小学六年级数学总复习-比、比例有关问题

合集下载

人教版小学六年级数学下册---比例的意义和基本性质总复习专项例题(含答案解析)

人教版小学六年级数学下册---比例的意义和基本性质总复习专项例题(含答案解析)

人教版小学六年级数学下册---比例的意义和基本性质总复习专项例题(含答案解析)例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)C(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。

这两个长方形的长有什么关系?宽呢?(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?分析与解:(1)长方形B的长是长方形A的2倍,宽也是长方形A的2倍。

或者说长方形B和长方形A长的比是2:1,宽的比也是2:1。

把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:1,就是把长方形A的长和宽按2:1的比进行放大。

(2)把长方形A按1:2的比缩小后为长方形C,长、宽缩1,图C的长是0.75厘米,图C的宽是小为原来的20.5厘米。

由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。

例2、(根据指定的比,将图形按要求放大或缩小)先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。

(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?分析与解:(1)按3:2的比将长方形A放大,即将长方形A的长与宽分别扩大1.5倍,那么图B的长为6×1.5 = 9格,宽为4×1.5 = 6格。

(2)按1:2的比将长方形A缩小,1,那么图C 即将长方形A的长与宽分别缩小到原来的2的长为6÷2 = 3格,宽为4÷2 = 2格。

(3)从这三幅大小不同的图形上可以看出,放大或缩小后的图形与原来的图形比较,大小虽变了,但形状不变,而且各条边长度的变化都符合指定的比。

点评:按比例放大图形或缩小图形,关键是要先根据比确定是放大还是缩小,然后确定好每条边的长度,画出图形就行了。

例3、(将两个相等比写成一个等式)图B 是由图A 放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个比,你有什么发现?B3 6厘米4厘米8厘米分析与解:(1)图A 中长与宽的比是4:3;图B 中长与宽的原始比是8:6,而8:6化简后就是4:3。

六年级总复习百分比比例 相遇 追及问题

六年级总复习百分比比例 相遇 追及问题

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解 392÷(28+21)=8(小时)答:经过8小时两船相遇。

例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。

例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

苏教版六年级数学下册第7单元:比和比例总复习

苏教版六年级数学下册第7单元:比和比例总复习
整理与反思
①什么是比?什么是比的基本性质?用比的知识可以解决哪 些实际问题? ②比和分数、除法有什么联系? ③什么叫求比值?什么叫化简比?请你举例说明。
2024/5/17
3
苏教版义务教育教科书 数学 六年级(下册)
整理与反思 ①什么是比?什么是比的基本性质?用比的知识可以解决哪 些实际问题? 比的意义:两个数相除。 比的基本性质:前项和后项同时乘或除以相同的数(0除外), 比值不变。 运用比的知识可以解决按比例分配的实际问题。
2024/5/17
10
苏教版义务教育教科书 数学 六年级(下册)
4.下表是我国东、西部地区各类土地资源面积分别占全国同类 土地资源总面积的百分数。
(1)我国的耕地大部分在东部地区还是西部地区?林地呢? 答:我国的耕地大部分在东部地区,林地大部分也在东部地区。
2024/5/17
11
苏教版义务教育教科书 数学 六年级(下册)
(2)一辆汽车5小时行驶240千米。这辆汽车行驶的路程与 时间的比是( 48:1 ),行驶的时间与路程的比是( 1:48 )。
(3)配制一种盐水,盐和水质量的比是1:24,盐和盐水质 量的比是( 1:25 ),水和盐水质量的比是(24:25)。 鸡占(总4)只公数鸡的与(母7)鸡只。数的比是3:7,公鸡占总只数的((130)),母
(1)写出两种地砖铺地面积的比, 并化简。
20︰40=1︰2 答:深色地砖与浅色地砖铺地面积的比是1︰2。
2024/5/17
13
苏教版义务教育教科书 数学 六年级(下册)
5.一个房间的地面由两种颜色的地砖铺成 (如下图)。
(1)写出两种地砖铺地面积的比, 并化简。
(2)如果这个房间的面积是 15 平 方米,两种地砖的铺地面积分 别是多少平方米?

