三角函数积分表版
基本积分表

基本积分表 1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx x arcsin 1126、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数 基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sin αsin β=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cos αcos β=[cos(α+β)+cos(α-β)]/2sin αcos β=[sin(α+β)+sin(α-β)]/2cos αsin β=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin2 α+cos2 α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积s inθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A2 +B2 +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))2] cosα=[1-(ta n(α/2))2]/[1+(tan(α/2))2]tanα=2tan(α/2)/[1-(tan(α/2))2]其它公式(1) (sinα)2+(cosα)2=1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=t an(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) = 1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角积分公式大全24个

三角积分公式大全24个1. 基本积分公式。
- ∫sin xdx = -cos x + C- ∫cos xdx=sin x + C- ∫sec^2xdx=tan x + C- ∫csc^2xdx = -cot x + C- ∫sec xtan xdx=sec x + C- ∫csc xcot xdx = -csc x + C2. 降幂公式相关积分。
- ∫sin^2xdx=(1)/(2)(x - (1)/(2)sin2x)+C,推导:sin^2x=(1 - cos2x)/(2),然后积分。
- ∫cos^2xdx=(1)/(2)(x+(1)/(2)sin2x)+C,推导:cos^2x=(1 + cos2x)/(2),再积分。
3. 积化和差公式相关积分。
- ∫sin axcos bxdx=-(cos((a + b)x))/(2(a + b))-(cos((a - b)x))/(2(a - b))+C (a≠± b)- ∫sin axsin bxdx=(sin((a - b)x))/(2(a - b))-(sin((a + b)x))/(2(a + b))+C (a≠± b)- ∫cos axcos bxdx=(sin((a - b)x))/(2(a - b))+(sin((a + b)x))/(2(a + b))+C (a≠± b)4. 换元积分法中的三角代换相关公式(以含√(a^2)-x^{2}为例)- 令x = asin t,dx=acos tdt,则∫(dx)/(√(a^2)-x^{2)}=∫ dt=t + C=arcsin(x)/(a)+C- ∫√(a^2)-x^{2}dx=frac{a^2}{2}a rcsin(x)/(a)+(x)/(2)√(a^2)-x^{2}+C,推导:通过上述代换后进行积分。
5. 换元积分法中的三角代换相关公式(以含√(x^2)+a^{2}为例)- 令x = atan t,dx=asec^2tdt,则∫(dx)/(√(x^2)+a^{2)}=∫sec tdt=lnsec t+tant+C=lnx+√(x^2)+a^{2}+C- ∫√(x^2)+a^{2}dx=(x)/(2)√(x^2)+a^{2}+frac{a^2}{2}lnx+√(x^2)+a^{2}+C6. 换元积分法中的三角代换相关公式(以含√(x^2)-a^{2}为例)- 令x = asec t,dx=asec ttan tdt,则∫(dx)/(√(x^2)-a^{2)}=∫sec tdt=lnsec t+tant+C=lnx+√(x^2)-a^{2}+C- ∫√(x^2)-a^{2}dx=(x)/(2)√(x^2)-a^{2}-frac{a^2}{2}lnx+√(x^2)-a^{2}+C7. 三角函数的乘积积分公式(分部积分法相关)- ∫ xsin xdx=-xcos x+sin x + C,通过设u = x,dv=sin xdx,利用分部积分公式∫ udv = uv-∫ vdu得到。
三角函数的积分

12-1三角函數之積分當結合一些有用的三角恒等式及代換法時,可以求出更多含有三角函數型式的積分,以下是幾種常見的類型: 型1. 及∫xdx n sin ∫xdx n cos (1)n 為正奇數:可利用變數變換,提出或x sin x cos 後,再利用恒等式 或。
x x 22cos 1sin −=x x 22sin 1cos −=(為正整數) ∫∫∫==+xdx x xdx xdx k k n sin sin sin sin 212k 化簡得 ()()∫∫−−=x d x xdx kn cos cos 1sin 2令x u cos =,得 ()∫∫−−=du u xdx kn 21sin再利用羃函數之積分公式即可。
1. 求。
∫xdx 5sin 解答:∫xdx 5sin 提出x sin ∫=xdx x sin sin 4 用對作轉換x x 22cos 1sin −=x 2sin ()∫−=xdx x sin cos 122 將()22cos 1x −展開提出負號,將改寫成 (∫+−=xdx x x sin cos cos 2142))xdx sin xdx sin −()(∫−+−−=xdx x x sin cos cos 2142利用變數變換xdx du x u sin cos −=⇒= (∫+−−=du u u 4221) 將不定積分求出c u u u +−+−=535132 將x u cos =代回式子c x x x +−+−=53cos 51cos 32cos(2)n 為正偶數:利用三角函數半角公式22cos 1sin 2x x −=;22cos 1cos 2xx += 已知 ()∫∫∫==dx x xdx xdx kkn22sin sinsin代入22cos 1sin 2xx −=得 ∫∫⎟⎠⎞⎜⎝⎛−=dx x xdx kn22cos 1sin2. 求 xdx ∫4sin 解答: 解:∫xdx 4sin ()∫=dx x 22sin 利用半角公式22cos 1sin 2xx −=∫⎟⎠⎞⎜⎝⎛−=dx x 222cos 1 將222cos 1⎟⎠⎞⎜⎝⎛−x 展開(∫+−=dx x x 2cos 2cos 21412)再用一次半角公式24cos 12cos 2x x +=∫⎟⎠⎞⎜⎝⎛++−=dx x x 24cos 12cos 2141 將被積分式化簡 ∫⎟⎠⎞⎜⎝⎛+−=dx x x 24cos 2cos 22341 將被積分式提出21 (∫+−=dx x x 4cos 2cos 4381) 計算不定積分 c x x x +⎟⎠⎞⎜⎝⎛+−=44sin 2sin 2381型2.∫xdx x n m cos sin (1)若或為奇數:可利用變數變換,將奇次方提出或m n x sin x cos 後,再利用恒等式 或。
(完整版)基本积分表

