超氧化物歧化酶的现状研究进展(一)

合集下载

超氧化物歧化酶分析方法进展

超氧化物歧化酶分析方法进展
0 卷第 内蒙 古地 方 病 防 治研 宪 第 2
1
期 (
19 9 5
)
超 氧化 物 歧化 酶分 析 方 法 进 展
李 立
( 辽宁省 基拙 医 学 研 究 所 )
自从 M
c
e o
r
d等 1969
.
年发 现超 氧化 物
S
,
改 进 的 方法
1 1 2
. .
,
灵 敏 度 已有 提 高

孩化 酶
刁1
5
( EC
S O D 抑 制该 还 原 反 应

研究
近年来S OD
的 作 用 日益 引 起 广 大
因此
,
抑制率5 0 %所需 S O D 量为

地方 病 科学 工作 者的 重 视
S OD
1 个 活 力单位
,
产 生 服 的 方 法 有邻 苯三
测 试 技术 已 成 一 个 有 意 义 的课题 试 技术 进展情 况 综 述如 下
0
,
n
m 来提
C
,
om m
用该 法 的荧 光 测 S O D 为 了 提 高灵敏 度
,
可大大
当 SO D存在 对
2 ,
服被 歧 化为 速 率 减慢
O
提 高 灵敏 度
,
还 要 控制
O
Z
和0
0石 还原
C y t C反应

反应 体 系 中痕量 金 属 的量
,
它 能 催 化 肾上
,
反应 受 抑 制 制 氧化 型

后 者灵 敏
每分 钟 抑 制 邻 苯 三 酚 自 氧 化 速
l

超氧化物歧化酶的应用研究进展

超氧化物歧化酶的应用研究进展

超氧化物歧化酶的应用研究进展一、本文概述超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种重要的抗氧化酶,广泛存在于生物体内,其主要功能是催化超氧化物阴离子自由基(O2-)的歧化反应,从而保护细胞免受氧化应激的损害。

近年来,随着生物技术和分子生物学的发展,超氧化物歧化酶的应用研究取得了显著的进展。

本文旨在综述超氧化物歧化酶在各个领域的应用研究进展,包括其在医学、农业、食品工业以及环境保护等领域的应用,以期为相关领域的研究提供参考和借鉴。

在医学领域,超氧化物歧化酶作为一种重要的抗氧化剂,被广泛应用于疾病的治疗和预防。

研究表明,超氧化物歧化酶能够清除体内的自由基,减轻氧化应激对细胞的损伤,从而起到抗衰老、抗疲劳、抗辐射等作用。

超氧化物歧化酶还被用于治疗一些与氧化应激相关的疾病,如心血管疾病、癌症、糖尿病等。

在农业领域,超氧化物歧化酶的应用主要集中在提高植物抗逆性和促进植物生长方面。

通过基因工程技术将超氧化物歧化酶基因导入植物体内,可以提高植物对逆境的抵抗能力,如耐盐、耐旱、耐寒等。

同时,超氧化物歧化酶还可以促进植物的生长和发育,提高植物的产量和品质。

在食品工业领域,超氧化物歧化酶作为一种天然的抗氧化剂,被广泛应用于食品的加工和保存过程中。

它可以有效地抑制食品的氧化变质,延长食品的保质期,同时保持食品的营养成分和口感。

在环境保护领域,超氧化物歧化酶也被用于处理一些环境污染问题。

例如,超氧化物歧化酶可以用于处理工业废水中的有害物质,减少其对环境的污染。

超氧化物歧化酶还可以用于土壤修复和生态恢复等方面。

超氧化物歧化酶作为一种重要的抗氧化酶,在各个领域都展现出广泛的应用前景。

随着科学技术的不断进步,相信超氧化物歧化酶的应用研究将会取得更加显著的成果。

二、SOD的结构与功能超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一类广泛存在于生物体内的金属酶,其主要功能是催化超氧化物(O2-)的歧化反应,从而将其转化为过氧化氢(H2O2)和氧气(O2)。

