药物化学名词解释和简答题

合集下载

药物化学重点_名词解释_问答题

药物化学重点_名词解释_问答题

1、药物(drug):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。

2、药物化学(medicinal chemistry):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科.3、锥体外系反应(effects of extrapyramidal system,EPS):指震颤麻痹,静坐不能、急性张力障碍和迟发性运动障碍等神经系统锥体外系的症状,常是抗精神病药物的副反应。

4、构效关系(structure- activity relationship,SAR):在同一基本结构的一系列药物中,药物结构的变化,引起药物活性的变化的规律称该类药物的构效关系。

其研究对揭示该类药物的作用机制、寻找新药等有重要意义。

5、血脑屏障(blood-brain barrier; BBB):为保护中枢神经系统,使其具有更加稳定的化学环境,脑组织具有特殊的构造,具有选择性的摄取外来物质的能力,被称作血脑屏障。

通常脂溶性高的药物易通过血脑屏障,而离子化的药物不能通过。

6、拟胆碱药(cholinergic drugs):是一类具有与乙酰胆碱相似作用的药物。

按作用环节和机制的不同,主要可分为胆碱受体激动剂和乙酰胆碱酯酶抑制剂两种类型。

7、乙酰胆碱酯酶抑制剂(AChE inhibitors):通过对乙酰胆碱酯酶的可逆性抑制,增强乙酰胆碱的作用。

不与胆碱受体直接作用,属于间接拟胆碱药。

在临床上主要用于治疗重症肌无力和青光眼,及抗早老性痴呆。

溴新斯的明。

8、局部麻醉药(local anesthetics):在用药局部可逆性地阻断感觉神经冲动的发生和传导,在意识清醒的条件下引起感觉消失或麻醉的药物。

普鲁卡因。

9. 钙通道阻滞剂(calcium channel blocker):钙通道阻滞剂是一类能在通道水平上选择性地阻滞Ca2+经细胞膜上钙离子通道进入细胞内,减少细胞内Ca2+浓度,使心肌收缩力减弱、心率减慢、血管平滑肌松弛的药物。

药物化学名词解释和简答题

药物化学名词解释和简答题

名词解释1.抗代谢药:通过干扰DNA合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷的合成途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,导致肿瘤细胞死亡的抗肿瘤药物。

2.生物电子等排体:指具有相似的物理和化学性质,又能产生相似或拮抗的生物活性的分子或基团。

3.前药(Prodrug):指将药物经过化学结构修饰后得到的在体外无活性或活性变小,在体内经酶或非酶的转化释放出活性药物而发挥药效的化合物。

4.药物:指凡具有治疗、预防、缓解和诊断疾病或者调节生理功能、符合药品质量标准并经政府相关部门批准的化合物。

5.生物烷化剂:指在体内能形成缺电子活泼体或活泼的亲电集团的化合物。

进而能与生物大分子中含有丰富电子基团部位进行亲电结合或共价结合,使生物大分子失去活性或使DNA 链断裂。

6.蛋白同化作用:是指雄激素通过拮抗糖皮质激素对蛋白质的分解,直接刺激蛋白质的合成,增加红细胞产生,促进中枢神经的功能,促进肌肉生长的作用。

7.构效关系(structure- activity relationship,SAR):在同一基本结构的一系列药物中,药物结构的变化,引起药物活性的变化的规律称该类药物的构效关系。

8.脂水分配系数:药物的脂溶性和水溶性的相对大小,即药物在有机相(正辛醇)中和水中分配达到平衡时浓度之比值。

13.抗生素(antibiotics):是微生物的代谢产物或合成的类似物,在体外能抑制微生物的生长和存活,而对宿主不会产生严重的毒副作用。

16.软药(soft drug):在体内发挥治疗作用后,经预期和可控的途径迅速代谢失活为无毒性或无活性的代谢物的药物。

19.N胆碱受体:位于神经节细胞和骨骼肌细胞膜上的胆碱受体,对烟碱比较敏感。

20.药物代谢:指在酶的作用下将药物转变为极性分子,再通过人体正常系统排出体外。

21.激素(hormone):指由内分泌腺上皮细胞直接分泌进入血液或淋巴液的一种化学信使物质。

先导化合物:新发现的对某种靶标和模型呈现明确药理活性的化合物。

药物化学名词解释

药物化学名词解释

1.药物(drug):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。

2.药物化学(medicinal chemistry):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科,是药学领域中重要的带头学科以及极具朝气的朝阳学科。

