函数的奇偶性(1)
函数奇偶性、周期性、对称性(一)

函数奇偶性、周期性、对称性(一)函数的奇偶性、周期性、对称性一、函数的奇偶性1.函数奇偶性的定义:函数f (x) 的定义域必须关于原点对称,对定义域内的任意一个x 都满足① f (x) f (x) 函数f (x) 为偶函数;② f (x) f (x) f (x) f (x) 0 函数f (x) 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数.3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即f (x) 0 ,xD ,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数 f (x) 在区间[a, b](0 a b) 上单调递增(减),则f (x) 在区间[b,a] 上也是单调递增(减);③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数 f (x) 在区间[a, b](0 a b) 上单调递增(减),则f (x) 在区间[b,a] 上也是单调递减(增);④任意定义在R 上的函数f (x) 都可以唯一地表示成一个奇函数与一个偶函数的和.即f (x) f (x) f (x) f (x) f (x) .2 2二、函数的周期性1.函数的周期性定义:对于函数f (x) ,如果存在一个非零常数T ,使得定义域内的每一个个x 值,都满足f (x T ) f (x) ,那么函数f (x) 就叫做周期函数,非零常数T 叫做这个函数的周期,应注意nT (n Z 且n 0 )也是函数的周期.2.最小正周期:如果在周期函数f (x) 的所有周期中,存在一个最小的正数,那么这个最小的正数就叫做f (x) 的最小正周期.并非所有的函数都有最小正周期,如 f (x) c ( c 为常数),任意一个实数x 都是该函数的一个周期,却没有最小正周期.三、函数的对称性1.函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.2.中心对称:如果一个函数的图像沿一个点旋转180,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心.【必记结论】1.奇函数f (x) 若在x 0 处有定义,则必有f (0) 0 ,但若不能判断奇函数 f (x) 的定义域中一定有x 0 ,则不能使用f (0) 0 ,求取参数的值.2.函数f (x) 的定义域关于原点对称,则函数F (x) f (x) f (x) 为偶函数,函数F (x) f (x) f (x) 为奇函数.3.几类函数的周期(约定a 0 )问题:① 若函数f (x) 满足:f (x a) f (x a) 或f (x a) f (x) 或f (x a) kf (x)( f (x) 0, k 0) ,或f (x a) kf (x) ( f (x) 0, k 0) ,或f (x a) 1 f (x) 或f (x a) f (x) b 等,则f (x) 的周期T 2a ;1 f (x)②若y f (x) 的图象关于直线x a , x b (a b) 对称,则函数y f (x) 是周期为2 a b 的周期函数;③若y f (x) 的图象关于(a,0) 对称,同时关于点(b,0) 对称,( b a ),则函数y f (x) 是周期为2 | b a | ;④若y f (x) 的图象关于x a 对称,同时关于点(b,0) 对称,( b a ),则函数y f (x) 是周期为4 | b a | .4.函数y f (x) 的图像的对称性①函数y f (x) 的图像关于直线x a 对称 f (a x) f (a x) f (2a x) f (x) .②函数y f (x) 的图像关于点(a,0) 对称 f (x)f (2ax) f (a x) f (a x) .③函数y f (x) 满足f (a x) f (b x) ,则y f (x) 的图像关于直线x b a2对称.④ 若函数y f (x) 对定义域中任意x 均有f (a x) f (b x)c 0 ,则函数y f (x) 的图像关于点( a b , c ) 成中心对称图形.5.高中涉及对称性问题的几个基本函数的对称轴、对称中心的问题①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴.