∵x 12x 22﹣x 1﹣x 2=115, ∴k 2﹣6=115, 解得k 1=11,k 2=﹣11,当k 1=11时,△=36﹣4k=36﹣44<0, ∴k 1=11不合题意当k 2=﹣11时,△=36﹣4k=36+44>0, ∴k 2=﹣11符合题意,∴k 的值为﹣11; (2)∵x 1+x 2=6,x 1x 2=﹣11∴x 12+x 22+8=(x 1+x 2)2﹣2x 1x 2+8=36+2×11+8=66.四、(本大题共4小题,每小题8分,共32分) 19.解:(1)把(0,0)代入得k+1=0,解得k=﹣1, 所以二次函数解析式为y=x 2﹣3x ;(2)当y=0时,x 2﹣3x=0,解得x 1=0,x 2=3,则A (3,0抛物线的对称轴为直线x=, 设B (x ,x 2﹣3x ), 因为△AOB 的面积等于6, 所以•3•|x 2﹣3x|=6,当x 2﹣3x=4时,解得x 1=﹣1,x 2=4,则B 点坐标为(4,4当x 2﹣3x=﹣4时,方程无实数解. 所以点B 的坐标为(4,4). 20.解:x 2﹣(k+2)x+2k=0 (x ﹣2)(x ﹣k )=0, 则x 1=2,x 2=k , 当b=c ,。
2020-2021学年安徽省九年级(上)期中数学试卷(附答案详解)
2020-2021学年安徽省九年级(上)期中数学试卷1.若yx =34,则x+yx的值是()A. 73B. 74C. −74D. 72.下列函数中,反比例函数是()A. x(y+1)=1B. y=1x+1C. y=1x2D. y=13x3.若函数y=4x2+1的函数值为5,则自变量x的值应为()A. 1B. −1C. ±1D. 3√224.在同一坐标系中,抛物线y=4x2,y=14x2,y=−14x2的共同特点是()A. 关于y轴对称,开口向上B. 关于y轴对称,y随x的增大而增大C. 关于y轴对称,y随x的增大而减小D. 关于y轴对称,顶点是原点5.已知二次函数y=a(x−ℎ)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6B. 5C. 4D. 36.下列各问题中,两个变量之间的关系不是反比例函数的是()A. 小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B. 菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系C. 一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的密度ρ之间的关系D. 压力为600N时,压强p与受力面积S之间的关系7.如图,AD与BC相交于点O,AB//CD.若AO=2,DO=3,BC=6,则CO的长为()A. 2.4B. 3C. 3.6D. 48.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2+bx+c=1的解的个数是()A. 0或2B. 0或1C. 1或2D. 0,1或29.如图,已知点C是线段AB的黄金分割点(其中AC>BC),则下列结论正确的是()A. BCAC =√5−12B. ACBC=√5−12C. AB2=AC2+BC2D. BC2=AC⋅BA10.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数y=4x的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A. 2B. 4C. 2√2D. 4√211.在比例尺为1:5000的地图上,量得甲,乙两地的距离为25cm,则甲、乙两地的实际距离是______米(用科学记数法表示)12.如图,⊙O的半径为2.C1是函数y=x2的图象,C2是函数y=−x2的图象,则阴影部分的面积是______ .13.已知实数x,y,z满足x+y+z=0,3x−y−2z=0,则x:y:z=______.14.如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF相交于点H.给出下列结论:①AF=DE;②∠ADP=15°;③PFPC =13;④PD2=PH⋅PB,其中正确的是______.(填写正确结论的序号)15.已知a,b,c为△ABC的三边长,且a+b+c=36,a3=b4=c5,求△ABC的三边长.16.已知二次函数的顶点坐标为(1,4),且其图象经过点(−2,−5),求此二次函数的解析式.17.新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产1600万个口罩的任务,计划用t天完成.(1)写出每天生产口罩w(万个)与生产时间t(天)(t>4)之间的函数表达式;(2)由于国外的疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含t的代数式表示)18.