3.国际非专有药名(international non-proprietary names forpharmaceutical substance,INN):是新药开发者在新药研究时向世界卫生组织(WHO)申请,由世界卫生组织批准的药物的正式名称并推荐使用。

该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材及资料中以及在药品说明书中标明的有效成分的名称。

在复方制剂中只能用它作为复方组分的名称。

目前,INN名称已被世界各国采用。

4.中国药品通用名称(Chinese Approved Drug Names,CADN):依据INN的原则,中华人民共和国的药政部门组织编写了《中国药品通用名称》(CADN),制定了药品的通用名。

通用名是中国药品命名的依据,是中文的INN。

CADN主要有以下的一些规则:中文名使用的词干与英文INN对应,音译为主,长音节可简缩,且顺口;简单有机化合物可用其化学名称。

5.巴比妥类药物(barbiturates agents):具有5,5二取代基的环丙酰脲结构的一类镇静催眠药。

20世纪初问市的一类药物,主要由于5,5取代基的不同,有数十个各具药效学和药动学特色的药物供使用。

因毒副反应较大,其应用已逐渐减少。

6.内酰胺-内酰亚胺醇互变异构(lactam- lactim tautomerism):类似酮-烯醇式互变异构,酰胺存在酰胺-酰亚胺醇互变异构。

即酰胺羰基的双键转位,羰基成为醇羟基,酰胺的碳氮单键成为亚胺双键,两个异构体间互变共存。

药物化学名词解释

药物化学名词解释

药物化学名词解释
药物化学是研究药物的化学组成、结构、性质、合成方法和作用机理的学科,旨在研究药物的化学性质与生物活性之间的关系,为药物设计、药物开发和药物研究提供理论依据。

药物化学名词解释如下:
1. 药物:药物是指具有治疗、预防、诊断、缓解疾病的功效,并能用于人体内治疗或改善疾病病程的物质。

2. 化学组成:药物的化学组成是指药物分子中所含有的元素的种类和比例关系。

比如,氨茶碱的化学组成为C7H10N4O2,
表示它由碳、氢、氮和氧四种元素组成。

3. 结构:药物的结构指的是药物分子中原子之间的连接方式和空间构型。

药物的结构对于药物的性质和活性起着重要的影响。

比如,青霉素的化学结构包含五个成員环。

4. 性质:药物的性质包括物理性质和化学性质两个方面。

物理性质指药物在物理条件下的特征,比如颜色、溶解度、熔点等;化学性质指药物在化学反应中的活性和稳定性。

5. 合成方法:药物的合成方法是指通过特定的化学反应途径,将原料化合物转化为目标药物的过程。

合成方法的选择会受到药物结构、合成难度、成本等因素的影响。

常见的合成方法包括取代反应、加成反应、消除反应等。

6. 作用机理:药物的作用机理是指药物与生物体发生作用的过程和机制。

药物可以通过与受体结合、酶的抑制、细胞信号传导通路的调节等方式发挥作用。

了解药物的作用机理有助于提高药物的疗效和减少不良反应。

药物化学为药物研究和开发提供了重要的理论基础,通过深入研究药物的化学性质和作用机理,可以设计出更有效、更安全的药物。

同样,药物化学也为药物合成方法的研究提供了指导,使药物的合成更加高效和经济。

药物化学名词解释

药物化学名词解释

1. 药物〔drug〕:药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。

2. 药物化学〔medicinal chemistry〕:药物化学是一门发现与发明新药、研究化学药物的合成、说明药物的化学性质、研究药物分子与机体细胞〔生物大分子〕之间相互作用规律的综合性学科,是药学领域中重要的带头学科以与极具朝气的学科。

3. 国际非专有药名〔international non-proprietary names for pharmaceutical substance,INN〕:是新药开发者在新药研究时向世界卫生组织〔WHO〕申请,由世界卫生组织批准的药物的正式名称并推荐使用。

该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材与资料中以与在药品说明书中标明的有效成分的名称。

在复方制剂中只能用它作为复方组分的名称。

目前,INN名称已被世界各用。

4. 中国药品通用名称〔Chinese Approved Drug Names,CADN〕:依据INN的原那么,中华人民国的药政部门组织编写了《中国药品通用名称》〔CADN〕,制定了药品的通用名。

