程守洙《普通物理学》(第6版)(下册)笔记和课后习题(含考研真题)详解-第13~15章【圣才出品】
程守洙《普通物理学》(第6版)(下册)-第12章 光 学-课后习题详解【圣才出品】

第12章 光 学12.2 课后习题详解一、复习思考题§12-1 几何光学简介12-1-1 试举例说明在日常生活中所观察到的全反射现象.答:全反射,又称全内反射,是指光由光密(即光在此介质中的折射率大的)介质射到光疏(即光在此介质中折射率小的)介质的界面时,全部被反射回原介质内的现象.产生全反射的条件是:(1)光必须由光密介质射向光疏介质;(2)入射角必须大于或等于临界角.如图12-1-1所示的全反射棱镜,光以45°入射角由玻璃反射出空气,而临界角约42°,则发生全反射,由此原理制备了潜望镜、望远镜等.图12-1-112-1-2 汽车的后视镜的结构如何?所成的像有何特点?答:(1)一般在汽车的后视镜设计上,为便于司机的驾驶,将后视镜设为凸面镜;(2)物体在后视镜所成的像是缩小正立的虚像.12-1-3 试在表中填写球面反射镜成像的特征.对于凸面镜,作类似的分析.答:设f表示凹面镜的焦距,p表示物体距离凹面镜的位置,p'表示成像距离凹面镜的位置.球面反射镜成像的特征如表12-1-1,凸面镜成像的特征如表12-1-2.表12-1-1 凹面镜成像特征物像位置类型(实、虚)位置方位放缩性∞>p>2f实像2f>p′>f倒立缩小p=2f实像p′=2f倒立大小相同f<p<2f实像∞>p>2f倒立放大p=f不成像p′=∞0<p<f虚像0>p′>-∞正立放大表12-1-2 凸面镜成像特征物像位置类型(实、虚)位置方位放缩性∞>p>0虚像f>p′>0正立缩小(任何位置)12-1-4 试列表分析薄透镜(凸透镜和凹透镜)成像的特征.答:设f表示凹面镜的焦距,p表示物体距离凹面镜的位置,p'表示成像距离凹面镜的位置.表12-1-3 薄透镜(凸透镜)成像特征物像位置类型(实、虚)位置方位放缩性∞>p>2f实像2f>p'>f倒立缩小p=2f实像p'=2f倒立缩小f>p>2f实像∞>p>2f倒立放大p=f不成像p'=∞0<p<f虚像像与物同侧p′>p正立放大-∞<p<0(虚物)实像f>p'>0正立缩小表12-1-4 薄透镜(凹透镜)成像特征物像位置类型(实、虚)位置方位放缩性任何位置虚像p'<f正立缩小§12-2 光源单色光相干光12-2-1 为什么两个独立的同频率的普通光源发出的光波叠加时不能得到干涉图样?答:这是因为普通光源发出的光,在振动方向上以及相位上都没有任何联系,而且两光的相位差关系也是随机的.而两列光波叠加后产生干涉现象必须满足:两列光波频率相同,振动方向相同以及相位差恒定,三者缺一不可.因此,两个独立的普通光源所发出的光波一般不能产生干涉现象.12-2-2 获得相干光的方法有哪些?根据何在?答:(1)获得相干光的一般方法是分振幅法和分波阵面法:①分振幅法是将光投射到两种介质面上,经反射而折射分成两束相干光,从而形成相干光源;②分波阵面法是从光源发出的某波阵面上取出两部分面元作为两个相干的光源.(2)获得相干光的根据:利用反射、折射或衍射等方法把从光源同一点发出的光分成两个振动方向相同、频率相同、相位差相同或恒定的光波列,如此得到的两束光即为相干光.§12-3 双缝干涉12-3-1 试讨论两个相干点光源S1和S2在如下的观察屏上产生的干涉条纹:(1)屏的位置垂直于S1和S2的连线.