如图,D、E分别是△ABC的边AB、BC上的点,DE//AC,若S△BDE:S△CDE=1:3,求S△DOE:S△AOC的值.19.抛物线y=mx2−4m(m>0)与x轴交于A,B两点(A点在B点左边),与y轴交于C点,已知OC=2OA.求:(1)A,B两点的坐标;(2)抛物线的解析式.20.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE⋅PF.21.如图,在平面直角坐标系中有抛物线c:y=x2+m和直线l:y=−2x−2,直线l与x轴的交点为B,与y轴的交点为A.(1)求m取何值时,抛物线c与直线l没有公共点;(2)向下平移抛物线c,当抛物线c的顶点与点A重合时,试判断点B是否在平移后的抛物线上.(k≠0,x>0)的图象与直线y=3x相22.反比例函数y=kx交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)在y轴上确定一点M,使点M到A,B两点距离之和d=MA+MB最小,求点M的坐标.23.在△ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将△ABC沿MN折叠,顶点C恰好落在斜边的P点上.(1)如图1,若点N为BC中点时,求证:MN//AB;(2)如图2,当MN与AB不平行时,求证:PAPB =CMCN;(3)如图3,当AC≠BC且MN与AB不平行时,(2)中的等式还成立吗?请直接写出结论.答案和解析1.【答案】B【解析】解:yx =34,则x+yx =3+44=74,故选:B.根据合比性质计算即可.本题考查的是比例的性质,掌握比例的合比性质是解题的关键.2.【答案】D【解析】解:A、不是反比例函数,故A选项不合题意;B、不是反比例函数,故B选项不合题意;C、不是反比例函数,故C选项不合题意;D、是反比例函数,故D选项符合题意.故选:D.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k为常数,k≠0)或y=kx−1(k为常数,k≠0).本题考查了反比例函数的定义,反比例函数解析式的一般形式y=kx(k≠0),也可转化为y=kx−1(k≠0)的形式,特别注意不要忽略k≠0这个条件.3.【答案】C【解析】解:根据题意,得4x2+1=5,x2=1,解得x=−1或1.故选:C.根据题意,把函数的值代入函数表达式,然后解方程即可.本题考查给出二次函数的值去求函数自变量的值.代入转化为求一元二次方程的解.4.【答案】D【解析】解:因为抛物线y=4x2,y=14x2,y=−14x2都符合抛物线的最简形式y=ax2,其对称轴是y轴,顶点是原点.故选:D.形如y=ax2的抛物线共同特点就是:关于y轴对称,顶点是原点,a正负性决定开口方向.a的绝对值大小决定开口的大小.要求掌握形如y=ax2的抛物线性质.5.【答案】D【解析】【分析】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a),对称轴直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a 时,y随x的增大而增大;x=−b2a时,y取得最小值4ac−b24a,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小;x=−b2a时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.根据抛物线的顶点式得到抛物线的对称轴为直线x=ℎ,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到ℎ<4.【解答】解:∵抛物线的对称轴为直线x=ℎ,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=ℎ<4.故选D.6.【答案】C【解析】A.根据速度和时间的关系式得:v=100t,是反比例函数;B.因为菱形的对角线互相垂直平分,所以12xy=48,即y=96x,是反比例函数;C.根据体积,质量m与所盛液体的密度ρ之间的关系得:m=30p,不是反比例函数;D.根据压力,压强p与受力面积S之间的关系得:p=600S,是反比例函数;故选:C.先对各选项根据题意列出函数关系式,再根据反比例函数的定义进行判断即可结论.本题主要考查了反比例函数的应用,反比例函数的定义,正确表示出各量之间的函数关系是解决本题的关键.7.【答案】C【解析】解:∵AB//CD,∴△OAB∽△ODC,∴OAOD =OBOC,∵AO=2,DO=3,BC=6,∴23=6−OCOC,解得OC=3.6.故选:C.根据AB//CD可证明△OAB∽△ODC,由相似三角形的性质得出OAOD =OBOC,则可求出答案.本题考查了相似三角形的判定与性质,利用相似三角形的性质求出CO的长是解题关键.8.