通用名是中国药品命名的依据,是中文的INN。

CADN主要有以下的一些规那么:中文名使用的词干与英文INN对应,音译为主,长音节可简缩,且顺口;简单有机化合物可用其化学名称。

5. 巴比妥类药物〔barbiturates agents〕:具有5,5二取代基的环丙酰脲结构的一类镇静催眠药。

20世纪初问市的一类药物,主要由于5,5取代基的不同,有数十个各具药效学和药动学特色的药物供使用。

因毒副反响较大,其应用已逐渐减少。

6. 酰胺-酰亚胺醇互变异构〔lactam- lactim tautomerism〕:类似酮-烯醇式互变异构,酰胺存在酰胺-酰亚胺醇互变异构。

即酰胺羰基的双键转位,羰基成为醇羟基,酰胺的碳氮单键成为亚胺双键,两个异构体间互变共存。

药化名词解释

药化名词解释

1、药物化学:是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科。

特点:综合性、边缘性、交叉性,专业基础课。

2、激动剂是能激活受体的配体.对相应的受体有较强的亲和力和内在活性. 拮抗剂能阻断受体活性的配体,有较强的亲和力而无内在活性.3、前药:前体药物(简称前药)是一类体外活性较小或无活性,在体内经酶或非酶作用释放出活性物质(即原药,又称母药)以发挥药理作用的化合物。

例:卤加比,载体联结前药。

二苯基甲叉基增加药物的脂溶性,更易通过血脑屏障进入中枢神经系统。

4、软药(soft drugs):指本身具有治疗作用的药物,能根据预见的代谢途径和可控制的速度进行代谢分布,在发挥它的治疗作用后即代谢为无毒物质排出体外的药物。

与之相对的是硬药。

例:艾司洛尔(Esmolol):血浆半衰期8min,用于室性心律失常,急性心肌局部缺血氟司洛尔,半衰期7min,作用强于艾司洛尔10~50倍。

硬药(Hard drugs):指具有发挥药物作用所必需的结构特征的化合物,该化合物在生物体内不发生代谢或转化,可避免产生某些毒性代谢产物。

(临床上使用的绝大多数是软药,少数是前药。

前药必须在体内转化成有活性的化合物才算真正的药物。

软药是代谢失活过程,前药是代谢活化过程。

)5、生物电子等排体是指既符合电子等排体的定义,又具有相似的或相反生物学作用的化合物。

运用生物电子等排体的概念不但可设计出具有与原药物相同药理作用的新药,而且还可生产该药物的拮抗药,这是因为化学结构高度近似的药物常能与同一受体或酶结合引起相似的效应(拟似药),或相反地起抑制的作用(拮抗药)。

以乙酰胆碱结构类似物为例,其中氨甲胆碱、毒蕈碱都是拟胆碱药。

实际上,电子等排体和生物电子等排体的概念在分子药理学上有广泛的应用,尤其是借变异的方法或分子改造来设计新的药物时,更经常涉及生物电子等排体。

6、生物电子等排体原理:在结构优化研究中,生物电子等排原理(bioisosterism)是应用较多的一种方法即在基本结构的可变部分,以电子等排体(isostere)相互置换,对药物进行结构改造.经典的生物等排体是指具有相同外层电子的原子或原子团,在生物领域里表现为生物电子等排.凡具有相似的物理和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体.以后扩大范围,又将体积、电负性和立体化学等相近似的原子或原子团也包括在内,称为非经典的电子等排体.7、离子通道:是一类跨膜糖蛋白,能在细胞膜上形成亲水性孔道,以转运带电离子;通道蛋白通常是由多个亚基构成的复合体;通过其开放或关闭,来控制膜内外各种带电离子的流向和流量,从而改变膜内外电位差(门控作用),以实现其产生和传导电信号的生理功能。

药物化学名词解释

药物化学名词解释

1. 药物(drug):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。

2. 药物化学(medicinal chemistry):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科,是药学领域中重要的带头学科以及极具朝气的朝阳学科。

3. 国际非专有药名(international non-proprietary names for pharmaceutical substance,INN):是新药开发者在新药研究时向世界卫生组织(WHO)申请,由世界卫生组织批准的药物的正式名称并推荐使用。