(2)屏的位置垂直于S1和S2连线的中垂线.答:设两个相干点光源初相相同,光在空间的轨迹为一组以S1和S2的连线为中心对称轴的双叶旋转双曲面,如图12-1-2所示.(1)当屏的位置垂直于S 1和S 2的连线时,屏上产生的干涉条纹为圆条纹.(2)当屏的位置垂直于S 1和S 2连线的中垂线时,屏上产生的干涉条纹为双曲线,可近似看作平行的直条纹.图12-1-212-3-2 在杨氏双缝实验装置中,试描述在下列情况下干涉条纹如何变化:(1)当两缝的间距增大时;(2)当双缝的宽度增大时;(3)当线光源S 平行于双缝移动时;(4)当线光源S 向双缝屏移近时;(5)当线光源S 逐渐增宽时.答:由明纹位置坐标公式,计算得到相邻明纹间距为.(1)随着两缝间距的增大,屏上明纹间距逐渐变小,条纹变密.(2)随着双缝宽度的增大,衍射的中央亮区的范围缩小,干涉条纹的数目减少,但由于有更多光进入单缝,因此干涉条纹的亮度有所增加.(3)随着线光源S 平行于双缝移动,干涉条纹将沿与光源移动相反的方向移动,如图12-1-3.图12-1-3(4)随着线光源S 向双缝屏移近,干涉条纹基本不发生什么变化,明纹光强可能有轻微改变.(5)随着线光源S 逐渐变宽,可将光源S 微分为无数个互不相干的线光源,各个线光源在屏上形成各自的干涉条纹(图12-1-4).但是,随着线光源S 的逐渐加宽,干涉条纹逐渐变得模糊,最终会消失.因此存在一个光源的极限宽度,理论上计算得极限宽度为.当光源超过极限宽度时,就看不到干涉条纹.图12-1-412-3-3 在杨氏双缝实验中,如有一条狭缝稍稍加宽一些,屏幕上的干涉条纹有什么变化?如把其中一条狭缝遮住,将发生什么现象?答:(1)若把一条狭缝稍稍加宽,于是通过该缝的光强增加,即光的能量增加.此。
程守珠普通物理学六版电子教案1 1

arctg4
44
上页 下页 返回 退出
(4)平均速度
v r x i y j 2 i 2 j t 0 ~ 2 s t t t
大小 vt 0 ~ 2 sv x vy 2 .8 2 (m /s)
(5)速度
vd rd xid yj 2 i 2 tj d t d t d t
上页 下页 返回 退出
八、加速度
加速度—描述质点速度大小、方向变化快慢
加速度是描述质点速度的大小和方向随时间变化 快慢的物理量。
v(t)
z
P1
r(t)
o x
P2
r(tt)
v(tt) v
y
v(t)
v
v(tt)
上页 下页 返回 退出
v(t)
z
P1
r(t)
o x
P2
v(tt)
r(tt)
y
v(t)
v
v(tt)
上页 下页 返回 退出
七、速度
速度——描述质点运动的快慢和方向
粗平略均位描速移述度:::t 时 r刻 : vA ,r(t)rt t 时 刻 :B ,r ( t t ) t
A
r(t)
0
B r
r(t t)
在直角坐标系中
v r xi yj zk t t t t
即 vx x t, vy y t, vz z t
1.平均加速度
在Δt时间内,速度增量为 v ,v ( t t ) v ( t )
定义:平均加速度a
v
,方向与速度增量的方向相同。
t
上页 下页 返回 退出
2.瞬时加速度
当△t趋于0时,P1点趋于P2点,平均加速度的极限表
示质a点在Δlittm时0 Δ刻Δvt通过dPd1vt点的dd瞬2t时2r 加速度与加简速称度加定速义度.