②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴.③二次函数f (x) ax 2 bx c(a 0) :是轴对称,不是中心对称,其对称轴方程为x b .2a k ④反比例函数y (k 0) :既是轴对称又是中心对称,其中原点为它的对称中心,x y x 与y x 均为它的对称轴.推广:函数a (cx d ) b ad b ady ax b c ca c c 2,由函数图象的平移知识易知:函数cx d cx d c x d c dax 2 的对称中心为(, ) .(思考:如何快速作出函数y c c 2x 5 的图象?找对称中心,化分母变量的系数为正,并将分母为零点时的自变量的值代入分子,看正负,从而快速画出图形.)⑤函数y a | x b | c 的图象关于直线x b 对称.b c ⑥函数y | ax b | | ax c | (a 0) 的对称轴为xa abc ;2 2a y | ax b | | ax c | (a 0) 的对称中心为( b c , 0) .⑦函数y x a (a 0) 是奇函数,图象关于原点(0, 0) 对称.x⑧函数y Asin( x ) k 、y A cos( x ) k 的图象既是轴对称图形,也是中心对称图形,它们的对称轴在函数取得最值(最大或最小)时取到,它们的对称中心是“平衡点”.⑨三次函数f (x) ax 3 bx 2 cx d (a 0) 的图象是中心对称图形,对称中心为( b3a, f ( b )) (二阶导数为零时的自变量的取值为对称中心的横坐标,在该点的函3a 数值是对称中心的纵坐标).⑩绝对值函数:这里主要说的是y f (| x |) 和y | f (x) | 两类.前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y ln x 就没有对称性,而y | sin x | 却仍然是轴对称.6.两个函数图像的对称性①互为反函数的两个函数的图像关于直线y x 对称.如指数函数ya x 与对数函数y log a x 的图象关于直线y x 对称.②函数y f (a x) 与函数y f (b x) 的图像关于直线x b a对称.③函数y f (a wx) 与函数y f (b wx) 的图像关于直线x b a2w对称.【解题方法】1.定义域关于原点对称,这是函数具有奇偶性的必要不充分条件.2.函数奇偶性的判断方法:①定义法判断,步骤:1)求出函数的定义域;2)判断定义域是否关于原点对称;3)根据定义域化简函数的解析式,并求出f (x) ;4)判断f (x) f (x) 或f (x) f (x) 是否对定义域内的每一个x 恒成立(恒成立要给予证明,否则要举出反例,若在函数f (x) 的定义域内有 f (m) f (m) ,则可以断定 f (x) 不是偶函数,同样,若在函数 f (x) 的定义域内有 f (m) f (m) ,则可以断定 f (x) 不是奇函数);(1)判断分段函数的奇偶性应分段分别证明f (x) 与f (x) 的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.(2)对于抽象函数奇偶性的判断,应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判定.②函数的图像法判断(函数的图像是否关于原点对称;函数的图像是否关于y 轴对称);③函数f (x), g(x) 的公共定义域关于原点对称1)若函数f (x), g(x) 都为奇函数或都为偶函数,则函数F (x) f (x)g(x) 为偶函数;2)若函数f (x), g(x) 其中一个为奇函数,另一个为偶函数,则函数F (x) 为奇函数;f (x)g(x)3)若函数f (x), g(x) 都为奇函数,则函数F (x) f (x) g(x) 为奇函数;4)若函数f (x), g(x) 都为偶函数,则函数F (x) f (x) g(x) 为偶函数.复合函数y f [g(x)] 的奇偶性原理:内偶则偶,两奇为奇.3.已知带有字母参数的函数的表达式及奇偶性求参数:常采用待定系数法,利用f (x) f (x) 0 产生关于字母的恒等式,由系数的对等性可得知字母的值.4.如果函数f (x) 是偶函数,那么f (x) f (| x |) ,通常在求解与偶函数、单调性有关的不等式时,利用此公式进行转化所求解的不等式.5.周期性与奇偶性相结合的综合问题中,周期性起到转换自变量值的作用,奇偶性起到调节符号作用.6.