该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材及资料中以及在药品说明书中标明的有效成分的名称。

在复方制剂中只能用它作为复方组分的名称。

目前,INN名称已被世界各国采用。

4. 中国药品通用名称(Chinese Approved Drug Names,CADN):依据INN的原则,中华人民共和国的药政部门组织编写了《中国药品通用名称》(CADN),制定了药品的通用名。

通用名是中国药品命名的依据,是中文的INN。

CADN主要有以下的一些规则:中文名使用的词干与英文INN对应,音译为主,长音节可简缩,且顺口;简单有机化合物可用其化学名称。

5. 巴比妥类药物(barbiturates agents):具有5,5二取代基的环丙酰脲结构的一类镇静催眠药。

20世纪初问市的一类药物,主要由于5,5取代基的不同,有数十个各具药效学和药动学特色的药物供使用。

因毒副反应较大,其应用已逐渐减少。

6. 内酰胺-内酰亚胺醇互变异构(lactam- lactim tautomerism):类似酮-烯醇式互变异构,酰胺存在酰胺-酰亚胺醇互变异构。

即酰胺羰基的双键转位,羰基成为醇羟基,酰胺的碳氮单键成为亚胺双键,两个异构体间互变共存。

药物化学名词解释

药物化学名词解释

1. 药物(drug ):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。

2. 药物化学(medicinal chemistry ):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科,是药学领域中重要的带头学科以及极具朝气的朝阳学科。

3. 国际非专有药名(international non-proprietary names for pharmaceutical substance ,INN ):是新药开发者在新药研究时向世界卫生组织(WHO )申请,由世界卫生组织批准的药物的正式名称并推荐使用。

该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材及资料中以及在药品说明书中标明的有效成分的名称。

在复方制剂中只能用它作为复方组分的名称。

目前,INN 名称已被世界各国采用。

4. 中国药品通用名称(Chinese Approved Drug Names ,CADN ):依据INN 的原则,中华人民共和国的药政部门组织编写了《中国药品通用名称》(CADN ),制定了药品的通用名。

通用名是中国药品命名的依据,是中文的INN 。

CADN 主要有以下的一些规则:中文名使用的词干与英文INN 对应,音译为主,长音节可简缩,且顺口;简单有机化合物可用其化学名称。

5. 巴比妥类药物(barbiturates agents ):具有5,5二取代基的环丙酰脲结构的一类镇静催眠药。

20世纪初问市的一类药物,主要由于5,5取代基的不同,有数十个各具药效学和药动学特色的药物供使用。

因毒副反应较大,其应用已逐渐减少。

6. 内酰胺-内酰亚胺醇互变异构(lactam- lactim tautomerism ):类似酮-烯醇式互变异构,酰胺存在酰胺-酰亚胺醇互变异构。

即酰胺羰基的双键转位,羰基成为醇羟基,酰胺的碳氮单键成为亚胺双键,两个异构体间互变共存。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释1.抗代谢药:通过干扰DNA合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷的合成途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,导致肿瘤细胞死亡的抗肿瘤药物。

2.生物电子等排体:指具有相似的物理和化学性质,又能产生相似或拮抗的生物活性的分子或基团。

3.前药(Prodrug):指将药物经过化学结构修饰后得到的在体外无活性或活性变小,在体内经酶或非酶的转化释放出活性药物而发挥药效的化合物。

4.药物:指凡具有治疗、预防、缓解和诊断疾病或者调节生理功能、符合药品质量标准并经政府相关部门批准的化合物。

5.生物烷化剂:指在体内能形成缺电子活泼体或活泼的亲电集团的化合物。

进而能与生物大分子中含有丰富电子基团部位进行亲电结合或共价结合,使生物大分子失去活性或使DNA 链断裂。

6.蛋白同化作用:是指雄激素通过拮抗糖皮质激素对蛋白质的分解,直接刺激蛋白质的合成,增加红细胞产生,促进中枢神经的功能,促进肌肉生长的作用。

7.构效关系(structure- activity relationship,SAR):在同一基本结构的一系列药物中,药物结构的变化,引起药物活性的变化的规律称该类药物的构效关系。