【答案】A【解析】解:分三种情况:点M的纵坐标小于1,方程12x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程12x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程12x2+bx+c=1的解的个数是0.故方程12x2+bx+c=1的解的个数是0或2.故选:A.分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程12x2+bx+c=1的解的个数.考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.【答案】A【解析】解:∵点C是线段AB的黄金分割点,且AC>BC,∴BCAC =ACAB=√5−12,∴选项A符合题意,AC2=BC⋅AB,∴选项D不符合题意;∵ACBC =2√5−1=√5+12,∴选项B不符合题意;∵AB2≠AC2+BC2,∴选项C不符合题意;故选:A.根据黄金分割的定义得出BCAC =ACAB=√5−12,从而判断各选项.本题主要考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.10.【答案】C【解析】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC=√OD2+CD2=2√2,由菱形的性质,可知OA=OC,∵OC//AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=12×OA×CD=12×2√2×2=2√2.故选:C.连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.11.【答案】1.25×103【解析】解:设甲、乙两地间的实际距离为xcm,则15000=25x,解得:x=125000cm=1250m=1.25×103m.故答案为:1.25×103米.根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.本题考查的是比例线段,掌握比例尺的概念和性质是解题的关键.12.【答案】2π【解析】解:∵C1是函数y=x2的图象,C2是函数y=−x2的图象,∴两函数图象关于x轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故答案为:2π.根据C1是函数y=x2的图象,C2是函数y=−x2的图象,得出阴影部分面积即是半圆面积求出即可.此题主要考查了二次函数的对称性,根据已知得出阴影部分面积即是半圆面积是解题关键.13.【答案】1:(−5):4【解析】解:x+y+z=0①,3x−y−2z=0②,①+②得4x−z=0,则z=4x,把z =4x 代入①得x +y +4x =0,则y =−5x ,所以x :y :z =x :(−5x):4x =1:(−5):4.故答案为1:(−5):4.通过解方程组,用x 分别表示出y 与z ,然后求x :y :z 的值.本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决此类问题的关键.14.【答案】①②④【解析】解:∵△BPC 是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,在正方形ABCD 中,∵AB =BC =CD ,∠A =∠ADC =∠BCD =90°,∴∠ABE =∠DCF =30°,∴△ABE≌△DCF(ASA),∴AE =DF ,∴AE −EF =DF −EF ,∴AF =DE ;故①正确;∵PC =CD ,∠PCD =30°,∴∠PDC =75°,∴∠ADP =∠ADC −∠PDC =90°−75°=15°.故②正确;∵∠FPE =∠PFE =60°,∴△FEP 是等边三角形,∴△FPE∽△CPB ,∴PF PC =EF BC ,设PF =x ,PC =y ,则DC =y ,∵∠FCD =30°,∴y =√32(x +y),整理得:(1−√32)y =√32x ,解得:xy =2√3−33,则PFPC =2√3−33,故③错误;∵PC=CD,∠DCF=30°,∴∠PDC=75°,∵∠BDC=45°,∴∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CPD,∴PDCP =PHPD,∴PD2=PH⋅CP,∵PB=PC,∴PD2=PH⋅PB;故④正确.故答案为:①②④.先判断出BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,再判断出AB=BC=CD,∠A=∠ADC=∠BCD=90°,进而得出∠ABE=∠DCF=30°,即可判断出△ABE≌△DCF(ASA),即可得出结论;由等腰三角形的性质得出∠PDC=75°,则可得出答案;证明△FPE∽△CPB,得出PFPC =EFBC,设PF=x,PC=y,则DC=y,得出y=√32(x+y),则可求出答案;先判断出∠DPH=∠DPC,进而判断出△DPH∽△CPD,即可得出结论.