完整版四年级奥数图形问题
小学四年级奥数第15讲 图形问题(含答案分析)

第15讲图形问题一、知识要点解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
二、精讲精练【例题1】人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?练习11、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2、一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?练习21、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
练习31、下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。
2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?练习41、有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。
2、已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图)。
四年级奥数专题第一讲 图形问题

四年级奥数专题第一讲图形问题【一】将一个长10厘米,宽5厘米的长方形纸片,剪成一个最大的正方形,这个正方形的面积是多少平方厘米?练习1、一个长方形,长24分米,如果长减少了4分米,就成了正方形,则原长方形的面积是多少?2、将一个长8厘米,宽5厘米的长方形纸片,剪成一个最大的正方形,要剪去多大面积的纸片?【二】有一块长方形土地,长6米,长是宽的2倍,这块长方形土地的面积是多少?练习1、有一块面积是18平方米的长方形草地,长是宽的2倍,长与宽各是多少?2、一块面积为25平方厘米的正方形手帕,它的边长是多少?【三】竹苑小学操场长60米,宽30米,改造后,长增加10米,宽增加10米。
现在操场面积比原来增加了多少平方米?练习1、有一块长方形的铁片,长16分米,宽9分米,如果长和宽分别减少6分米、5分米,面积比原来减少多少平方分米?2、一个长方形,长15分米,宽6分米,如果长和宽各减少3分米,面积比原来减少多少平方分米?【四】一个长方形,如果长增加3米,那么它的面积增加12平方米;如果宽减少2米,那么它的面积减少14平方米。
这个长方形原来的面积是多少平方米?练习1、一个长方形,如果宽不变,长减少2米,那么它的面积减少24平方米;如果长不变,宽增加3米,那么它的面积增加18平方米,这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加8米,那么它的面积增加32平方米,如果长不变,宽增加6米,那么它的面积增加36平方米,这个长方形原来的面积是多少平方米?【五】下图是一个果农在院子周围用一段长20米的篱笆围成的一个长方形围墙,求占地面积有多大?1、用1米长的铁丝围成一个长方形,要使它的宽为15厘米,则它的面积是多少平方厘米?2、一个正方形与一个长方形的周长相等,长方形的长与宽的和是14分米,则正方形的面积是多少?【六】中心小学一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是20平方米,这个花坛的面积是多少平方米?练习1、有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的地面是一个正方形,周围是草坪,那么草坪的面积是多少平方米?2、四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图)。
四年级奥数图形的面积含答案

一、填空题①用一根长36厘米的铁丝围成一个正方形,它的面积是 平方厘米. ②一个长方形周长是68厘米,长比宽的3倍少2厘米,它的面积是 平方厘米.③一个长方形,长25厘米,如果长减少了5厘米,就变成了正方形.它的面积减少了 平方厘米.④如图的阴影部分是一个长方形的花坛,它的四周是用相同的正方形砌成的边框.已知边框的面积是60平方米,那么花坛不包括边框的面积是 平方1一个正方形的边长扩大到原来的2倍,它的面积扩大到原来的 倍.A 2 B4 C8 D 162边长为4厘米的正方形,它的面积和周长相比是 .A 面积大B 周长大C 一样大D 不可比三、简答题⑦如图,有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是,草坪的面积是多少平方米8.如图,已知正方形ABCD 的边长为6分米,长方形BCEF 和长方形AGHD 的面积分别为24平方分米和20平方分米,求阴影部分的面积;2厘米,它的面积就增加16平方厘米,求原正方形面积;10.一个长方形的宽增加4厘米,就成了一个正方形,这样面积就增加了 48平方厘米,求原来长方形的面积.11.一条白色的正方形手帕,它的边长是18厘米,手帕上横、竖各有两道红条,即为如图所示的阴影部分,红条宽都是2厘米,问:这条手帕白色部分的12米,若正中一块正方形铺纯毛地毯,外围铺化纤地毯,共需费用22 455元.已知纯毛地毯每平方米250元,化纤地毯每平方米35,正方形的边长是15厘米,长方形的四个角的顶点,恰好分别把正方形四条迈都分成两段,其中长的一段是短的2倍.这个长答案1. 812.2253.1004.605.B6.D7.199平方米8.8平方分米9.9平方厘米10.96平方厘米11.196平方厘米13. 15平方分米14. 100平方厘米。
(完整版)四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右图中总合有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),因此∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:图中总合有10 个角。
方法 2:用公式计算:边数×(边数—1)÷ 25 ×( 5-1 )÷ 2=10练一练:数一数右图中总合有多少个角?例( 2 )数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段 AB、AD、AE、AF、AC纵向线段,再看 BC、MN、 GH 这 3 条横向线段:(4×3÷2)×5+(5×4÷2)×3=60(条)②要数有多少个三角形,先看在△ ABC中,被 GH和 MN分红了三层,每一层的三角形同样多,因此只需算出一层三角形个数就能够了。
(5 ×4÷2)×3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。
练一练:图中共有多少个三角形?例( 3)数一数图中长方形的个数解析:长边线段有:6× 5÷ 2=15宽边线段有: 4 ×3÷2=6共有长方形: 15×6 = 90(个)答:共有长方形90 个。
四年级奥数拼图形练习题及答案【三篇】