8.脂水分配系数:药物的脂溶性和水溶性的相对大小,即药物在有机相(正辛醇)中和水中分配达到平衡时浓度之比值。

13.抗生素(antibiotics):是微生物的代谢产物或合成的类似物,在体外能抑制微生物的生长和存活,而对宿主不会产生严重的毒副作用。

16.软药(soft drug):在体内发挥治疗作用后,经预期和可控的途径迅速代谢失活为无毒性或无活性的代谢物的药物。

19.N胆碱受体:位于神经节细胞和骨骼肌细胞膜上的胆碱受体,对烟碱比较敏感。

20.药物代谢:指在酶的作用下将药物转变为极性分子,再通过人体正常系统排出体外。

21.激素(hormone):指由内分泌腺上皮细胞直接分泌进入血液或淋巴液的一种化学信使物质。

先导化合物:新发现的对某种靶标和模型呈现明确药理活性的化合物。

化学治疗:用化学药物抑制或杀灭体内病原微生物、寄生虫以及恶性肿瘤,以缓解由它们治病的的治疗。

几何异构:由双键或环等刚性或半刚性系统导致分子内旋转受到限制而产生的一种立体异构现象。

官能团化反应:在酶的催化下对药物分子进行氧化、还原、水解和羟化等的反应,在药物分子中引入或使暴露出极性基团。

结合反应:原形药物或代谢药物的极性基团与内源性成分经共价键结合生成极性大、易溶于水、易排出体外的结合物反应。

选择性雌激素受体调节剂:能在乳腺或子宫阻断雌激素作用,又能作为雌激素分子保持骨密度,降低血浆胆固醇水平,即呈现出组织特异性的活化雌激素受体和抑制雌激素受体双重活性的一类化合物。

钙通道阻滞剂:能在通道水平上选择性地阻滞Ca2+经细胞膜上钙离子通道进入细胞内,减少细胞内钙离子浓度,使心肌收缩力减弱、心律减慢、血管平滑肌松弛的药物。

简答1.★巴比妥类药物的一般合成方法中,当两个取代基大小不同时,一般先引入大基团,还是小基团,为什么?答:当引入的两个烃基不同时,一般先引入大基团到次甲基上。

经分馏纯化后,再引入小基团。

这是因为,当引入一个大基团后,因空间位阻较大,不易再接连上第二大基团,不易形成反应副产物。

同时当引入一个大基团后,原料,一取代产物和二取代副产物的理化性质差异较大,也便于分离纯化。

2.为什么巴比妥C5次甲基上的两个氢原子必须全被取代才有疗效?答:因为巴比妥酸和一取代巴比妥酸的pKa值较小,酸性较强,在生理pH下,几乎全部解离,均无药效。

只有当C5次甲基上的两个氢原子均被取代,生成5.5位双取代物,则酸性大大降低,在生理PH下,未解离的药物分子比例大,从而使药物能通过血-脑屏障。

进入中枢系统发挥作用。

8.请用化学的方法将苯妥英钠和巴比妥类药物区分开来?答:将样品分别加入二氯化汞试液,生成白色沉淀,再加入氨试液,如果沉淀溶解则是巴比妥类药物,沉淀不溶则是苯妥英钠。