超氧化物歧化酶(SOD)及其研究进展

超氧化物歧化酶(SOD)及其研究进展

其 结 合金 属 种 类 不 同 , 分 为三 类 : 一 类 为 C Z 可 第 un S D, 蓝 绿 色 , 对 分 子量 约为 3 k a 主 要 存 O 呈 相 2D , 在 于 真核 细胞 细胞 浆 、 叶绿体 和过 氧化 物酶 体 内 ; 第 二 类 为 Mn— S D, 紫 红 色 , 对 分 子 量 约 为 O 呈 相 4k , 0 Da 主要存 在 予 真核 细 胞 线粒 体和 原 核 细胞 中 ; 第 三类 为 F —S e OD, 呈黄 褐 色 , 对 分子 量约 为 3. 相 8 7 D , 要存 在于 原核 细胞 及一 些植 物 中[ 。 k a主 3 ] 3 S OD的 结构 与催 化机 理

不 同来 源 的 Mn OD 一 级 结 构 同 一 性 很 高 , —S 并 且参与 形成 活性 中 心及与 金属 连接 的氨 基酸 在 所 有 Mn S - OD中 都是保 守 的[。Mn OD 是 由 2 3 5 ] —S 0 个氨 基酸 残基 构成 的 四面体 [ , 1 结构 简 单 , 个 亚基 ] 每 只含一个 金属 离子 [ , ( 处于 三 角双 锥配 位 环 5 Mn Ⅲ) ] 境 中 , 中一轴 向配 体为 水分 子 , 其 另一 轴 向配体 为蛋 白质辅基 的配 位基 Hi一2 , s 8 另三 个来 自蛋 白质 辅基 的 配基 Hi- 8 、 s 1 0和 As s 3 Hi~ 7 p一1 6位 于赤 道平 6
S OD 的发现 、 类、 分 结构 、 催化 机 理及研 究进展 , 并对 其应 用 前景进 行 了展 望 。 关键 词 : 氧化物 歧化 酶 ; 超 活性 氧 ;OD S
中图 分 类号 : 5 Q5
文献 标 识码 : A
文章编 号 :0 6 7 8 (0 0 1 一 o 1 — 0 10- 912 1 )6 04 2

超氧化物歧化酶的研究进展

超氧化物歧化酶的研究进展

Cu/Zn—SOD因其重要的生理功能和巨大的治疗 潜能,被认为是超氧化物歧化酶家族最重要的一类
酶旧’9J,也是清除自由基最重要的成员之一H 0I。它 有两种基本类型,分别由两个不同的基因编码¨川 成一个在N端含有外导向区域的胞外型Cu/Zn—SOD (ecCu/Zn—SOD,sod3基因编码)和不含外导向的 胞质型Cu/Zn—SOD(icCu/Zn-SOD,sodl基因编 码)L12 J。Cu/Zn—SOD产生的初始阶段进化异常缓 慢,最近一亿年进化较快¨3|。基于Cu/Zn—SOD基
whom correspondence should be addressed)
changliuwang@sina.con
因序列比对和蛋白晶体结构解析,Bordo等¨4 o认为
第6期
袁牧等.超氧化物歧化酶的研究进展
551
表1
Tab.1
SOD的分布及胞质定位
Distribution and cytoplasmic localization of SOD
第25卷第6期 2016年12月
中国组织化学与细胞化学杂志
CHINESE JOURNAL OF
V01.25.No.6 December.2016
HISTOCHEMISTRY
AND
CYTOCHEMISTRY
超氧化物歧化酶的研究进展
袁牧,王昌留8,王一斐,徐贵华,韩潇
(鲁东大学生命科学学院,烟台264025)
灭绝,少量的靠隐藏在低氧环境或能产生抵御0:
ROS)的产生。活性氧在机体中有双重作用,生物
体内活性氧的含量通常处于平衡状态。但当生物机 体处于逆境条件时,生物体内的活性氧如不能及时
侵袭的生物得以幸存,从而产生了SOD。该酶广泛