本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.15.【答案】解:a3=b4=c5,得a=35c,b=45c,把a=35c,b=45c代入且a+b+c=36,得3 5c+45c+c=36,解得c=15,a=35c=9,b=45c=12,△ABC三边的长:a=9,b=12,c=15.【解析】根据比例的性质,可得a、b、c的关系,根据a、b、c的关系,可得一元一次方程,根据解方程,可得答案.本题考查了比例的性质,利用了比例的性质.16.【答案】解:设抛物线解析式为y=a(x−1)2+4,把(−2,−5)代入得a(−2−1)2+4=−5,解得a=−1,所以抛物线解析式为y=−(x−1)2+4.【解析】设顶点式y=a(x−1)2+4,然后把(−2,−5)代入求出a的值即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.17.【答案】解:(1)写出每天生产口罩w(万个)与生产时间t(天)(t>4)之间的函数表达式为:w=1600t(t>4);(2)由题意得:w=1600t−4−1600t=1600t−1600(t−4)t(t−4)=6400t2−4t(万个),答:每天要多做6400t2−4t(t>4)万个口罩才能完成任务.【解析】(1)根据每天生产口罩w(万个)、生产时间t(天)(t>4)、生产总量之间的关系可直接列出函数表达式;(2)根据题意得到w=6400t2−4t(万个),于是得到结论.本题主要考查了反比例函数的应用,了解每天生产口罩w(万个)、生产时间t(天)(t>4)、生产总量之间的关系是解决问题的关键.18.【答案】解:∵S △BDE :S △CDE =1:3,∴BE :EC =1:3;∴BE :BC =1:4;∵DE//AC ,∴△DOE∽△AOC ,∴DE AC =BE BC =14,∴S △DOE :S △AOC =(14)2=116.【解析】由已知得出BE :BC =1:4;证明△DOE∽△AOC ,得到DE AC =14,由相似三角形的性质即可解决问题.本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE :BC =1:4是解决问题的关键解题的关键.19.【答案】解:(1)当y =0时,mx 2−4m =0,即x 2−4=0,解得x 1=2,x 2=−2, ∴A(−2,0),B(2,0);(2)当x =0时,y =mx 2−4m =−4m ,∴C(0,−4m),∵OA =2,∴OC =2OA =4,∴|−4m|=4,解得m =1或m =−1,∵m >0,∴m =1,∴抛物线解析式为y =x 2−4.【解析】(1)通过解方程mx 2−4m =0可得A 、B 点的坐标;(2)先利用OA =2得到OC =4,所以|−4m|=4,然后求出满足条件的m 的值,从而得到抛物线解析式.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.【答案】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,{AD=AB∠BAP=∠DAP AP=AP,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD//BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴BPPF =PEPB,∴PB2=PE⋅PF,∴PD2=PE⋅PF.【解析】(1)由菱形的性质可得AB=AD,∠BAC=∠DAC,由“SAS”可证△ABP≌△ADP;(2)由全等三角形的性质可得PB=PD,∠ADP=∠ABP,通过证明△EPB∽△BPF,可得BPPF =PEPB,可得结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,灵活运用这些性质进行推理是本题的关键.21.【答案】解:(1)根据题意得x2+m=−2x−2,整理得x2+2x+m+2=0,∵抛物线c与直线l没有公共点,∴△=22−4(m+2)<0,解得m>−1,∴m>−1时,抛物线c与直线l没有公共点;(2)当x=0时,y=−2x−2=−2,∴A(0,−2),当y =0时,−2x −2=0,解得x =−1,∴B(−1,0),∵抛物线c 的顶点与点A 重合,∴平移后的抛物线解析式为y =x 2−2,当x =−1时,y =x 2−2=−1,∴点B 不在平移后的抛物线上.【解析】(1)令x 2+m =−2x −2,整理得x 2+2x +m +2=0,根据判别式的意义得到△=22−4(m +2)<0,则抛物线c 与直线l 没有公共点;(2)先利用一次函数解析式确定A(0,−2),∴B(−1,0),再写顶点在A 点的抛物线解析式为y =x 2−2,然后根据二次函数图象上点的坐标特征进行判断.