9.巴比妥类药物具有哪些共同的化学性质?答:一、呈弱酸性,巴比妥类药物因能形成内酰亚氨醇—内酰胺互变异构,故呈弱酸性。

二、水解性,巴比妥类药物因含环酰脲结构,其钠盐水溶液不够稳定,甚至在吸湿情况下也能水解。

三、与银盐的反应,这类药物的碳酸钠的碱性溶液中与硝酸银溶液作用,先生成可溶性的一银盐,继而生成不溶性的二银盐白色沉淀。

四、与铜吡啶试液的反应,这类药物分子中含有—CONHCONHCO—的结构,能与重金属形成不溶性的络合物,可供鉴别。

10.简述苯二氮卓类药物的构效关系?答:1.七元亚胺内酰胺环是活性必需结构;3位的一个氢原子可被羟基取代,虽然活性稍有下降,但毒性很低。

2.以长链烃基取代,如环氧甲基,可延长作用;1,2位并入三唑环,增强药物与受体的亲和力和代谢稳定性,活性大大增强。

3.4,5双链被饱和或骈入四氢唑环,增加镇静和抗抑郁作用。

4.引入吸电子基团,如硝基,可使水解反应几乎都在4,5位上进行,可明显增强活性;当A 环被其他芳杂环,如噻吩、吡啶等取代,仍有较好的生理活性。

5.5位为苯基取代,专属性很强,若以其他基团替代,活性降低;在苯基2位引入吸电子基团,如氟,可明显增强活性。

11.★天然青霉素G有哪些缺点?试述半合成青霉素的结构改造方法。

答:天然青霉素G的缺点为对酸不稳定,不能口服,只能注射给药;抗菌谱比较窄,仅对革兰阳性菌的效果好;细菌易对其产生耐药性;有严重的过敏性反应。

在青霉素的侧链上引入吸电子基团,阻止侧链羧基电子向β—内酰胺环的转移,增加了对酸的稳定性,得到一系列耐酸青霉素,如非奈西林,阿度西林等。

在青霉素的侧链上引入较大体积基团,阻止了化合物与酶活性中心的结合。

又由于空间阻碍限制酰胺侧链R与羧基间的单键旋转,从而降低了青霉素分子与酶活性中心作用的适应性,因此药物对酶的稳定性增加,如苯唑西林,甲氧西林等。

青霉素的侧链上引入亲水性基团(如氨基,羧基或磺酸基等),扩大了抗菌谱,不仅对革兰阳性菌有效,对多数革兰阴性菌也有效,如阿莫西林,羧苄西林等。

12. 氮芥烷基和载体基团的作用以及如何进行结构改造?答:氮芥烷基是抗肿瘤活性的功能基,而载体基团的作用是影响药物在体内吸收、分布等药代动力学性质,也会影响药物的选择性、抗肿瘤活性及毒性。

因而主要是对载体部分进行改造。

可以通过在引入吸电子基作为载体,降低氮原子的亲核性,降低毒性,同时做成具有选择性的前药,提高药物作用选择性。

如环磷酰胺的分子中氮芥基连在吸电子的磷酰基上,降低了氮原子的亲核性,在体外几乎无抗肿瘤活性。

同时,进入体内后,在正常组织中代谢产物无毒性,而在肿瘤组织中代谢产生丙烯醛、磷酰氮芥、去甲氮芥三种强烷化剂。

13.为什么环磷酰胺的毒性比其他氮芥类抗肿瘤药物的毒性小?答:肿瘤细胞内的磷酰胺酶的活性高于正常细胞,利用前体药物起到靶向作用。

磷酸基吸电子作用降低N上电子云密度,从而降低烷基化能力。

在肝内活化(不是肿瘤组织)被细胞色素P450酶氧化成4—OH环磷酰胺,最终生成丙烯醛,磷酸氮芥,去甲氮芥,都是较强的烷化剂。

14.合成M受体激动剂和拮抗剂的化学结构有哪些异同点?答:相同点:都具有乙酰胆碱相似的氨基部分和酯基部分,它们相隔2个碳原子为好不同点:1.酯基的酰基部分,激动剂为较小的乙酰基,而拮抗剂则为较大的碳环、芳环。

2氨基部分,激动剂为季铵离子,而激动剂可为季铵离子或者叔胺。

3.乙基桥部分,激动剂可有甲基取代,拮抗剂通常无取代。

25.说明顺铂的注射剂中加入氯化钠的作用?答:顺铂的为金属配合物抗肿瘤药物,顺式有效,反式无效,通常以静脉注射给药。

其水溶液不稳定,能逐渐水解和转化为反式,生成水合物,进一步水解生成无抗肿瘤活性且有剧毒的低聚物,而低聚物在0.9%氯化钠溶液中部稳定,可迅速完全转化为顺铂,因此在顺铂的注射剂中加入氯化钠,临床上不会导致中毒的风险。