普通物理学考研程守洙《普通物理学》考研复习笔记

普通物理学考研程守洙《普通物理学》考研复习笔记一、第1章力和运动1.1 复习笔记本章回顾了力学部分的基础内容,主要知识点包括质点与参考系、运动学的基本概念、基础机械运动(直线运动、抛体运动、圆周运动和一般曲线运动)的基本特征、牛顿运动定律、常见力及其特征、相对运动、伽利略相对性原理和伽利略变换,以及经典力学的时空观,其中,质点与参考系、运动学的基本概念和常见力及其特征是所有力学问题的根基,物体以及系统的受力分析、基础机械运动及其组合运动是力学问题的常见研究对象,牛顿运动定律是经典力学以及研究力学问题的核心,在复习本章内容时,每个知识点都要充分理解和掌握,为之后章节的复习奠定坚实的基础。
一、质点运动的描述1质点(见表1-1-1)表1-1-1 质点2参考系与坐标系(见表1-1-2)表1-1-2 参考系与坐标系3空间与时间(见表1-1-3)表1-1-3 空间与时间4运动学基本概念(见表1-1-4至表1-1-7)表1-1-4 位矢与运动学方程表1-1-5 位移表1-1-6 速度表1-1-7 加速度5质点运动学的两类问题(见表1-1-8)表1-1-8 运动学的两类问题及解法二、圆周运动和一般曲线运动1自然坐标系、速度、加速度(见表1-1-9)表1-1-9 自然坐标系、速度、加速度2圆周运动的角量描述(见表1-1-10)表1-1-10 圆周运动的角量描述3一般平面曲线运动中的加速度(见表1-1-11)表1-1-11 一般平面曲线运动中的加速度4抛体运动的矢量描述(见表1-1-12)一般地,在研究抛体运动时,通常取抛射点为坐标原点,沿水平方向和竖直方向分别引Ox轴和Oy轴,建立笛卡尔直角坐标系。
表1-1-12 抛体运动的矢量描述三、相对运动常见力和基本力1相对运动(见表1-1-13)表1-1-13 相对运动2常见力(见表1-1-14至表1-1-16)表1-1-14 万有引力、重力、弹力表1-1-15 弹力的几种常见形式表1-1-16 摩擦力3基本力(见表1-1-17)表1-1-17 基本相互作用四、牛顿运动定律(见表1-1-18)表1-1-18 牛顿运动定律五、伽利略相对性原理非惯性系惯性力(见表1-1-19)表1-1-19 伽利略相对性原理非惯性系惯性力。
程守洙《普通物理学》(第6版)(上册)(课后习题详解 热力学基础)【圣才出品】

6.2 课后习题详解一、复习思考题§6-1 热力学第零定律和第一定律6-1-1 怎样区别内能与热量?下面哪种说法是正确的?(1)物体的温度越高,则热量越多.(2)物体的温度越高,则内能越大.答:(1)内能①定义:内能是由热力学系统状态所决定的能量.微观上讲,内能是系统内粒子动能和势能的总和.②理解内能的概念时要注意以下问题:a.内能是状态函数,一般用宏观状态参量(如p、T、V)描述的系统状态,是单值函数;而理想气体的内能仅是温度T的单值函数;b.内能的增量只与确定的系统始、终态有关,与变化的过程无关;c.系统的状态若经历一系列过程又恢复原状态,则系统的内能不变;d.对系统作功或者传热可以改变系统的内能.(2)热量①定义:是指存在温度差的系统之间传递的能量.微观上讲,传递热量是通过分子之间的相互作用完成的.②理解热量的概念时要注意以下问题:a.热量是过程量,对某确定的状态,系统有确定的内能,但无热量可言;b.系统的热量传递,不仅与系统的始、终状态有关,也与经历的过程有关;c.在改变系统的内能方面,传热也是改变系统内能的一个途径,与作功等效,都可作为系统内能变化的量度.(2)①说法(1)是不正确的.温度是状态量,热量是过程量.“温度高”表示物体处在一个分子热运动的平均效果比较剧烈的宏观状态,无热量可言.②说法(2)不完全正确.a.对理想气体的内能仅是温度T的单值函数,故是正确的.b.对一般热力学系统,内能是分子热运动的动能与势能之和,即内能并非只是温度的单值函数.6-1-2 说明在下列过程中,热量、功与内能变化的正负:(1)用气筒打气;(2)水沸腾变成水蒸气.答:(1)功的分析:①气筒打气是外力压缩气筒内的空气,气筒内空气体积减小,即△V<0,因此气筒内空气作负功;②传热的分析:压缩过程进行得很快,气体还来不及与外界交换热量就已被压缩,因此可近似看作是绝热压缩过程,即Q=0.③内能的分析:根据热力学第一定律△E=Q-A=-A>0,因此气筒内空气的内能增加.(2)①若容器体积可以变化,水到达沸点时:a.大量吸收热量(Q>0);b.此过程温度不变,因而内能不变(△E=0);c.水汽的体积增加,对外作功(A>0).②若容器体积不能变化,水沸腾时:a.吸取足够的热量(Q>0);b.水汽不能对外膨胀作功;c.