超氧化物歧化酶综合利用研究进展

超氧化物歧化酶综合利用研究进展

超氧化物歧化酶综合利用研究进展徐颢溪【摘要】超氧化合物歧化酶通过专一催化超氧阴离子自由基歧化反应,有效防御生物体内活泼氧对机体的伤害。

对超氧化合物歧化酶的分类、结构、性质、催化机理与活性以及其在食品工业、日用化工、医药等方面的综合利用进行了阐述,并展望了其发展趋势。

%Superoxide dismutase effective prevented active oxygen in vivo damaged to the body, by exclusive catalysis on disproportionation reaction of superoxide anion radicals. The classification, structure, properties, catalytic mechanism and activity and the utilization in the food industry, daily chemical industry, pharmaceutical and others of superoxide sismutase were described in detail. Moreover,the development trends were prospected.【期刊名称】《园艺与种苗》【年(卷),期】2014(000)008【总页数】4页(P59-62)【关键词】超氧化合物歧化酶;超氧阴离子自由基;活性;应用【作者】徐颢溪【作者单位】安徽职业技术学院化学工程系,安徽合肥230000【正文语种】中文【中图分类】Q544超氧化物歧化酶(Superoxide dismutase,SOD)是生物体系中抗氧化酶系的重要组成成员,广泛分布在微生物、植物和动物体内。

该酶首次由Mann和Keilin[1]于1938年从牛红细胞中分离提纯而获得,全酶由酶蛋白和金属辅助因子构成,通过专一催化超氧阴离子自由基(O-2·)产生歧化反应而清除超氧阴离子自由基,从而防御生物体内氧中毒,现今许多研究证明,当生物体内由于氧气的存在而产生过多自由基或机体过慢清除自由基时,自由基由于其过于活泼的化学反应活性,会和生物机体内的生物大分子进行反应,使生物大分子发生功能性根本改变,如碱基突变、DNA断裂、蛋白质损伤或膜脂过氧化等,致使机体组织器官、机体细胞及分子水平层面造成不同程度损伤,不仅会诱发生物体内各种疾病,更会导致生物机体衰老加速。

《超氧化物歧化酶的研究》论文

《超氧化物歧化酶的研究》论文

超氧化物歧化酶的研究年级:大三专业:化学学号:189940012姓名:邢敏超氧化物歧化酶的研究超氧化物歧化酶(superoxide dismutase,简称SOD)是一种能够催化超氧化物通过歧化反应转化为氧气和过氧化氢的酶。

它广泛存在于各类动物、植物、微生物中,是一种重要的抗氧化剂,保护暴露于氧气中的细胞,可清除生物体内超氧阴离子自由基,有效地抗御氧自由基对有机体的伤害。

氧化还原反应是生命体最重要的代谢途径,它不仅为生物提供能量,同时还决定着生命体的衰老和死亡。

氧对于生命活动极其重要,但氧参与的代谢经常产生一些对细胞有毒害作用的副产物———氧自由基,即通常所说的活性氧(reactiveoxygen species,ROS)。

细胞产生的活性氧包括:超氧根阴离子(O·-2)、氢氧根离子(OH-)、羟自由基(·OH)、过氧化氢(H2O2)、单线态氧(·2)和过氧化物自由基(ROO·)。

它们都能通过氧化应激损伤细胞大分子,引起一系列有害的生化反应,造成蛋白质损伤、脂质过氧化、DNA突变和酶失活等。

为了防止氧自由基对细胞体的破坏,几乎所有细胞都有一套完整的保护体,来清除细胞新陈代谢产生的各种活性氧。

其中,超氧化物歧化酶(superoxide dismutase,SOD)在保护细胞免受氧自由基的毒害中发挥着重要作用。

早在1969年,Mc Cord和Fridovich发现了一种血球铜蛋白能清除自由基(O·-2),并且将这种血球铜蛋白命名为超氧化物歧化酶(SOD)。

SOD几乎存在于所有生物细胞中,通过把O·-2转化为H2O2,H2O2再被过氧化氢酶和氧化物酶转化为无害的水(H2O),从而达到清除细胞内氧自由基,保护细胞的目的。