26.奥格门汀由哪两种药物组成?试说明两者合用起增效的机制。

答:奥格门汀是由克拉维酸和阿莫西林所组成的复方制剂。

阿莫西林为半合成广谱抗生素,通过抑制细菌细胞壁的合成而发挥抗菌作用,但会被细菌所产生的β-内酰胺酶水解而失活。

克拉维酸是有效的β-内酰胺酶抑制剂,可与多数β-内酰胺酶牢固结合,可使阿莫西林免受β-内酰胺酶的钝化,用于治疗耐阿莫西林细菌所引起的感染。

30磺胺类药物的构效关系答:(1)对氨基苯磺酰胺结构式必要的结构。

(2)芳氨基的氮原子上一般没有取代基,若有取代基则必须在体内易被酶分解或还原为游离的氨基才有效,如RCONH-,R-N=N-、-NO2等基团,否则无效。

(3)磺胺酰基的氮原子上为单取代,大多为吸电子基团取代基,可使抗菌活性有所加强。

(4)苯环若被其他芳环或芳杂环取代,或在苯环上引入其他基团,抑菌活性降低或丧失。

(5)磺胺类药物的酸性解离常数(pKa)与抑菌作用的强度有密切的关系,当pKa值在6.5~7.0时,抑菌作用最强。

钙通道阻滞剂的构效关系1.1,4-二氢吡啶环是必需结构,吡啶或六氢吡啶环则无活性,1位N不被取代为佳。

2.2,6-位取代基应为低级烷烃。

3.若C4有手性,立体结构有选择作用。

4位取代苯基上邻、间位有吸电子基团时活性较佳。

4.3,5-位取代基酯基是必要结构,-COCH3,-CN活性降低,硝基则激活钙通道。

喹诺酮类药物的构效关系1、二氢吡啶酮酸的A环是抗菌作用必需的基本药效结构,其中,3位的羧基和4位酮羰基是DAN螺旋酶和拓扑异构酶Ⅳ结合,是药效必不可少的基团,其他基团取代,活性减弱。

2 、B环可做较大的改变,可以是苯环、吡啶环、嘧环等。

3、1位N上若脂肪烃基取代。

以乙基或与乙基体积相似的乙烯基、氟乙基抗菌活性最好;若为脂环烃取代。

环丙基抗菌作用最好。

若为苯基或其它芳香基团取代,2,4-二氟苯基较佳。

4、2位引入取代基后活性减弱或消失。

5、5位取代基中,以氨基的抗菌性为最好,其它取代基时,活性减弱6、6 位取代基,引入F可比H的类似物大30倍。

6位氟增加了药物与靶酶DNA聚合酶作用和增加进入细菌细胞壁的通透性而使得抗菌活性增加。

7、7位引入取代基可明显增强活性,特别是五元或六元杂环,以哌嗪基为最佳。

哌嗪加强与细菌DNA回螺旋酶的结合能力。

但也增加对GABA受体的亲和力,因而产生中枢的副作用8、8位以氟、甲氧基、氯、硝基、氨基取代均可使活性增加,其中以氟取代最佳,取代或与1位单原子以氧烷基成为含氧杂环,可使活性增加但光毒性也增加,若为甲基、甲氧基取代和乙基取代,光毒性减少。

若1位与8位间成环,产生的光学异构体的活性有明显的差异喹诺酮类的毒性1、3,4位的羧基和酮羰基极易和金属离子如钙、镁、铁、锌等形成螯合物2、光毒性(8位)3、药物相互反应(与P450)4、中枢渗透性(7位),增加毒性、胃肠道反应和心脏毒性唑类抗真菌药的构效关系1、分子中的氮唑环(咪唑或三氮唑)是必须的,氮原子与血红素铁原子形成配位键,竞争抑制酶的活性2、氮唑的取代基必须与1位上的氮原子相连3、苯环4位取代基有一定体积和电负性,2位有电负性取代基对抗真菌有利4、R1,R2为二氧戊环,活性高➢青霉素类似物侧链含三苯甲基,对青霉素酶稳定1、三苯甲基有较大空间位阻,阻止化合物与酶活性中心结合2、空间阻碍限制酰胺侧链R与羧基间的单键旋转,降低分子与酶活性中心作用的适应性3、R基比较靠近β-内酰胺环,也可能有保护作用•2015/1/7肾上腺皮质激素的构效关系1~2 位引入双键使A 环为船式构型,能增加糖皮质激素活性而不增加盐皮质激素活性引入α-F ,同时显著增加糖皮质激素和盐皮质激素活性引入α-F ,可阻滞C6位被氧化失活,增加糖盐皮质激素活性引入α-OH 或甲基,能延长药效,并降低盐皮质激素活性酯化能延长药效β-构型是糖皮质激素活性所必需增强水溶性:羟基、氨基、羧基、磺酸基等增强脂溶性:烷基、卤素和芳环等脂水分配系数:用来表示药物的脂溶性和水溶性的相对大小,是指化合物在互不混溶的非水相和水相中分配平衡后,在非水相中的浓度与水相中浓度的比值。

相关文档
最新文档