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,把抛物线与一次函数的交点问题转化为一元二次方程根的问题.也考查了二次函数的几何变换.22.【答案】解:(1)∵A(1,3),AB ⊥x 轴,∴AB =3,OB =1,∵AB =3BD ,∴BD =1,∴D(1,1),将D 坐标代入反比例解析式得:k =1;(2)作点B(1,0)关于y 轴的对称点E(−1,0),连接AE 交y 轴于点M ,则点M 为所求点,理由:d =MA +MB =MA +ME =AE 为最小,设直线AE 的表达式为y =mx +b ,则{3=m +b 0=−m +b ,解得{m =32b =32, 故AE 的表达式为y =32x +32,当x=0时,y=3,2).故点M的坐标为(0,32【解析】(1)A(1,3),则AB=3,OB=1,而AB=3BD,故BD=1,则D(1,1),将D 坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(−1,0),连接AE交y轴于点M,则点M为所求点,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.23.【答案】(1)证明:∵∠C=90°,AC=BC,∴∠B=∠A=45°,∵点N为BC中点,∴CN=BN,由折叠的性质可知,∠CNM=∠PNM,CN=PN,∴PN=BN,∴∠NPB=∠B=45°,∴∠BNP=90°,∴∠CNM=45°,∴∠CNM=∠B,∴MN//AB;(2)证明:如图2,过点M作ME⊥AB于E,过点N作NF⊥AB于F,由折叠的性质可知,MP=MC,NP=NC,∠MPN=∠C=90°,∴∠MPE+∠NPF=90°,∵∠PNF+∠NPF=90°,∴∠MPE=∠PNF,∵∠MEP=∠PFN=90°,∠MPE=∠PNF,∴△MEP∽△PFN,∴MPPN =MEPF=EPFN,∵ME⊥AB,NF⊥AB,∠B=∠A=45°,∴ME=AE,PN=BF,∴MPPN =MEPF=EPFN=ME+PEPF+FN=AE+PEPF+FB=APBP,∴MPPN =APBP;(3)解:不成立,理由如下:过点M作MG⊥AB于G,过点N作NH⊥AB于H,∵∠C=90°,AC≠BC,不妨设AC<BC,则∠A<45°,∠B>45°,∴MG<AG,NH>BH,由(2)的证明方法可知:MPPN ≠APBP.【解析】(1)根据折叠的性质得到∠CNM=∠PNM,CN=PN,得到PN=BN,根据等腰直角三角形的性质、平行线的判定定理证明结论;(2)过点M作ME⊥AB于E,过点N作NF⊥AB于F,证明△MEP∽△PFN,根据相似三角形的性质得到MPPN =MEPF=EPFN,根据等腰直角三角形的性质得到ME=AE,PN=BF,根据比例的性质计算,证明结论;(3)仿照(2)的证明方法可以判断(2)中的等式不成立.本题考查的是相似三角形的判定和性质、翻转变换的性质、比例的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省利辛县阚疃金石中学2020-2021学年九年级上学期数学期中试卷
一、单选题(共10题;共20分)
1.下列函数是二次函数的是()
A. y=3x+1
B. y=ax2+bx+c
C. y=x2+3
D. y=(x﹣1)2﹣x2
2.抛物线y=-2x2+1的对称轴是()
A. 直线
B. 直线
C. y轴
D. 直线x=2
3.下列函数中,当x>0时,y随x的增大而减小的是()
A. B. C. D.
4.如图,在△ABC中,DE∥BC,,则()
A. B. C. D.
5.抛物线y=(x-1)2+1的顶点坐标为( )
A. (1,1)
B. (1,-1)
C. (-1,1)
D. (-1,-1)
6.对于二次函数的图象与性质,下列说法正确的是()
A. 对称轴是直线,最大值是2
B. 对称轴是直线,最小值是2
C. 对称轴是直线,最大值是2
D. 对称轴是直线,最小值是2
7.抛物线y=-3x2+2x-1的图象与坐标轴的交点个数是( )
A. 无交点
B. 1个
C. 2个
D. 3个
8.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()
A. B.
C. D.
9.将抛物线的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是()
A. B. C. D.
10.若反比例函数y= 的图象位于第一、三象限,则k的取值可以是()
A. ﹣3
B. ﹣2
C. ﹣1
D. 0
二、填空题(共4题;共4分)
11.已知线段a=9cm、b=4cm,那么线段a、b的比例中项c=________cm.