对抽象函数的周期性、对称性问题的总结①当括号里面x 前面的符号一正一负时告诉我们的就是对称性,其中的对称为多少我们可以用特殊值代入来猜测,这里并不主张记结论,因为很容易与后面的结论相混淆.②而当x 前面的符号相同时告诉我们的是周期性.③当x 前面的符号相同,同时告诉我们奇偶性时我们也可以推出对称性,因为奇偶性有制造负号的能力.7.证明一个函数y f (x) 关于直线x a 对称的步骤:①设函数y f (x) 图像上的任意点(x, y) ;②找到点(x, y) 关于直线x a 的对称点(2a x, y) ;③设法证明点(2a x, y) 也在函数y f (x) 的图像上;④下结论.8.证明一个函数y f (x) 关于点(a, b) 对称的步骤:①设函数y f (x) 图像上的任意点(x, y) ;② 找到点(x, y) 关于点(a, b) 的对称点(2a x, 2b y) ;③ 设法证明点(2a x, 2b y) 也在函数y f (x) 的图像上;④下结论.9.对于证明两个函数的图像关于直线x a 对称或关于点(a, b) 对称的方法参照一个函数的证明方法进行即可.10.已知定义在R 上的周期函数f (x) ,周期为T ,函数f (x) 的一个对称中心为(a, b) 或对T T 称轴为x a ,则点(k a, b) 必是函数f (x) 的对称中心,直线x k a 必是函 2 2 数 f (x) 的对称轴(每相邻两个对称中心之间相差半周期,每相邻两条对称轴之间相差半周期,只要有有一个对称中心,根据周期就可求出所有的对称中心,只要知道一条对称轴,就可以根据周期找出所有的对称轴,但是由对称中心及周期,却不能找出对称轴,同样由对称轴及周期,也不能找到对称中心).11.若函数y f (x) 有对称中心,则函数y f (x) 的对称中心求解类型有:①若函数y 的横坐标;②若函数y 坐标;f (x) 的定义域有对称中心,则对称中心的横坐标就是定义域的对称中心f (x) 的值域有对称中心,则对称中心的纵坐标就是值域的对称中心的纵③ 若函数y f (x) 的定义域与值域都是R ,则设对称中心为(a, b) ,由f (a x) f (a x) 2b 确定参数a, b 的值即可.④上些具体函数的对称中心问题:三次函数的对称中心,可通过二阶导数为零求出,对于一些明显可以来奇函数平移得来的函数,可以借用奇函数的性质与平移方法得到函数的对称中心.注:函数y 111 的对称中心为 n , 0 .x x 1 x n 2 【易错提醒】1.判断函数的奇偶性,务必先判断函数的定义域是否关于原点对称.如函数f (x) x 2 (x 1) ,该函数是没有奇偶性,但如果没有判断函数的定义域,而直接f (x) (x) 2 x 2 f (x) ,容易得出错误的结论:f (x) x 2 (x 1) 是偶函数.2.奇函数f (x) 在x 0 处可以没有定义,如f (x) 定义,则f (0) 0 .1 ;但如果奇函数f (x) 在x 0 处有x3.周期函数f (x) 的定义域至少有一边是无界的.如:命题“ 函数f (x) sin x 在[1000 ,1000 ] 是周期函数”是错误的;命题“函数f (x) sin x 在[0, ) 是最小正周期为2 的周期函数”是正确的,该函数没有负周期;命题“函数f (x) sin x 在(, 0] 是周期为 2 的周期函数”是正确的,但该函数却没有最小正周期.4.有对称性(对称轴x a ,对称中心(a, b) )的一个或两个函数的定义域必须关于x a对称.5.在具体练习中,务必注意一个函数的对称性还是两个函数对称性,这两者是有区别的.如函数y f (x) 满足 f (2 x) f (4x) ,则函数y f (x) 的图象关于直线x 2 4 3 对称;函数y 2 x 2 4 1 对称.2f (2 x) 的图象与函数y f (x 4) 的图象则关于直线。
函数的奇偶性(精辟讲解)

[难点正本 疑点清源] 1.函数奇偶性的判断
判断函数的奇偶性主要根据定义:一般地,如果对于 函数 f(x)的定义域内任意一个 x,都有 f(-x)=f(x)(或 f(-x)=-f(x)),那么函数 f(x)就叫做偶函数(或奇函 数).其中包含两个必备条件: ①定义域关于原点对称,这是函数具有奇偶性的必要 不充分条件,所以首先考虑定义域有利于准确简捷地 解决问题; ②判断 f(x)与 f(-x)是否具有等量关系.在判断奇偶 性的运算中,可以转化为判断奇偶性的等价关系式 (f(x)+f(-x)=0(奇函数)或 f(x)-f(-x)=0(偶函数)) 是否成立.