水汽从外界吸取大量热量而成为过热蒸汽,温度上升,内能增加.§6-2 热力学第一定律对于理想气体准静态过程的应用6-2-1 为什么气体热容的数值可以有无穷多个?什么情况下,气体的摩尔热容是零?什么情况下,气体的摩尔热容是无穷大?什么情况下是正值?什么情况下是负值?答:(1)气体热容的数值可以无穷多个的原因:根据热容定义,即不发生化学反应且在同等条件下温度升高1 K所需的热量.由于热量dQ是过程量,热力学系统可以经过无数个过程从一平衡态过渡到另一平衡态,不同的过程传热不同,因此这就对应有无数个不同的热容C.(2)C m=0气体的摩尔热容的定义是指1 mol气体温度升高1 K所需的热量,用C m表示.根据热容定义知,在绝热过程中dQ=0,因此C m=0.(3)等温过程中dT=0,由知,(4)C m取正值:根据热容定义:,C m的符号取决于dQ.如,①在恒压膨胀过程中,由于△E>0,A=p△V>0,则Q=△E+A>0,因此C p,m>0.②在恒容升温过程中,Q=△E>0,其摩尔热容C v,m也为正值.(5)C m取负值:在多方过程中,如果多方指数1<n<γ(γ为摩尔热容比),即系统温度升高1 K,反而放出热量(△Q<0),则将出现多方负热容,如6-2-2第(1)问.6-2-2 一理想气体经图6-1-1所示各过程,试讨论其摩尔热容的正负:(1)过程Ⅰ-Ⅱ;(2)过程Ⅰ′-Ⅱ(沿绝热线);(3)过程Ⅱ'-Ⅱ.图6-1-1答:设以上三个过程代号分别1,2,3,都经过升温后,系统的初、末状态的温度都相同,因此内能的增量都相同,即△E 1=△E 2=△E 3>0;过程曲线下的面积表示所作的功,包围的面积越大,作负功的绝对值也越大.由图可知.(1)过程2:为绝热过程,即,因此该过程的摩尔热容等于零.(2)过程1:根据热力学第一定律,则,得到.那么,,该过程升温反而放出热量,其摩尔热容为负值.这是因为外界压缩气体作功不仅提高了系统的内能,而且还向外界放出了一些热量,导致摩尔热容为负.(3)过程3:同理可得,,该过程中外界压缩系统作正功的同时系统还从外界吸取了热量才使系统升温,因此其摩尔热容为正值.6-2-3 对物体加热而其温度不变,有可能吗?没有热交换而系统的温度发生变化,有可能吗?答:这两种情况都是可能的.(1)对物体加热而温度不变时,则Q>0,内能不变△E=0,由热力学第一定律可知Q=A,说明系统吸收外界的热量全部用于对外作功,例如理想气体的等温膨胀.(2)没有热交换,说明是绝热过程,Q=0.若系统的温度发生变化,则内能也会发生相应变化.根据热力学第一定律有Q=△E+A=0,△E=-A.①假设是绝热膨胀过程,系统对外作功,则内能减少,说明这是通过消耗内能来做功的;②假设是绝热压缩过程,内能增加,说明外界对系统作功提高了系统的内能.§6-3 循环过程卡诺循环6-3-1 为什么卡诺循环是最简单的循环过程?任意热机的循环需要多少个不同温度的热源?答:(1)热力学第二定律表明,不可能制造一种只依靠一个热源循环动作的热机.也就是说,至少要两个以上的热源才可能制造循环动作的热机.卡诺循环是由两个可逆的等温过程和两个可逆的绝热过程组成的循环,包括一个提供热量的高温热源和一个接受热量的低温热源,因此这是构成循环热源数最少、最简单的理想循环.(2)如图6-1-2所示,任一可逆循环都可分割成许多小卡诺循环,小卡诺循环的数目越多,就与实际的循环过程越接近,所对应的不同温度热源数也就越多.图6-1-26-3-2 有两个热机分别用不同热源作卡诺循环,在p-V 图上;它们的循环曲线所包围的面积相等,但形状不同,如图6-1-3所示.它们吸热和放热的差值是否相同?对外所作的净功是否相同?效率是否相同?图6-1-3答:(1)做功分析:p-V 图中循环曲线所包围的面积即是循环系统对外作的净功,面积相同,而不论形状如何,这两个循环对外作的净功就相同;(2)热量分析:循环过程,系统的内能不变(△E=0),因此对外作的净功和系统与外界交换的热量相等,即吸热与放热之差相同.(3)效率分析:①根据热机效率的定义知:。
程守洙《普通物理学》(第6版)(下册)笔记和课后习题(含考研真题)详解-第11章 机械波和电磁波【圣

四、波的能量 波的强度 1.波的能量 在介质中任取体积为ΔV、质量为Δm(Δm=ρΔV,ρ为介质的体密度)的质元.当波 动传播到这个质元时,该质元将具有动能ΔEk和弹性势能ΔEp. 质元的总机械能ΔE
其中,Z=ρu为介质的特性阻抗,是表征特性的一个常量. 3.波的吸收 平面行波在均匀介质中传播时,介质总是要吸收波的一部分能量,波的强度和振幅
都将逐渐减小.所吸收的波动能量将转换成其他形式的能量(例如介质的内能).这种现象 称为波的吸收.