1.超氧化物歧化酶的作用机理SOD是一种重要的抗氧化剂,保护暴露于氧气中的细胞。

其能够催化超氧化物通过歧化反应转化为氧气和过氧化氢主要通过以下两步完成:这里M代表金属辅因子,M3+代表金属辅因子的最高价,M2+代表金属辅因子被氧化以后的价位。

超氧化物歧化酶的研究进展

超氧化物歧化酶的研究进展
山虿职z臣学院学报2010年2月第20卷第1期journalofshanximedicalcollegeforcontinuingeducationv0120noifeb2010?综述?超氧化物歧化酶的研究进展马晓丽晋中学院生物科学与技术学院山西榆次030600摘要超氧化物歧化酶是生物体内一种重要的氧自由基清除荆能够平衡机体的氧自由基近年来成为化学生物学医学日用化工食品科学和畜牧兽医学等多个学科领域研究的热点


述 ・
超氧化 物 歧化酶 的研 究进 展
马 晓 丽
( 晋中学院生物科 学与技术学院 , 山西 榆次 0 00 ) 360
[ 摘
要 ] 超 氧 化 物 歧 化 酶 是 生 物 体 内一 种 重 要 的 氧 自由 基 清 除 剂 , 够 平 衡 机 体 的 氧 自由 基 , 年 来 成 为 化 能 近
c e s y il g ,me i ie,d i h mi a n u t h mit ,b oo y r d cn al c e c i d s y,f o ce c n n ma u b n r n ee n r ce c n y l r o d s in e a d a i l s a d y a d v tr a s in e a d h i y S n i e e ty a s I n to l a n i ot n e r t a in f a c u so n i o a t r ci a au o su y O o n r c n e r . t o n y h sa mp r t h o eil sg i c n e b t f a t c i i a mp r n a t l le t t d t p c v
山 职 Zl 薹学院 学 报 21 年2 第2 卷 第 1 0 0 月 o 期

超氧化物歧化酶的研究进展

超氧化物歧化酶的研究进展

超氧化物歧化酶的研究进展一、本文概述超氧化物歧化酶(Superoxide Dismutase, SOD)是一类重要的抗氧化酶,它在生物体内发挥着至关重要的角色,负责清除由氧代谢产生的活性氧自由基——超氧阴离子。

由于其在抗氧化防御系统中的重要地位,超氧化物歧化酶的研究一直是生物学、医学和农业科学等多个领域的热点。

本文旨在综述近年来超氧化物歧化酶的研究进展,包括其分子结构、生物学功能、表达调控机制、活性检测方法以及在疾病治疗和农业生物技术中的应用等方面。

通过深入了解和探讨超氧化物歧化酶的研究现状和未来趋势,以期为相关领域的研究提供有价值的参考和启示。

二、SOD的结构与功能超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种广泛存在于生物体内的金属酶,具有抗氧化和清除自由基的重要作用。