2.函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单 调性完全相同;偶函数在关于原点对称的区间上若有单 调性,则其单调性恰恰相反. (2)若 f(x)为偶函数,则 f(-x)=f(x)=f(|x|). (3)若奇函数 f(x)定义域中含有 0,则必有 f(0)=0. f(0)=0 是 f(x)为奇函数的既不充分也不必要条件. (4)定义在关于原点对称区间上的任意一个函数,都可表 示成“一个奇函数与一个偶函数的和(或差)”. (5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”. (6)既奇又偶的函数有无穷多个(如 f(x)=0,定义域是关 于原点对称的任意一个数集).
∴f(x)为偶函数.
题型二 函数的奇偶性与单调性
例 2 (1)已知 f(x)是 R 上的奇函数,且当 x>0 时,f(x) =x2-x-1,求 f(x)的解析式; (2)设 a>0,f(x)=eax+eax是 R 上的偶函数,求实数 a 的值;
(3)已知奇函数 f(x)的定义域为[-2,2],且在区间 [-2,0]内递减,求满足 f(1-m)+f(1-m2)<0 的实 数 m 的取值范围. 思维启迪 (1)f(x)是一个分段函数,当 x<0 时,转化为
函数的奇偶性(1)

例2.分析函数 y lg( 2 1) 的图像的对称性 1 x
练:设奇函数f(x)定义域为[-5,5], 若当x [0,5]时,f(x)
的图像如图所示,求不等式f(x)<0的解集
y
-5
-2 0 2
5x
(-2,0) (2,5)
例3.设函数f(x)为R上的偶函数,并且在( ,0] 上单调
图像法
3. 奇(偶)函数的性质: 1).两个奇函数之积为 偶 函数. 两个偶函数之积为 偶 函数. 一奇和一偶函数之积为 奇 函数
2).奇函数在其定义域上关于原点对称的两个区间上 的单调性 相同 . 偶函数在其定义域上关于原点对称的两个区间上 的单调性 相反 .
例1 判断下例函数的奇偶性
(1)
f
递增, 问a为何值时,f(2a2+a+1)<f(3a2-2a+1)
例4. 已知图(1)中图像对应的函数为y=f(x), 求图(2)中图像对应的函数解析式.
y
y
-3
0
x
(1)
-3
0 3x
(2)
小结:
1.奇(偶)函数的定义及其图像的性质特征 2.会判断一个函数的奇偶性 3.奇(偶)函数的性质 4.函数奇偶性的应用
作业: <数学之友> P7
y
0
x
f(x)=x3
y
0
x
f(x)=x2
高三数学第一轮复习:
7.
知识回顾:
1. 奇函数 偶函数的定义 奇(偶)函数的定义域一定关于原点对称.
问:函数定义域关于原点对称是函数为奇(偶)函数的 必要不充分 条件.
2. 奇函数的图像关于原点对称, 偶函数的图像关于y轴对称. 判断函数奇偶性的方法:
函数的奇偶性(1)

f(x)为奇函数 如果都有f(-x)=f(x) f(x)为偶函数 如果都有f(-x)=-f(x) 2、两个性质:
它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称 一个函数为奇函数
[例1] 判断下列函数的奇偶性:
(1) f(x)=x3+2x (2) f(x)=2x4+3x2
解: 定义域为R 解: 定义域为R ∵f(x)=(x)3+2(x) ∵f(x)=2(x)4+3(x)2 =x32x 4+3x2 =2 x =(x3+2x) =f(x) =f(x) ∴f(x)为奇函数 ∴f(x)为偶函数
2
[练习2] 判断下列函数的奇偶性:
1 (1) f ( x ) x x
(2) f ( x) x 1
2
解: 定义域为{x|x≠0}
1 f ( x ) x x 1 x x f ( x)
∴f(x)为奇函数
[练习2] 判断下列函数的奇偶性:
1 (1) f ( x ) x x
(7) f ( x) 3 x
解: 定义域为R f ( x ) 3 x 3 x f ( x )
f ( x )为 奇 函 数
(7) f ( x) 3 x
解: 定义域为R f ( x ) 3 x 3 x f ( x )
f ( x )为 奇 函 数
3.用定义判断函数奇偶性的步骤:
(1)、先求定义域,看是否关于原点对称; (2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.