五、声波 超声波 次声波 1.声压 声压:介质中有声波传播时的压强与无声波时的静压强之间的差额. 声压振幅:pm=ρuωA. 2.声强 声强级 (1)声强 ①声强是指声波的平均能流密度,即单位时间内通过垂直于声波传播方向的单位面积 的声波能量. ②声强 I 为
4.电磁波谱 电磁波谱:按照频率或波长的顺序把电磁波排列而成的图表.
七、惠更斯原理 波的衍射、反射和折射
7 / 70
能量密度
平均能量密度(波能量密度在一个周期内的平均值)
w 1 A2 2 2
式中,ρ是介质的密度. 2.波的强度 能流:单位时间通过介质某面积的能量.
4 / 70
圣才电子书
十万种考研考证电子书、题库视频学习平
台
平均能流密度(波的强度):通过与波动传播方向垂直的单位面积的平均能流.
(3)E 和 H 同相位
十万种考研考证电子书、题库视频学习平 台
(4)E 和 H 的量值成比例
(5)传播速度
在真空中为光速,即
普通物理学考研程守洙《普通物理学》考研复习笔记

普通物理学考研程守洙《普通物理学》考研复习笔记一、第1章力和运动1.1复习笔记本章回顾了力学部分的基础内容,主要知识点包括质点与参考系、运动学的基本概念、基础机械运动(直线运动、抛体运动、圆周运动和一般曲线运动)的基本特征、牛顿运动定律、常见力及其特征、相对运动、伽利略相对性原理和伽利略变换,以及经典力学的时空观,其中,质点与参考系、运动学的基本概念和常见力及其特征是所有力学问题的根基,物体以及系统的受力分析、基础机械运动及其组合运动是力学问题的常见研究对象,牛顿运动定律是经典力学以及研究力学问题的核心,在复习本章内容时,每个知识点都要充分理解和掌握,为之后章节的复习奠定坚实的基础。
一、质点运动的描述1质点(见表1-1-1)表1-1-1质点2参考系与坐标系(见表1-1-2)表1-1-2参考系与坐标系3空间与时间(见表1-1-3)表1-1-3空间与时间4运动学基本概念(见表1-1-4至表1-1-7)表1-1-4位矢与运动学方程表1-1-5位移表1-1-6速度表1-1-7加速度速度的大小为:5质点运动学的两类问题(见表1-1-8)表1-1-8运动学的两类问题及解法二、圆周运动和一般曲线运动1自然坐标系、速度、加速度(见表1-1-9)表1-1-9自然坐标系、速度、加速度2圆周运动的角量描述(见表1-1-10)表1-1-10圆周运动的角量描述3一般平面曲线运动中的加速度(见表1-1-11)表1-1-11一般平面曲线运动中的加速度4抛体运动的矢量描述(见表1-1-12)一般地,在研究抛体运动时,通常取抛射点为坐标原点,沿水平方向和竖直方向分别引Ox轴和Oy轴,建立笛卡尔直角坐标系。
表1-1-12抛体运动的矢量描述三、相对运动常见力和基本力1相对运动(见表1-1-13)表1-1-13相对运动2常见力(见表1-1-14至表1-1-16)表1-1-14万有引力、重力、弹力表1-1-15弹力的几种常见形式表1-1-16摩擦力3基本力(见表1-1-17)表1-1-17基本相互作用四、牛顿运动定律(见表1-1-18)表1-1-18牛顿运动定律五、伽利略相对性原理非惯性系惯性力(见表1-1-19)表1-1-19伽利略相对性原理非惯性系惯性力。
程守洙《普通物理学》(第6版)(上册)(复习笔记 恒定电流的磁场)

8.1 复习笔记一、恒定电流1.电流电流密度(1)电流①载流子电荷的携带者称为载流子.②传导电流载流子形成的电流称为传导电流.③电流电流是指单位时间内通过导体截面的电荷量.电流为矢量,方向为正电荷或正离子定向运动的方向,单位为A ,安培.(2)电流密度电流密度为一矢量,方向为正电荷运动的方向,大小等于垂直于电流方向的单位面积的电流,即单位为,电流密度描述的是导体中电流的分布.2.电源的电动势(1)电源电源是指能提供性质与静电力很不相同的“非静电力”,把正电荷从电势低的B 移向电势高的A 的装置.(2)电动势电动势等于电源把单位正电荷从负极经电源内移动到正极所作的功,即电动势为一标量,单位为V .