12.抛物线的图象与y轴的交点坐标为________.
13.线段AB=4cm,点P为线段AB的黄金分割点,且AP>BP,则AP的长为________.
14.抛物线的顶点坐标是________.
三、解答题(共7题;共47分)
15.已知二次函数y=x2+4x-5.
(1)求该函数图象的顶点坐标.
(2)求此抛物线与x轴的交点坐标.
16.若a:b=1:2,求(a+b):a的值.
17.如图,一次函数与反比例函数的图象交于A(1,m)、B(4,n)两点.
(1)求A、B两点的坐标和反比例函数的解析式;
(2)根据图象,直接写出当时x的取值范围.
18.如图,已知抛物线y=ax2+bx-3的对称轴为直线x=1,交x轴于A,B两点,交y轴于C点,其中B点的坐标为(3,0).
(1)直接写出A点的坐标;
(2)求二次函数y=ax2+bx-3的解析式.
19.已知a、b、c为三角形ABC的三边长,且,,求三角形ABC三边的长.
20.已知二次函数.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
21.如图,已知点F在AB上,且AF:BF=1:2,点D是BC延长线上一点,BC:CD=2:1,连接FD与AC交于点N,求FN:ND的值.
答案解析部分
一、单选题
1.【答案】C
2.【答案】C
3.【答案】B
4.【答案】B
5.【答案】A
6.【答案】A
7.【答案】B
8.【答案】C
9.【答案】D
10.【答案】D
二、填空题
11.【答案】6
12.【答案】(0,3)
13.【答案】cm
14.【答案】(1,5)
三、解答题
15.【答案】(1)解:∵y=x2+4x-5=(x-2)2-9,
∴顶点坐标为(-2,-9);
(2)解:令y=0,则x2+4x-5=0,
解得x=1,x=-5.
所以抛物线与x轴的交点坐标为(1,0),(-5,0).
16.【答案】解:∵a:b=1:2,
∴b=2a,
∴(a+b):a=(a+2a):a=3.
17.【答案】(1)解:∵与的图象交于A(1,m)、B(4,n)两点,
∴m=-1+5=4,n=-4+5=1,
∴A(1,4),B(4,1),
∵点A(1,4)在反比例函数图象上,
∴4= ,即k=4,
∴反比例函数解析式为.
(2)解:由图象可知:x<0或1<x<4时,一次函数图象在反比例函数图象上方,∴当时x的取值范围为x<0或1<x<4.
18.【答案】(1)解:∵抛物线对称轴为直线,
交轴于A、B两点,其中B点坐标为(3,0),
∴A点横坐标为:,
∴A点坐标为:(-1,0)
(2)解:将A(-1,0),B(3,0)代入得
解得:
故抛物线解析式为:
19.【答案】解:由,得,,
把,代入,
得,
解得,
,
,
所以三角形ABC三边的长为:,,.
20.【答案】(1)解:∵二次函数的图象与x轴有两个交点,∴△= ,∴m>﹣1;
(2)解:∵二次函数的图象过点A(3,0),∴0=﹣9+6+m,∴m=3,∴二次函数的解析式为:,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:,∴
,解得:,∴直线AB的解析式为:,∵抛物线
的对称轴为:x=1,∴,解得:,∴P(1,2).
21.【答案】解:过点F作FE∥BD,交AC于点E,
∴,
∵AF:BF=1:2,
∴= ,
∴,
即FE= BC,
∵BC:CD=2:1,
∴CD= BC,
∵FE∥BD,
∴.
即FN:ND=2:3.。