3.奇偶函数图象的性质
1、奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原 点对称,那么就称这个函数为奇函数.
函数奇偶性典型例题(一)

函数奇偶性典型例题(一)
例1、已知,
⑴判断的奇偶性;
⑵证明.
解:⑴的定义域为,它关于原点对称,又
∴,
∴为偶函数;
⑵证明:∵当时,,
∴;
当时,,
∴.
又为偶函数,
∴,
故当时,.
综上可得:成立.
例2、已知f(x)的定义域为(0,+∞),且在其定义域内为增函数,满足f(xy)=f (x)+f(y),f(2)=1,试解不等式f(x)-f(x-2)>3.
解:由f(2)=1及f(xy)=f(x)+f(y)可得
3f(2)=3=f(2)+f(2)+f(2)=f(4)+f(2)=f(8)
∴f(x)-f(x-2)>3
∴f(x)>f(x-2)+3=f(x-2)+f(8)=f [8(x-2)]
又函数f(x)在定义域(0,+∞)上是增函数
∴
即2<x<
例3. (1)定义在上的奇函数为减函数,且,求实数的取值范围。
(2)定义在上的偶函数,当时,为减函数,若
成立,求的取值范围。
解:(1)∵
∴
∵奇函数
∴
又∵在上为减函数,
∴
解得.
(2)因为函数在上是偶函数,
则,
可得
又当时,为减函数,
得到
解之得.。
函数奇偶性(1)

x
O
x
1.函数的奇偶性
奇偶性
定义
如果对于函数f(x)的定义域内任
图象特点
奇函数 意一个x,都有_____________, 关于____对称 那么函数f(x)就叫做奇函数
- 5,5,且在区间 例3 :已知奇函数 f ( x)的定义域为
0,5上的图象如下图所示, 则使函数值y 0的x的
2
义域为a 1,2a则a _____, b ________
( x 1)(x a) 练习:设函数 f ( x) 为奇函数,则 x a ________
例 5、已知 f(x)是 R 上的偶函数,且当 x>0 时,f(x)=x2-x-1, 则当 x<0 时,f(x)=________.
函数的奇偶性(一)
例1:下列两个函数图象有什么共同特征吗? y
1· O
y = x2
y
1·
y =|x|
· 1
x
O
· 1
x
1.函数的奇偶性
奇偶性
定义 如果对于函数f(x)的定义域内任意
图象特点Biblioteka 偶函数一个x,都有___________,那么
函数f(x)就叫做偶函数
关于____对称
例2:下列两个函数图象有什么共同特征吗? 1 y = 2x y y x y
取值集合为__________ __
O
2
5
判断下列函数的奇偶性: (1)f(x)= 1-x2+ x2-1;
(2)f(x)= 3-2x+ 2x-3;
2 x + x, x>0, f(x)= 2 x - x, x<0.
(3)
例4:若函数 f ( x) ax bx 3a b是偶函数,定
函数奇偶性的概念 (1)

【变式训练】
1.(2013·聊城高一检测)如图,给出
了偶函数y=f(x)的局部图象,那么f(1)
与f(3)的大小关系正确的是( )
A.f(1)≥f(3)
B.f(1)≤f(3)
C.f(1)>f(3)
D.f(1)<f(3)
【解析】选D.根据偶函数的定义知图象关于y轴对称,因此可作 出x>0时的图象,由图象可得f(3)>f(1).
x2
=|x|的图象是定义域为全体实数的折线.各函数之间的共性为 图象都关于y轴对称.