(3)非静电场强非静电力场的场强是指单位正电荷受到的非静电力,记作非静电性场的场强沿整个闭合电路的环流不等于零,而等于电源的电动势.3.欧姆定律(1)一段含源电路的欧姆定律式中,ρ为电阻率,单位为Ω•m;γ(γ=1/ρ)为电导率,单位为S/m .①闭合电路欧姆定律的一般形式:②一段含源电路的欧姆定律:右边各项选取正负号的规则:先任意设定电路顺序方向,若电阻中的电流流向与设定电路顺序方向相同,则该电阻上的电势降取“+”号,反之则取“-”号;若电动势的指向和设定的顺序方向相同,该电动势取“+”号,反之则取“-”号.(2)欧姆定律的微分形式二、磁感应强度1.基本磁现象在自然界中不存在独立的N 极和S 极.运动电荷或电流之间通过磁场作用的关系可以表达为:2.磁感应强度它是描述磁场性质的基本物理量,大小为试探电荷所受到的最大磁力与电荷的电量和运动速度间的比值,即磁感应强度为矢量,磁感应强度的方向定义为当试探电荷q 沿着某方向不受力时,定义为磁感应强度B 的方向;单位为T (特),在高斯单位制下,有3.磁感应线和磁通量(1)磁感应线在任何磁场中,每一条磁感应线都是和闭合电流相互套链的无头无尾的闭合线,而且磁感应线的环绕方向和电流流向形成右手螺旋的关系.(2)磁通量通过一曲面的总磁感应线数,即磁通量为标量,有正负之分,定义穿入曲面的磁通量为负,穿出为正.单位为W .磁场中某处磁感应强度B的大小为该处的磁通量密度,磁感应强度也称磁通量密度.三、毕奥-萨伐尔定律1.毕奥-萨伐尔定律(1)任意电流元Idl在真空中给定某点P所产生的磁感应强度的大小与电流元的大小成正比,与电流元到给定点的距离r的平方成反比,且与Idr和r之间的正弦成正比,即式中,,称为真空磁导率.(2)对于任意线电流所激发的总感应强度,可用磁感应强度B的叠加原理,得2.运动电荷的磁场每一个以速度v运动的电荷所激发的磁感应强度式中,的方向垂直于v和所组成的平面.若运动电荷是正电荷,的指向符合右手螺旋定则;反之亦然.3.毕奥-萨伐尔定律的应用毕奥-萨伐尔定律常用来计算一些常用的载流导体的磁感应强度.四、恒磁场的高斯定理与安培环路定理通过任一闭合曲线的总磁通量总是零,即对高斯定理的几点说明:(1)静电场是属于发散式的场,称作有源场,而磁场是无源场;(2)磁场的高斯定理与静电场的高斯定理的不对称,其根本原因是自然界存在自由的正负电荷,而不存在单个磁极(即磁单极子).2.安培环路定理在磁场中,沿任何闭合曲线B矢量的线积分等于真空的磁导率乘以穿过以该闭合曲线为边界所张任意曲面的各恒定电流的代数和,即对安培环路定理的几点说明:(1)磁场B的环流只与穿过环路的电流有关,而与未穿过环路的电流无关;(2)环路上任一点的磁感应强度B是所有电流(无论是否穿过环路)所激发的场在该点叠加后的总磁感应强度;(3)安培环路定理指明稳恒磁场是有旋场.3.安培环路定理的应用安培环路定理常用来求解已知电流分布的磁场问题.五、带电粒子在电场和磁场中的运动1.洛伦兹力洛伦兹力是指一个带电荷量为q 的粒子,以速度υ在磁场中运动时,磁场对运动电荷作用的磁场力.其矢量式表达式为(1)对洛伦兹力的说明①当q>0时,洛伦兹力F 与方向相同;②当q<0时,F 与方向相反.(2)带电粒子在均匀磁场中的运动①若,带电粒子作匀速直线运动; ②若,带电粒子作圆周运动a .圆周运动的半径b .圆形运动的周期③若与成角,带电粒子的运动轨迹为一螺旋线a .螺旋线的半径b .螺旋线的螺距(3)带电粒子在非均匀磁场中运动。
普通物理学第六版下册答案

普通物理学第六版下册答案【篇一:普通物理学第二版课后习题答案(全)】>1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m)、千克(kg)、时间(s)、安培(a)、温度(k)、摩尔(mol)、坎德拉(cd)。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m)、千克(kg)、时间(s)。