SOD的分子量因其来源和类型的不同而有所差异,但其基本结构都包含有一个或多个金属离子(如铜、锌、锰或铁)以及与之结合的氨基酸残基。

在结构上,SOD通常以同源或异源二聚体的形式存在,其活性中心包含有一个或多个金属离子,这些金属离子通过配位键与蛋白质中的氨基酸残基相连。

SOD的活性中心结构使其具有高效的催化活性,能够迅速将超氧阴离子自由基(O2-•)歧化为过氧化氢(H2O2)和氧气(O2)。

在功能上,SOD的主要作用是清除生物体内产生的超氧阴离子自由基。

超氧阴离子自由基是一种高度活性的自由基,可以引发一系列的氧化反应,导致生物大分子的损伤和细胞死亡。

SOD通过将其歧化为过氧化氢和氧气,从而有效地清除了超氧阴离子自由基,保护了生物体免受氧化应激的损害。

SOD还具有调节细胞信号转导、维持细胞稳态和增强免疫力等多种功能。

研究表明,SOD在抗氧化防御系统中起着关键作用,能够抵抗外源性和内源性氧化应激的影响,维护细胞的正常功能和生命活动的进行。

随着对SOD结构与功能的深入研究,人们发现不同来源和类型的SOD具有不同的催化特性、底物亲和力和组织特异性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超氧化物歧化酶的现状研究进展(一)关键词:超氧化物歧化酶;生理功能;特性;应用摘要:超氧化物歧化酶是生物体内清除超氧阴离子自由基的一种重要酶,具有重要的生理功能,在医药、食品、化妆品中有广泛的应用前景。

现从分类、分布、结构、性质、催化机理、制备、应用等方面探讨了超氧化物歧化酶的基础研究进展。

关键词:超氧化物歧化酶;生理功能;特性;应用Advanceincurrentresearchofsuperoxidedismutase.Abstract:SuperoxideDismutase(SOD)isanimportantenzymeinorganism,whichcanremovesuperoxidefreeradical.Itiswide-lyusedinclinicaltreatment,food,andcosmeticindustryforitsimportantphysiologicfunction.Thisreviewpresentsabasicreseachoutline ofSOD,includingclassification,distribution,structure,property,thecatalysemechanism,preparationandapplication.Keywords:Superoxidedismutase;Physiologicfunction;Property;Application1938年Mann和Keilin〔1〕首次从牛红细胞中分离出一种蓝色的含铜蛋白质(Hemocuprein),1969年Mccord及Fridovich〔2〕发现该蛋白有催化O2,发生歧化反应的功能,故将此酶命名为超氧化物歧化酶(SuperoxideDismutase,SOD,EC1.15.1.1)。

该酶是体内一种重要的氧自由基清除剂,能够平衡机体的氧自由基,从而避免当体内超氧阴离子自由基浓度过高时引起的不良反应,同时SOD是一种很有用途的药用酶。

有关SOD的研究受到国内外学者的广泛关注,涉及到化学、生物、医药、日用化工、食品诸领域,是一个热门研究课题。

通过多年努力,在SOD的基础研究方面取得了巨大成果。

目前,SOD临床应用主要集中在抗炎症方面(以类风湿以及放射治疗后引起的炎症病人为主),此外对某些自身免疫性疾病(如红斑狼疮、皮肌炎)、肺气肿、抗癌和氧中毒等都有一定疗效;在食品工业主要用作食品添加剂和重要的功能性基料;在其它方面也有相关应用。

现就有关SOD的基础研究进展及应用方面作以简述。

1SOD的种类与分布SOD是一类清除自由基的蛋白酶,对需氧生物的生存起着重要的作用,是生物体防御氧毒性的关键。

迄今为止,科学家已从细菌、真菌、原生动物、藻类、昆虫、鱼类、植物和哺乳动物等生物体内都分离得到了SOD。

基于金属辅基不同,这些SOD至少可以分为Cu/Zn-SOD、Mn-SOD、Fe-SOD三种类型〔3〕。

表1不同种类型的SOD分布(略)一般来说,Fe-SOD是被认为存在于较原始的生物类群中的一种SOD类型;Mn-SOD是在Fe-SOD 基础上进化而来的一种蛋白类型,由于任何来源的Mn-SOD和Fe-SOD的一级结构同源性都很高,均不同于Cu/Zn-SOD的序列,可见它们来自同一个祖先;Cu/Zn-SOD分布最广,是一种真核生物酶,广泛存在于动物的血、肝和菠菜叶、刺梨等生物体中。