小学六年级数学总复习-比、比例有关问题

小学六年级数学总复习-比、比例有关问题

3 学校要建一个长80m、宽60m的长方形操场,
画出操场的平面图。
比例尺 1:1000
根据“ 图 实上 际距 距离 离比例尺”可以列。 出
解:设长的图上距离是x厘米。 同样,设宽的图上距离是y厘米。
80m=8000cm
60m=6000cm
x:80 0 1:0 1000 y:6001 0:1000
按2:1画出下面图形放大后的图形.
按2:1放大也就是各 边放大到原来的2倍.
按2:1画出下面图形放大后的图形.
按2:1放大也就是各 边放大到原来的2倍.
பைடு நூலகம்2:1画出下面图形放大后的图形.
三角形的两条直角边放大 到原来的2倍后,斜边是否 也变为原来的2倍呢?
观察一下,放大后的图形与原 来的图形相比,有什么相同的
5、正方体的棱长和棱长总和。( 正比例 )
6、货物总吨数一定,汽车的载重量和运货次数。
( 反比例 ) 7、树苗总数一定,行数和每行棵数。( 反比例 )
8、我国资源总量一定,人均资源占有量和我国人口总
数。( 反比例 )
用比例知识解题
1、施工队安装下水道,6天安装288m;照这样的速度,
14天可以安装多少米?
地方?有什么不同的地方?
如果把放大后的三个图形的各边按1:3缩小, 图形又发生了什么变化?画画看.
图形的各边按相同的比放 大或缩小后,所得的图形与
原图形有什么关系呢?
按4:1画出下面图形放大后的图形.
按1:2画出下面图形缩小后的图形.
按1:2画出下面图形缩小后的图形.
按3:1画出下面图形放大后的图形.
9×X=540
X=60
张师傅加工零件个数与时间如下图. 零件个数/个

六年级下册《比和比例》总复习-

六年级下册《比和比例》总复习-

可以用两种方法解答:
(一)用比例解:
设需要X小时,因为工效相等,所以
72:6=120:X 72X=120×6 X=10
(二)用算术方法解: 先求出工作效率,再求工作时间:
120÷(72÷6) =120÷12 =10(小时)
答:需要10小时。
小结:
这两种方法得区别在于解比例只用到一个关 系式:工作量÷工作时间=工作效率,思路简捷;而 列算式解答,除了用到上面这个关系式,还要用到: 工作量÷工作效率=工作时间,思路转折多一些。 请大家以后在解题时,用自己理解得方法解答。
比例尺分为( 数值比例尺)和(
线段比例)尺
9) :1
4
( 2 ):8=0、25=— 1=620÷( 80
)
()
出粉率一定,面粉重量和小麦重量成( )正比例、
被除数一定,除数和商成( 反)比例、
总价一定,单价和数量成( 反)比例、
小明每天看8页书,它看书得总页数和看书得天数成(
已知a×b=c( a、b、c 均不为0)
答:这幅图纸得比例尺是1:5000、
(4)求实际距离。
在比例尺是 1:8000000得地图上,量得A地到B地得距离是 5厘米。求AB两地得实际距离。
解: 设A.B两地之间得距离是x厘米。
图上距离
根据:
———— 实际距离
=比例尺
5:x =1:8000000 1×x= 5×8000000
x= 40000000 40000000厘米=400千米 答:A.B两地实际距离是400千米。
12
答:三条边分别长21厘米,28厘米, 35厘米。 白云居课件
甲乙丙3人和合租一套房子,房 租为990。甲住了 1 得时间

六年级数学下册总复习《比和比例》

六年级数学下册总复习《比和比例》

0
40
80
120千米
2、在比例尺是1∶4000000的地图上量 得甲、乙两地的距离是35cm,若把这 两地画在比例尺是1:7000000的地图 上,应画多少长?
3、在一副比例尺1:5000000 的地图上,甲、乙两城间的 距离是2.4cm,一列火车每小 时72千米的速度从甲城开往 乙城,共要几小时?
分 子 6
分 分数的基本性质 数 分数的分母和分子同 值 时乘以或除以相同的 2 数(0除外),比值不变。
三、求比值和化简比 举例 求 比 = 4÷ 值 = 10
2 : 4 5 9 3 5 10 2 3 10 × 5 =5 9 2 =3
一般方法
结果