1.2中学所学习的匀变速直线运动公式为12s?v0t?at,2 各量单位为时间:s(秒),长度:m(米),若改为以h(小时)和km(公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h,如何?若仅v0单位改为km/h,又如何?解答,(1)由量纲dim v?3?lt?1,dim a?lt?2,改为以h(小时)和km(公里)作为时间和长度的单位时,1?3m/s?10km/h?10?3600km/h3600?3.6km/h12?3m/s?10km/(h)2?10?3?36002km/h23600?3.6?3600km/h212s?3.6v0t??3.6?3600at,2(速度、加速度仍为单位下的量值)验证一下:2siv0?2.0m/s, a?4.0m/s, t?3600s?1.0h12s?v0t?at,2利用计算得:12s?2?3600??4?36002?7200?25920000?25927200(m)12s?3.6v0t??3.6?3600at,2利用计算得 12s?3.6?2?1??3.6?3600?4?12?7.2?25920?25927.2(km)(2). 仅时间单位改为h?1由量纲,dim adim v?lt?lt?2得若仅时间单位改为h,得:1m/s?m/h?3600m/h3600?3600m/h12m/s?m/(h)2?36002m/h2360022?3600m/h验证一下:122s?3600v0t??3600at,22v0?2.0m/s, a?4.0m/s, t?3600s?1.0h 12 s?v0t?at,2利用计算得:12s?2?3600??4?36002?7200?25920000?25927200(m)122s?3600v0t??3600at,2利用计算得: 122s?3600?2?1??3600?4?12?7200?25920000?25927200(m) (3). 若仅v0单位改为km/h由量纲dim v?lt?3?1,得1m/s?10km/(h)?3.6km/h,36001km/h?m/s3.6仅v0单位改为km/h,因长度和时间的单位不变,将km/h换成m/s得验证一下:112s?v0t?at,3.62v0?2.0m/s, a?4.0m/s2, t?3600s?1.0h12s?v0t?at,2利用计算得:12s?2?3600??4?36002?7200?25920000?25927200(m)112s?v0t?at,3.62利用计算得: 12?10?312s???3600??4?36003.61/36002?7200?25920000?25927200(m)1.3设汽车行驶时所受阻力f与汽车的横截面积s成正比,且与速率 2vv之平方成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圣才电子书 十万种考研考证电子书、题库视频学习平台
当金属中一个自由电子从入射光中吸收一个光子后,可获得能量
.如果此能量
大于金属表面逸出功 A,这个电子逸出,否则不逸出,与光强无关.光强只决定光子数的多
少,决定光电流的大小.根据能量守恒定律,可以得到爱因斯坦光电效应方程
式中,
称为康普顿波长.
四、氢原子光谱 玻尔的氢原子理论 1.氢原子光谱的规律性 氢原子发光频率满足以下里德伯方程
式中,%是波数,k=1,2,3,…,n=k+1,k+2,k+3,…,R 是里德伯常量,其大小为
2.玻尔的氢原子理论 玻尔理论的基本假设:
(1)定态假设:原子系统只能处在一系列不连续的能量状态,在这些状态电子不辐射 也不吸收电磁波.
式中, 是入射光的频率,m 和 vm 分别是出射光电子的质量和速度.
4.光的波粒二象性 光子的动质量 mφ 可由相对论的质-能关系式得到
mφ 的量值应是有限的,视光子的能量而定,而光子的静质量 mφ0=0.光子的动量为
动量和能量是描述粒子性的,而频率和波长则是描述波动性的.光的这种双重性质称为 光的波粒二象性.