四年级奥数拼图形练习题及答案【三篇】
导读:本文四年级奥数拼图形练习题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】用三块相同的正方形纸板只能拼成如图所示的两种不同的图形(拼时要求正方形的边要整边重合)。
现在给你四块相同的正方形纸板,最多可以拼成多少种不同的图形(通过翻转或旋转能相互得到的图形视为同一种图形)?
解答:最多可以拼成5种不同的图形通过画图我们可以得出下面的五个图形:
通过画图我们得到最多可以拼成5种不同的图形。
对于这类题目我们可以画图来获得正确的答案。
【第二篇】用三块相同的正方形纸板只能拼成如图所示的两种不同的图形(拼时要求正方形的边要整边重合)。
现在给你四块相同的正方形纸板,最多可以拼成多少种不同的图形(通过翻转或旋转能相互得到的图形视为同一种图形)?
解答:最多可以拼成5种不同的图形通过画图我们可以得出下面的五个图形:
【第三篇】1、数一数下图中有多少个三角形?
答案:6+6+3=15个
2、数一数下图*有多少个三角形?
答案:10+6+6+1+3+1=27。
四年级奥数思维训练专题-图形问题

四年级奥数思维训练专题-图形问题专题简析:解答“图形面积”问题时,应注意以下几点:1、根据题意,画出图形.2、合理地进行切拼.3、掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化.例1:人民路小学操场长90米,宽45米.改造后,长增加10米,宽增加5米.现在操场面积比原来增加了多少平方米?分析:用操场现在的面积减去操场原来的面积,就得到增加的面积.现在面积:(90+10)×(45+5)=5000平方米原来面积:90×45=4050平方米现在比原来增加:5000-4050=950平方米试一试1:一块长方形铁板,长18分米,宽13分米.如果长和宽各减少2分米,面积比原来减少多少平方分米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米.这个长方形原来的面积是多少平方米?分析:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米.所以,这个长方形原来的面积是12×9=108平方米.试一试2:一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米.这个长方形原来的面积是多少平方米?例3:一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场(如下图),求养鸡场的占地面积.分析:因为一面利用着墙,所以两条长加一条宽等于16米.而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米.试一试3:下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积.例4:街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?分析:把水泥路分成四个同样大小的长方形(如下图).因此,一个长方形的面积是12÷4=3平方米.因为水泥路宽1米,所以小长方形的长是3÷1=3米.从图中可以看出正方形小正方形的边长是3-1=2米.中间花坛的面积是2×2=4平方米.试一试4:有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长.。
举一反三-四年级奥数分册-第十五周 图形问题

第十五周图形问题专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1:人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?分析与解答:用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
练习一1,有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2,一块长方形铁板,长18分米,宽13分米。
如果长和宽各减少2分米,面积比原来减少多少平方分米?3,一块长方形地,长是80米,宽是45米。
如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?分析与解答:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
所以,这个长方形原来的面积是12×9=108平方米。
练习二1,一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2,一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
这个长方形原来的面积是多少平方米?3,一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
奥数之图形问题及答案