根据比值的意义, 是一个商,可 用前项除以后项。 以是整数、小 所得的商如果是分 数或分数,但 数,不能是假分数。不能是假分数。
轻松学数学 快乐在海卫
例2
(1) X︰( 2 × 5
5 1 )= : 9 10 1 9
(2)(10+5)χ=10×30
(3) 2.3︰X=(9.6 - 4.5)︰10.2
按比例分配是把一个量按一定的比来分配. 解题方法: (1)根据比,得出各部分占总量的几分之 几,即先求出总份数,然后求出各部分量占 总量的几分之几,最后按照求一个数的几分 之几是多少的解题方法,求出各部分的量。 (2)根据比,求出总份数,然后用总 数量 除以总份数, 求出另一份是多少,再用一份 的量乘各部分的份数求得各部分的量。
性质 应用 0.9:0.6=9:(6)=3:(2)
例如:
1. 0.9︰0.6 =(0.9×10)︰(0.6×10) = 9 ︰6 =(9÷3)︰(6÷3) = 3 ︰2 2. 5 ︰6 = 20︰24

六年级数学小升初毕业考试总复习——比和比例专项训练(附答案)

六年级数学小升初毕业考试总复习——比和比例专项训练(附答案)

六年级小升初毕业考试总复习——比和比例专项训练一、比1.比的意义:两个数的比表示两个数要除。

2.比、分数、除法之间的联系:用字母表示三者之间的联系:a:b=a ÷b=ba(b ≠0) 3.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

4.按比分配:方法(一)先求出每份是多少,再用每份量乘各部分量所占的份数,求出各部分量。

方法(二)先求出总份数,再求出各部分量占总量的几分之几,最后求出各部分量。

考试真题:1.(朝阳区2019年小学毕业考试试卷)按要求完成。

A.张师傅要完成100个零件的加工任务,他已经完成了全部任务的41,他已经加工了多少个零件?B.一种零件的加工图纸的比例尺是4:1, 这个零件在图纸上的长度是100毫米,实际这个零件的长度是多少毫米?C.学校把养护100棵花苗的任务按照1:4分配给五年级和六年级同学,在这个任务中,五年级同学要养护多少棵花苗?D.学校合唱队有100名队员,其中男队员占41,学校合唱队有男队员多少名? ①在解决上面四个实际问题时,不能用“100×41”来解决的是( )。

②请你把上面不能..用“100×41”解决的问题解答出来。

2.(朝阳区2019年小学毕业考试试卷)按照这种截取的方法,第四天截取的长度与原来木棍的长度的最简单整数比是多少?请你用喜欢的方式展示你的思考过程。

3.(大兴区2019年小学毕业考试)按要求画一画。

(下面每个小方格的边长都代表1厘米)①画一个周长是20厘米的长方形,且长与宽的比是3:2. ②画出这个长方形的所有对称轴。

4.(东城区2019年小学数学毕业考试试卷)( )÷16=()21=0.875=( )%=7:( ).5.(东城区2019年小学数学毕业考试试卷)下图中平行四边形的面积是20cm 2,甲和丙面积的比是( )。

《庄子·天下篇》中写道: “一尺之棰, 日取其半, 万世不竭” 这句话意思是:一根一尺的木棍,如果第一天截取它长度的一半,以后每天截取它前一天剩下长度的一半,那么将永远也截取不完。

六年级比和比例的解决问题总复习

六年级比和比例的解决问题总复习

比的解决问题
1、某化工厂按1:4的比配制了一瓶500ml 的稀释液,其中浓缩液和水的体积分别是多少?
3、张大爷养的鸭500只,鸭和鹅的只数之比是5:2,鸭和鹅分别有多少只?
4、李明家养的鸡鸭鹅共有81只,其中鸡的只数占总只数的
9
4 ,鸭和鹅的只数的比是7:2,养的鸭河鹅各有多少只?
5、用120cm 的铁丝做一个长方形的框架。