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 13 章 早期量子论和量子力学基础
13.1 复习笔记
一、热辐射 普朗克的能量子假设 1.热辐射现象 任何固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、 原子受到热激发而发射电磁波的现象称为热辐射,物体向四周所发射的能量称为辐射能. 2.基尔霍夫辐射定律 (1)辐射相关的物理量 单色辐出度 M
图 13-1-1 光电效应实验图 如图 13-1-1 所示,K 为光阴极,A 为阳极,在光照射下阴极可能释放电子,称为光电 子.在两极间加上电势差 U,U 不同则形成不同大小的电流由电流计读出,称为光电流.光 电流为 0 时外加电势差的绝对值称为遏止电势差. (2)实验规律 ①饱和电流 单位时间内,受光照的金属板释放出来的电子数和入射光的强度成正比. ②遏止电势差 光电子从金属板逸出时具有一定动能,最大初动能等于电子的电荷量和遏止电势差的乘 积,与入射光的强度无关. ③遏止频率(红限) 光电子从金属表面逸出时的最大初动能与入射光的频率成线性关系.当入射光频率小于
Tm b
.
4.普朗克的能量子假设
(1)普朗克能量子假设:辐射黑体分子、原子的振动可以看作谐振子,这些谐振子可
以发射和吸收辐射能.但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的
能量并不像经典物理所允许的具有任意值.相应的能量是某一最小能量 的整数倍
,其中 n 为正整数,称为量子数.这个假设称为普朗克能量子假设.对
(2)频率条件:当原子从一个能量为 En 的定态跃迁到另一个能量为 Ek 的定态时,会
发射或吸收一个频率为 kn 的光子.
(3)量子化条件:电子绕核作圆周运动,其稳定状态的角动量 L 需满足
6 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
辐出度 M(T)
单色吸收比和单色反射比
(2)黑体 黑体在任何温度下,对任何波长的辐射能的吸收比都等于 1. (3)基尔霍夫提出的重要定律 在同样的温度下,各种不同物体对相同波长的单色辐出度与单色吸收比的比值都相等, 并等于该温度下黑体对同一波长的单色辐出度,即
1 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、康普顿效应 1.康普顿效应
在散射光中,除有与入射线波长 0 相同的射线外,同时还有波长 0 的射线.这种
改变波长的散射称为康普顿效应. 实验结果表明: (1)波长的偏移 Δλ=λ-λ0 随散射角 φ(散射线与入射线之间的夹角)而异;当散射
角增大时,波长的偏移也随之增加,而且随着散射角的增大,原波长的谱线强度减小,而新 波长的谱线强度增大;
0 时,不会产生光电效应.
④弛豫时间
3 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
从入射光开始照射直到金属释放出电子,无论光多微弱,几乎都是瞬时的,弛豫时间不 超过109 s .
图 13-1-2 光电效应的伏安特性曲线
图 13-1-3 遏止电势差与频率的关系 2.光的波动说的缺陷 按照光的经典电磁理论,金属在光的照射下,金属中的电子将从入射光中吸收能量,从 而逸出金属表面.逸出时的初动能应决定于光振动的振幅,即决定于光的强度.因而按照光 的经典电磁理论,光电子的初动能应随入射光的强度而增加.但实验结果是,任何金属所释 出的光电子的最大初动能都随入射光的频率线性地上升,而与入射光的强度无关. 3.爱因斯坦的光子理论 把光当成以光速运动的粒子流,这些粒子称为光子,每一个光子的能量为 光电效应解释如下:
5 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)在同一散射角下,对于所有散射物质,波长的偏移 Δλ 都相同,但原波长的谱线 强度随散射物质的原子序数的增大而增加,新波长的谱线强度随之减小.
2.光子理论的解释 将光子当作能量为 、动量为 的粒子,与电子发生弹性碰撞,根据动量守恒和 能量守恒(电子动能应考虑狭义相对论修正),得到康普顿公式
于频率为 v 的谐振子,最小能量为
ε=hv(h 为普朗克常量)
(2)普朗克公式
式中,c 是光速,k 是玻耳兹曼常量,h 是普朗克常量, 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、光电效应 爱因斯坦的光子理论 1.光电效应的实验规律 (1)实验原理
式中,
表示黑体的单色辐出度,基尔霍夫定律表明,吸收能力强的物体辐射能力也
较强.
3.黑体辐射实验定律
(1)斯特藩-玻尔兹曼定律:黑体的总辐出度随温度的升高而增大,且满足
式中, 为斯特藩常量,数值上等于
.
(2)维恩位移定律:黑体单色辐出度的峰值波长与温度成反比,即
式中,b 是维恩常量,数值上等于