除以上三种SOD外,Sa-OukKang等人最近又从链霉菌Streptomycesspp.和S.coelicotor中发现了两种新的SOD,一种是含镍酶即Ni-SOD,另一种是含铁和锌的酶即Fe/ZnSOD,它们均为四聚体,表观分子量分别是13KD和22KD,它们之间没有免疫交叉反应〔4~6〕。

2SOD的催化机理超氧化物歧化酶作用的底物是超氧阴离子自由基(O·-2),它既带一个负电荷,又只有一个未成对的电子。

在不同条件下,O·-2既可作还原剂变成O2,又可作氧化剂变成H2O2,H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在SOD和CAT共同作用下,变成了无毒的H2O和O2。

其作用机理如下:SOD+O·-2SOD-+O2SOD-+O·-2+2H+SOD+H2O22O·-2+2H+SODO2+H2O2H2O2CATH2O+O23SOD的结构和性质3.1不同SOD的结构超氧化物歧化酶(SOD)从结构上可分为两族:CuZn-SOD为第一族,Mn-SOD 和Fe-SOD为第二族。

天然存在的SOD,虽然活性中心离子不同,但催化活性部位却具有高度的结构同一性和进化的保守性,即活性中心金属离子都是与3或4个组氨酸(His)、咪唑基(Mn-SOD含1个天门冬氨酸羧基配位)和1个H2O分子呈畸变的四方锥或扭曲的四面体配位。

CuZn-SOD作为SOD结构上的第一族,是人们对于SOD结构研究的突破口,也是人们了解最多的一种SOD。

比较不同来源的CuZn-SOD的氨基酸序列可以发现,它们的同源性都很高〔7〕。

有些氨基酸还很保守,在所有序列中都不变,这暗示着这些氨基酸与活性中心有关。

如图1牛红细胞CuZn-SOD的结构所示:每个铜原子除分别与4个组氨基酸残基(His44.46.61.118)的咪唑氮配位外,还与一轴向水分子形成远距离的第五配位,Zn则与3个组氨酸残基(His61.69.78)和1个天冬氨酸(D81)配位。

Cu、Zn共同连接组氨酸61组成“咪唑桥”结构。

图1牛红细胞CuZn-SOD的结构示意图〔8〕(略)Mn-SOD和Fe-SOD同属于SOD结构上的第二族,Mn-SOD是由203个氨基酸残基构成的四聚体,Mn(Ⅲ)是处于三角双锥配位环境中,其中一轴向配位为水分子,另一轴向被蛋白质辅基的配位His-28占据,另3个配基His-83、His-170和Asp-166位于赤道平面。

Fe-SOD 的活性中心是由3个His,1个Asp和1个H2O扭曲四面体配位而成〔9〕。

3.2不同SOD的性质SOD是一种酸性蛋白,在酶分子上共价连接金属辅基,因此它对热、pH 以及某些理化性质表现出异常的稳定性,其主要的理化性质见表2。

表24种SOD的理化性质(略)从上面可以看出,Mn-SOD、Fe-SOD的结构特征是不含半光氨酸,含有较多的色氨酸和酪氨酸,因此紫外吸收光谱类似一般蛋白质,在280nm附近有最大吸收峰,Mn-SOD的可见光谱在475nm处附近有最大吸收,Fe-SOD在350nm处有最大吸收,这都反映了所含金属离子的光学性质。

4SOD的生产方式目前国内已开发的SOD产品绝大分都是Cu/Zn-SOD,它们最早是从动物的血、肝中分离提取的,主要有以下几个步骤:溶血液的制备、选择性热变性、超滤浓缩、丙酮沉淀、柱层析、冷冻干燥〔10〕。