基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=c sc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosαtan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
三角函数导数积分公式大全

下面是一些常见的三角函数的导数和积分公式:
1. 正弦函数(sine):
- 导数公式:d/dx(sin(x)) = cos(x)
- 积分公式:∫(sin(x)) dx = -cos(x) + C
2. 余弦函数(cosine):
- 导数公式:d/dx(cos(x)) = -sin(x)
- 积分公式:∫(cos(x)) dx = sin(x) + C
3. 正切函数(tangent):
- 导数公式:d/dx(tan(x)) = sec^2(x)
- 积分公式:∫(tan(x)) dx = -ln|cos(x)| + C
4. 余切函数(cotangent):
- 导数公式:d/dx(cot(x)) = -csc^2(x)
- 积分公式:∫(cot(x)) dx = ln|sin(x)| + C
5. 正割函数(secant):
- 导数公式:d/dx(sec(x)) = sec(x) * tan(x)
- 积分公式:∫(sec(x)) dx = ln|sec(x) + tan(x)| + C
6. 余割函数(cosecant):
- 导数公式:d/dx(csc(x)) = -csc(x) * cot(x)
- 积分公式:∫(csc(x)) dx = -ln|csc(x) + cot(x)| + C
这些是基本的三角函数的导数和积分公式,它们在微积分和数学分析中经常被使用。
需要注意的是,这些公式适用于常规的角度值,而非弧度制。
(完整word版)基本积分表
基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sin αsin β=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cos αcos β=[cos(α+β)+cos(α-β)]/2sin αcos β=[sin(α+β)+sin(α-β)]/2cos αsin β=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=c sc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosαtan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
(完整word版)基本积分表
基本积分表1、⎰+=c kx kdx 2、⎰++=+c a x dx x a a 11 3、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx xtan sec cos 122 9、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数 基本积分表的扩充16、⎰+-=c x xdx cos ln tan 17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos (α+β)—cos(α—β)]/2【注意右式前的负号】cosαcosβ=[cos (α+β)+cos(α—β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin (α+β)-sin (α—β)]/2sin α+sin β=2sin [(α+β)/2]·cos[(α-β)/2]sin α—sin β=2cos [(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α—β)/2]cos α—cos β=-2sin[(α+β)/2]·si n[(α—β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2]cos[(a—θ)/2] *2 cos[(θ+a)/2] sin[(a—θ)/2]=sin(a+θ)*sin(a—θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦1。
基本积分表
22kdx = kx + ca + 1 x a dx = x + c a + 11dx = ln x + cx 1 dx = arctan x + c1+x 2 1-1x 2 dx =arcsin x +ccos xdx = sin x + csin xdx = -cos x +c 1 dx = sec 2xdx =tan x +c cos 2 x 1 dx = csc 2 xdx = -cot x +c sin 2 x sec x tan xdx =sec x +c csc x cot xdx = -csc x +c xx e x dx = e x + cx a x dx = a + c ln a基本积分表1、 2、 3、 4、 5、 6、 7、 8、9、 10、 11、12、 13、 14、 15、shxdx = chx + c 其中 shxx - x e x - e -x chxdx = shx + c其中chx x - x e x + e -x 为双曲正弦函数 为双曲余弦函数基本积分表的扩充16、 tan xdx = -ln cos x +c17、 cot xdx = ln sin x +c18、 sec xdx = ln sec x + tan x +c19、 csc xdx = ln csc x - cot x + c = ln tan x + c2-x 24、 1 dx = ln x + x 2 + a 2 + c x2 + a 2 25、 1 dx = ln x + x 2 -a 2 + c x 2 - a 2sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[( α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注 意右式 前的负号】20、1 dx = a2 + x 2 1x arctan + c aa22、 23、 22 a 2 - x 2dx = dx 1 ln 2a 1 ln 2a x -a x +a a +x a -x +c +c dx = arcsin + c 21、三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα =1 sinα ·cscα =1 cosα ·secα =1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1 一个特殊公式(sina+sinθ )*(sina+sinθ )=sin(a+θ )*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 锐角三角函数公式正弦:sin α= ∠ α的对边/ ∠ α的斜边余弦:cos α= ∠ α的邻边/∠ α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α 为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosα tan(2kπ+α)= tanαcot (2kπ+α)= cotα 公式二:设α 为任意角,π+α 的三角函数值与α 的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α 与-α 的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α 与α 的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosα tan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α 与α 的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α) = -tanαcot(2π-α)= -cotα 公式六:π/2±α 及3π/2±α 与α 的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinαtan(π/2+α)= -cotα co(t π/2+α )= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotαcot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt +arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……} 中的内容诱导公式sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²] 其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+ (sinB)²+ (sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。