奥数之图形问题及答案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998图形问题(一)1.如图,在三角形ABC中,D是AB的中点,E是DB的中点,F是BC的中点,如果三角形ABC的面积是96cm2,那么三角形AEF的面积是多少平方厘米CFA D E B解:三角形ABF与三角形ABC有公用的顶点A,并且它们的底BC和BF在同一条直线上,所以它们的高相等,而三角形ABF的底BF只有三角形ABC的底BC的一半,所以三角形ABF的面积等于三角形ABC的一半,是96÷2=48(cm2)。
同理,三角形AFD的面积是48÷2=24(cm2),三角形DEF的面积是24÷2=12(cm2),因此,三角形AEF的面积是24+12=36(cm2)。
答:三角形AEF的面积是36 cm2。
2.如图所示,大正方形的边长为12 cm,小正方形的边长为10 cm,求阴影部分的面积。
解:阴影三角形的面积无法直接求出,可以用两个正方形面积的和,减去阴影部分周围三个三角形的面积。
所以,阴影部分的面积是122+102-12×(12+10)÷2-102÷2-12×(12-10)÷2=144+100-132-50-12=50(cm2)。
答:阴影部分的面积是50 cm2。
3.把三角形ABC的边AB三等分,AC四等分,如图。
已知三角形ADE的面积是1 cm2,求三角形ABC的面积是多少平方厘米AE DB C解:三角形AEC的面积是三角形AED的4倍,三角形ABC的面积是三角形AEC的3倍,所以三角形ABC的面积是三角形AED的4×3=12倍,是12(cm2)。
4.一个任意四边形ABCD,将各边延长一倍,得到四边形EFGH如图。
已知四边形ABCD的面积是5 cm2,那么四边形EFGH的面积是多少平方厘米HEA DB C GF解:连接BD、BE,三角形ABD、ABE、BEF的面积相等,所以三角形AEF的面积是三角形ABD的2倍,同理,三角形CHG的面积是三角形BCD的2倍,所以三角形AEF与CGH面积的和是四边形ABCD的2倍;同理,三角形EDH与BFG面积的和也是四边形ABCD的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形问题:
练习1:
1. 人民路小学操场长90 米,宽45 米,改造后,长和宽分别增加10 米。
现在操
场面积比原来增加了多少平方米?
2. 有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10 分米和
3 分泌,面积比原来减少多少平方分米?
3. 一块长方形地,长是80米,宽是45 米,如果把宽增加5米,要使面积不变,
长应减少多少米?
练习2:
4. 一个长方形,如果宽不变,长减少3 米,那么它的面积减少24 平方米;如果长
不变,宽增加 4 米,那么它的面积增加60 平方米。
这个长方形原来的面积是多少平方米?
5. 一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果
长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形的面
积是多少平方米?
6. 一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少
36平方米。
求这个长方形原来的面积。
练习3:
7. 右图是某个养禽专业户用一段长
13米的篱笆围成一个长方形的养鸡场,求养鸡场的占地面积有多大?
8. 用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才
能使围成的面积最大?
练习4:
9. 有一个正方形的水池,如右图的阴影部分,在它的周围修一个宽8米的花池, 花
池的面积是480平方米,求水池的边长。
11.四个完全相同的长方形和一个小正方形拼成一个大正方形(如右图)。
大正方形的面积是100平方分米,小正方形的面积是16平方分米,求每个小长方形的面积是多少平方分米?它的宽又是多少分米?
巧妙求和(二)
练习1:
1. 刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15 天做了48个,正好做完。
这批零件共有多少个?
2. 胡倩读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页,最后一天读了50页恰好读完。
这本书共有多少页?
3. 丽丽学英语单词,第一天学会了6 个,以后每天都比前一天多学1个,最后一天
学会了16 个。
丽丽在这些天中学会了多少个单词?
练习二:
4. 有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
5. 有一些锁的钥匙搞乱了,已知至多要试28 次,就能使每把锁都配上自己的钥匙。
问一共有几把锁的钥匙搞乱了?
6. 学校进行乒乓球比赛,每个参赛选手都要和其他所有选手各赛一场,如果有
21 人参加比赛,问一共要进行多少场比赛?
7. 一次同学聚会中,参加聚会的有43 位同学和4 位老师,每一位同学或老师都要
和其他人握一次手。
那么一共握了多少次手?
解决问题(一)练习一:
8. 自行车要生产9900辆自行车,前10天平均每天生产460 辆,由于改进技术,后来每天生产530 辆,完成这批任务还要多少天?
9. 某工厂计划生产20900个零件,前5 天平均生产2100个,后来改进操作方法,平均每天生产2600 个,这样完成这批任务共需多少天?
10. 某发电厂运来一批煤,计划每天烧300吨,20 天用完,后来改进技术,每天少烧煤60 吨,这批煤实际可以烧几天?
11. 张师傅和李师傅同时开始分别做90个玩具,张师傅每天做10 个,张师傅完成任务时,李师傅还要做 1 天才能完成任务。
李师傅每天做多少个?
12. 小华和小明同时开始分别写192个大字,小华每天写24 个,小华完成任务时,
小明还要写4 天才能完成,小明每天写多少个字?
13. 丰华农具厂计划20 天制造农具2400件,实际每天多制造30 件,这样可提前几天完成任务?
14. 玩具厂一车间要生产900 个玩具,如果用手工做要20 小时才能完成,用机器做只需要4小时。
一车间工人先用手工做了 5 小时,后改用机器生产,还需要几小时才能完成任务?
15. 甲、乙两地相距200 千米,汽车行完全程要5小时,步行40 小时。
强强从甲地出发,先乘汽车 4 小时后改步行,他从甲地到乙地共用了多少小时?
16. A,B 两城相距300千米,骑摩托车行完全程要5 小时,自行车要25小时。
王亮从A 城出发,先骑自行车 5 小时,后改骑摩托车。
他从 A 城到 B 城共用了多少小时?。