但是由于这种方法不可避免地发生一些交叉感染,过敏性反应等现象,开发研究从植物中提取SOD就显得尤为重要。

我国近年来在植物SOD的研究领域有大量相关报道。

许平〔11〕、袁艺〔12〕、赵文芝〔13〕、余旭亚〔14〕等分别从大蒜、桑叶、沙棘、仙人掌中提取SOD并进行了相关研究。

其提取方法主要有分步盐析法、有机溶剂沉淀法、层析柱法等。

除了从动植物中提取SOD外,选育SOD高产菌株进行发酵生产也是比较有价值的一种方法。

1997年王岁楼等人自然筛选出1株SOD高产菌株Y-216,酶活可达600U/g湿菌体〔15〕,并对其形成SOD的生理条件作了初步研究,为SOD的工业化发酵生产打下了基础。

吴思芳等人研究了从啤酒废酵母生产、提取、纯化SOD的方法和条件,得到比活为3048U/mg的SOD酶,指出开展啤酒废酵母生产SOD的综合利用具有经济价值和社会意义〔16〕。

由于天然SOD来源有限,且具有异体蛋白免疫原性,外源SOD不易被人体接受等缺陷,使之在应用方面受到很大限制。

SOD基因工程是广开酶源,降低成本和获得无抗原性的人源SOD的有效途径。

近年来,美、日、英、德相继开发了微生物SOD基因工程产品,并进行了临床实验〔17〕。

我国医学科学院基础医学研究所和海军总医院分子生物学研究室已成功将人血CuZn-SOD克隆到大肠杆菌中,表达率高达50%。

施惠娟等〔18,19〕分别以人胎肝组织及人肝细胞株(L02)总RNA为模板,以RT-PCR法获得hCuZn-SOD和hMn-SODcDNA,构建表达质粒pETSOD,并导入E.coli细胞中使之表达。

分别获得了38%和50%的高表达率,且表达的SOD有酶活性。

鉴于重组的人SOD在体内半衰期仍很短,施惠娟等〔20〕又通过基因工程的方法将rhCuZn-SODcDNA基因改造得到了更加稳定的酶。

以上说明了我国人源SOD在微生物细胞中的克隆和表达已达到了国际水平。

目前,国内外在基因工程生产SOD 方面均取得了可喜的成果。

5SOD的模拟研究与天然SOD相比,SOD的模拟物有着更显著的优点〔21〕。

首先是获取和制备比天然SOD要简单得多。

天然SOD要从人或其它生物中提取,这就决定了天然SOD的提取必然困难重重,而且产量不高。

而模拟SOD可以用化学方法来人工合成,其物质和能量消耗低,且产量不会受到限制。

其次,天然SOD作为一种生物大分子,在进入体内时存在着诸如进入细胞能力弱、细胞渗透性差、在血中半衰期短(在人体中SOD只是在很短时间内稳定,其半衰期为分钟级)、不能口服、价格昂贵等缺点〔22〕。

另外,对于非人体SOD还存在着造成免疫损伤的可能。

所以人们把目光投向了SOD模拟物,尤其是低分子量模拟物上。

目前,生物无机化学家们合成和表征了一系列含铜、锰、铁等金属离子的小分子配合物来模拟SOD,期待将来能用小分子模拟化合物代替SOD应用于临床。

其中研究最多的含铜络合物是3,5-二异丙基水杨酸铜〔Cu(3,5-DIPS)〕〔23〕,这是一种低分子量的亲脂性络合物,具有天然CuZn-SOD样活性,可以起到抗炎及减轻由链脲菌素诱导产生的糖尿病。

刘京萍等〔24〕合成的铁(Ⅱ)-酪氨酸模拟SOD金属酶,分子量比天然酶小得多,与天然SOD活性差距较小,且毒性小,从而大大推进了人工合成具有分子质量较小、稳定性高、毒性较底、活性较高等优点的SOD模拟物的研究工作。

但是由于超氧化物歧化酶的模拟属于新型交叉学科,需要化学和生物学知识乃至技术的高度结合,目前的模拟还没有走向成熟,相信随着21世纪化学生物学的崛起,这一新兴交叉学科将会对化学、生物学及医学产生深远的影响。

相关文档
最新文档