(2)对于函数y=x2,分析x与-x所对应的函数值关系,说明函数的 图象为何关于y轴对称? 提示:任取x∈R,都有f(-x)=(-x)2=x2=f(x),而点(x,f(x))与点 (-x,f(x))关于y轴对称,所以函数y=x2的图象关于y轴对称.
3.由题意,函数f(x)在[-5,0]的图象与在[0,5]上的图象关于原 点对称,画出函数f(x)在[-5,0]上的图象,观察可得答案(-2, 0)∪(2,5].
答案:(-2,0)∪(2,5]
【规律总结】奇偶函数图象的两个简单应用 根据奇、偶函数在某区间上的图象,利用奇偶性可作出在对称 区间上的图象,利用图象可解决以下两个问题: (1)求值:已知某量的值,可求该量相反数的值. (2)解不等式:由奇偶性得出图象后,根据x轴上方函数值大于 零,x轴下方函数值小于零可写出不等式的解集.
所以定义域关于原点对称,所以a-2=-a,即a=1.
答案:1
5.函数f(x)=2x+a为奇函数,则a=
.
【解析】由f(-x)=-f(x),所以-2x+a=-(2x+a)=-2x-a,因此a=0.
答案:0
函数的奇偶性 单调性 最值

画出函数y=-x2+2|x|+3的图像,并指出 函数的单调区间.
解:函数图像如下图所示,
当x≥0时,y=-x2+2x+3=-(x-1)2+4; 当x<0时,y=-x2-2x+3=-(x+1)2+4. 在(-∞,-1]和[0,1]上,函数 是增函数:在[-1,0]和[1,+∞) 上,函数是减函数.
-1 0 1
(4)定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个 偶函数的和,即
f(x)=
f ( x) f ( x) f ( x) f ( x) 。 2 2
(5)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0。
10x 10 x 已知函数 f ( x) x 10 10 x
5.设x1,x2为y=f(x)的定义域内的任意两个变量,有以
下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;
f ( x1 ) f ( x2 ) ③ 0; x1 x2 ④ f ( x1 ) f ( x2 ) 0. x1 x2 ①③ 其中能推出函数y=f(x)为增函数的命题为______.
y
画出函数y=-x2+2|x|+3的图像,并指出 函数的单调区间. 解:
当x≥0时, y=-x2+2x+3=-(x-1)2+4; -1 0 1 x
当x<0时,y=-x2-2x+3=-(x+1)2+4.
在(-∞,-1]和[0,1]上,函数 是增函数; 在[-1,0]和[1,+∞)上,函数 是减函数. 评析: 函数单调性是对某个区间而言的,对于单独一个点没有 增减变化,所以对于区间端点只要函数有意义,都可以带上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.
知识回顾:
1. 奇函数 偶函数的定义 奇(偶)函数的定义域一定关于原点对称.
问:函数定义域关于原点对称是函数为奇(偶)函数的 必要不充分 条件.
2.奇函数的图像关于原点对称, 偶函数的图像关于y轴对称. 判断函数奇偶性的方法:
定义法(首先判断函数的定义域是否关于原点对称)
图像法
3. 奇(偶)函数的性质: 1).两个奇函数之积为 偶 函数. 两个偶函数之积为 偶 函数. 一奇和一偶函数之积为 奇 函数
2).奇函数在其定义域上关于原点对称的两个区间上 的单调性 相同 .
偶函数在其定义域上关于原点对称的两个区间上 的单调性 相反 .