长宽高的比是3:2:1,。

这个长方形的长、宽、高分别是多少?
6、水泥、石子、黄沙各有6吨,用水泥、石子、黄沙按5:3:2拌制成混凝土,若用完石子,水泥缺几吨?黄沙多几吨?
7、王叔叔家里的菜地共800平方米,他准备用 25 种西红柿。

剩下的按2:1的面积比种黄瓜和茄子。

三种蔬菜的面积分别是多少平方米?
8、有一块铜锌合金,其中铜与锌的比是2:3。

现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比。

用比例解决问题
1、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。

如果要4小时到达,每小时需要行驶多少千米?
2、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?
3、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?
4、用一批纸装成同样大小的练习本,如果每本18而,可装订200本,如果每本16而,可以装订多少本?
5、某种型号的钢珠,3个重22.5千克,现在有一些这种型号的钢珠共重945千克,共有多少个?
6、一间房五铺地砖,用面积是9平方分米的方砖需要96块,如果改用面积是4平方分米的方砖,需要多少块?
9、小红使用电脑打字,3分钟打了400个字,照这样计算,打1200个字需要多少分钟?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4:8=12:24,如果将第二项减少1, 要使比例成立,则第四项减少多少?
编辑ppt
10
正比例和反比例
❖ 什么是正比例、反比例 ❖ 判断正比例和反比例的方法 ❖ 利用正反比例解决问题
编辑ppt
11
判断下面各题中的两种量是否成比例,成什么比例。
1、出粉率一定,面粉质量和小麦质量。( 正比例) 2、长方体的底面积一定,它的体积和高。( 正比例 )
编辑ppt
7
解比例:
1—.5 2.5

X—6
解: 1.5 X=( 2).5 ×( )6
X= (2.5)×( 6 ) (1.5)
X=( 10 )
编辑ppt
8
解比例
一概念:求比例中的未知项, 叫做解比例。
二依据: 比例的基本性质
三方法:一化(把“比”转化为 “积” ) 二 解编辑(ppt 求这个方程的 9
编辑ppt
23
强调
(1)比例尺与一般的尺不同,它是一个 比,不应带有计量单位.
(2)求比例尺时,前、后项的单位长度一 定要化成同级单位.
(3)比例尺的前项,一般应化简成 “1”.
解:设需要X块. 4×4×X=3×3×400
16×X=9×400 X=3600÷16
X=225 答:需要225块.
编辑ppt
16
计划在景观大道种800棵观赏树,前8天种了200 棵。照这样计算,要完成任务,还要多少天?
解:设还要X天。 200 800-200 8=X 200X=8×600 X=24
编辑ppt
3
第二个红点:比的性质
两个外项之积是2.4×40= 96
两个内项之积是1.6×60= 96
编辑ppt
4
2.4 ︰1.6=60︰40
内项 外项
在比例里,两个外项的积等于两个 内项的积,这叫做比例的基本性质.
编辑ppt
5
比和比例的区别

比例
意 两个数相除又叫做两个数的比。 有两个相等的比组成的式子。 义
米的方砖,要用多少块?
每块砖面积×块数=房子面积(一定)
解:设要用X块砖。
4X=9×96
X=864÷4
X=216
编辑ppt
14
苹果
买20kg橘子的钱,可以买多少
千克苹果?
解:设可以买X千克苹果.
2.8X=3.5×20 X=70÷2.8
2.8元/kg
X=25
答:可以买25千克苹果.
橘子
3.5元/kg
想 要求图上距离与实际距离的比,能不能直接用题 中给出的两个数列式?为什么?应该怎么办?
因为图上距离和实际距离的单位不同,所以必须化成同级单位。
- 10米=1000厘米
10∶1000= 1∶ 100 或
1
100
10厘米 ∶ 10米 = 10厘米∶ 1000厘米 = 1∶ 100
答:图上距离和实际距离的比是1∶100 .
12
用比例知识解题
1、施工队安装下水道,6天安装288m;照这样的速度,
14天可以安装多少米? 总米数 天数 =每天安装米数(一定)
解:设14天可安装X米。
288 6
=
X 14
2、施工队安装下水道,每天安装48m,15天完成;如
果要12天完成,每天要安装多少米?
每天安装米数×天数=总米数(一定)
解:设每天要安装X米。
一堆煤,原计划每天烧12吨,可以烧45天;实 际每天比计划节约25%,实际烧了多少天?
解:设实际烧了X天。
12×(1-25%)×X=12×45
9×X=540
X=60
编辑ppt
17
张师傅加工零件个数与时间如下图. 零件个数/个
360 ?
200
0
4 7 ? 时间/小时
1、做360个零件需要多少小时?
2、做7小时可以加工零件多少个?
编辑ppt
18
12