例1 判断下例函数的奇偶性
(1)
f
(x)
(2 x 1)2 2x
股票基础入门知识 / 股票基础入门知识
例2.分析函数 y lg( 2 1) 的图像的对称性 1 x
Hale Waihona Puke 练:设奇函数f(x)定义域为[-5,5], 若当x [0,5]时,f(x)
的图像如图所示,求不等式f(x)<0的解集
y
-5
-2 0 2
5x
(-2,0) (2,5)
(2) f (x) lg(x x2 1)
(3) f (x) (1 x)
1 x 1 x
(4) f (x) 2 x2 | x 2 | 2
偶函数 奇函数 非奇非偶函数
奇函数
边发出“哈呵”的仙响!!超然间R.拉基希门童狂速地让自己仿佛樱桃般的腿隐出海蓝色的露水声,只见他歪斜的亮黄色细小竹竿一样的胡须中,萧洒地涌出九串下 巴状的阳台,随着R.拉基希门童的晃动,下巴状的阳台像勋章一样在掌心中温柔地折腾出飘飘光波……紧接着R.拉基希门童又连续使出二式凶鱼露水思,只见他圆 圆的卷发中,轻飘地喷出九片旋舞着『金火骨神哑铃珠』的瓜子状的手臂,随着R.拉基希门童的旋动,瓜子状的手臂像榛子一样,朝着壮扭公主饱满亮润如同红苹果 样的脸疯滚过来……紧跟着R.拉基希门童也神耍着法宝像鸭掌般的怪影一样朝壮扭公主疯抓过来壮扭公主突然把齐整严密特像两排闸门一样的牙齿甩了甩,只见七道 闪烁的活似牙签般的蓝烟,突然从结实丰满的胸部中飞出,随着一声低沉古怪的轰响,水红色的大地开始抖动摇晃起来,一种怪怪的火球毒跳味在优美的空气中飞舞… …接着跳动的犹如神盔模样的棕褐色短发连续膨胀疯耍起来……极像紫金色铜墩般的脖子透出暗紫色的阵阵幽雾……极像波浪一样的肩膀透出土黄色的隐约幽音。紧接 着像深白色的万须海滩鹤一样怒笑了一声,突然搞了个倒地狂舞的特技神功,身上瞬间生出了四十只活像石塔般的银橙色眉毛……最后摆起夯锤一般的金刚大脚一摆, 轻飘地从里面射出一道鬼光,她抓住鬼光阴森地一转,一样亮晶晶、亮光光的法宝¤天虹娃娃笔→便显露出来,只见这个这件玩意儿,一边收缩,一边发出“呜呜”的 余音。!超然间壮扭公主狂速地让自己刚劲有力的粗壮手指飘舞出暗紫色的门柱声,只见她如同红苹果样的脸中,猛然抖出九片摇舞着¤天虹娃娃笔→的手臂状的面包 ,随着壮扭公主的抖动,手臂状的面包像斑马一样在掌心中温柔地折腾出飘飘光波……紧接着壮扭公主又连续使出八千三百七十三派浪马风车梦,只见她异常结实的手 臂中,快速窜出九团转舞着¤天虹娃娃笔→的蜈蚣状的怪毛,随着壮扭公主的转动,蜈蚣状的怪毛像奶酪一样,朝着R.拉基希门童彪悍的淡黄色馅饼一样的脸疯勾过 去……紧跟着壮扭公主也神耍着法宝像鸭掌般的怪影一样朝R.拉基希门童疯踢过去随着两条怪异光影的猛烈碰撞,半空顿时出现一道春绿色的闪光,地面变成了亮青 色、景物变成了墨灰色、天空变成了暗黄色、四周发出了浪漫的巨响!壮扭公主饱满亮润如同红苹果样的脸受到震颤,但精神感觉很爽!再看R.拉基希门童瘦弱的仿 佛玉葱般的手臂,此时正惨碎成门槛样的浓黑色飞烟,加速射向远方R.拉基希门童疯哭着飞速地跳出界外,狂速将瘦弱的仿佛玉葱般的手臂复原,但元气已受损伤抓 壮扭公主:“哈
例3.设函数f(x)为R上的偶函数,并且在( ,0] 上单调
递增, 问a为何值时,f(2a2+a+1)<f(3a2-2a+1)
例4. 已知图(1)中图像对应的函数为y=f(x), 求图(2)中图像对应的函数解析式.
y
y
-3
0
x
(1)
-3
0 3x
(2)
小结:
1.奇(偶)函数的定义及其图像的性质特征 2.会判断一个函数的奇偶性 3.奇(偶)函数的性质 4.函数奇偶性的应用
作业: <数学之友> P7
y
0
x
f(x)=x3
y
0
x
f(x)=x2