10
编辑ppt
19
比例尺及其应用
一、什么是比例尺 二、比例尺的应用
编辑ppt
20
1.什么叫做比例尺?
2.比例尺有单位吗?
3.求比例尺时,比例尺的前后项的单位长度一定要化成
同级单位吗?
4.比例尺根据表现形式的不同可分为( )比例尺和 ( )比例尺。
5. 图上距离∶( ) =比例尺
12X=48×15
X=720÷12
X=60
编辑ppt
13
1、用同样的砖铺地,铺18平方米要用618块砖。
如果铺24平方米,要用多少块砖?
铺地面积 块数 =每块砖面积(一定)
解:设要用X块砖。
24 X
=
18 618
618
X
18 = 24
X=824
2、一间房子要用方砖铺地。用面积是9平方分
米的方砖,需要96块。如果改用面积是4平方分
小学六年级数学总复习
比、比例、比例பைடு நூலகம்用题
编辑ppt
1
青岛版六年级下册“比例” (一)
第一个红点:比例的意义。 第二个红点:比例的基本性质。 第三个红点:解比例。
编辑ppt
2
第一个红点:比例的意义
一、复习回顾 1、什么叫做比? 两个数相除又叫做两个数的比。 2、什么叫做比值? 比的前项除以后项所得到的商,叫做比值。 3、表示两个比相等的式子叫做比例。
构 有两项组成,分别叫比的前项 有四项组成,两端的项叫做比例的
成 和后项。
外项,中间的两项叫做比例的内项。
基本性 比的前项和后项同时乘或除以 在比例里,两个外项之积等于两个 质 相同的数(0除外),比值不变。 内项之积。
编辑ppt
6
第三个红点:解比例
根据比例的基本性质,如果已知比例中的任 何三项,就可以求出另外一个未知项。 求比例中的未知项,叫做解比例。
实际距离 =( )÷比例尺
图上距离 =( )× 比例尺
编辑ppt
21
什么叫做比例尺?
图上距离和实际距离的比,叫做这幅图的 比例尺.
图上距离∶实际距离 = 比例尺
图上距离
实际距离 = 比例尺
编辑ppt
22
探究
设计一座厂房,在平面图上用10厘米的距离表示地面 上10米的的距离.求图上距离和实际距离的比.
3、同时同地,竹竿的高度和影长。( 正比例)
4、除数一定,被除数和商。( 正比例)
5、正方体的棱长和棱长总和。( 正比例 )
6、货物总吨数一定,汽车的载重量和运货次数。
( 反比例 ) 7、树苗总数一定,行数和每行棵数。( 反比例 )
8、我国资源总量一定,人均资源占有量和我国人口总
数。( 反比例 )
编辑ppt
一对互相咬合的齿轮,大齿轮有35个齿,每分钟
转100转;小齿轮有20个齿,每分钟转多少转?
解:设每分钟转X转. 20X=35×100 X=3500÷20 X=175
答:每分钟转175转.
编辑ppt
15
一间教室,如果用边长是3dm的方砖铺地,需要 400块;如果改用边长4dm的方砖铺地,需要多少 块? 每块砖面积×块数=教室面积(一定)
相关文档
最新文档