程守洙《普通物理学》(第6版)(上册)(课后习题详解 热力学基础)【圣才出品】
程守洙《普通物理学》(第5版)(上册)章节题库-热力学基础(圣才出品)

十万种考研考证电子书、题库视频学习平台圣才电子书 第6章热力学基础一、选择题1.一定量的理想气体,分别进行如图6-1所示的两个卡诺循环abcda 和a′b′c′d′a′,若在PV 图上这两个循环曲线所围面积相等,则可以由此得知这两个循环()。
图6-1A.效率相等B.由高温热源处吸收的热量相等C.由低温热源处放出的热量相等D.在每次循环中对外作的净功相等【答案】D【解析】循环曲线所围面积就是循环过程做的净功。
2.如图6-2所示,和为两条等温线。
若ab 为一绝热压缩过程,则理想气体由状态c 经cb 过程被压缩到b 状态,在该过程中气体的热容C 为()。
A.C>0B.C<0十万种考研考证电子书、题库视频学习平台圣才电子书 C.C=0D.不能确定图6-2【答案】B3.关于可逆过程和不可逆过程有以下几种说法,正确的是().(1)可逆过程一定是准静态过程;(2)准静态过程一定是可逆过程;(3)对不可逆过程,一定找不到另一过程使系统和外界同时复原;(4)非静态过程一定是不可逆过程。
A.(1),(2),(3)B.(2),(3),(4)C.(1),(3),(4)D.(1),(2),(3),(4)【答案】C4.图6-3示四个循环过程中,从理论上看能够实现的循环过程是图()。
图6-3【答案】(a)二、填空题1.一台理想热机按卡诺循环工作,每一个循环做功,高温热源温度T1=100℃,低温热源温度T2=0℃,则该热机的效率为______,热机每一循环从热源吸收的热量为______J,每一循环向低温处排出的热量是______J。
【答案】0.268;2.73×105;2.008×105【解析】由卡诺循环的效率公式,有热机每一个循环从热源吸收的热量为每一个循环向低温热源排出热量是2.质量为1kg的氧气,其温度由300K升高到350K。
若温度升高是在下列三种不同情况下发生的:(1)体积不变;(2)压强不变;(3)绝热。
程守洙《普通物理学》(第6版)(上册)(名校考研真题详解 运动的守恒量和守恒定律)【圣才出品】

十万种考研考证电子书、题库视频学习平
台
【解析】由运动方程为
x=5t,y=0.5t2 得 vx
dx dt
5, vy
dy dt
t
;
当t
2s
时
v12 =v2x
v
2 y
52
22
29 ;
当t
4s
时 v22 =v2x
v
2 y
52
42
41;
由能量守恒W
Ek
=E2 -E1=
1 2
m(v22
碰撞过程中系统的总能量必定不会增大,即
E1
E2
得
1 2
mu 2
1 2
mv12
1 2
mv22
;综合比
较只有 B 可能.
4.今有一倔强系数为 k 的轻弹簧,垂直放置,下端挂一质量为 m 的小球,使弹簧为
2 / 15
圣才电子书
十万种考研考证电子书、题库视频学习平
台
原长而小球恰好与地面接触.今将弹簧上端缓慢地提起,直到小球刚能脱离地面为止,在
4 / 15
圣才电子书
十万种考研考证电子书、题库视频学习平 台
7.一质量为 m 的质点沿着一条曲线运动,位矢 a、b、ω 为常数,则此质点对原点的力矩和角动量分别为( 研]
A.0, 0
,其中 ).[电子科技大学 2010
B.
C. D.
【答案】B
【解析】由位矢
可知
r (a cost)2 (b sin t)2 ;
r 又有 v=
r dr
r a sin ti
r b cost j
,可知
dt
v = (-a sin t)2 (b cost)2 ur r ur r r 则角动量 L=r p mr v 知 L =rmv sin mab ,显然此质点对原点的力矩为 0,因
程守洙《普通物理学》(第6版)(上册)(课后习题详解 恒定电流的磁场)

8.2 课后习题详解一、复习思考题§8-1 恒定电流8-1-1 电流是电荷的流动,在电流密度j≠0的地方,电荷的体密度ρ是否可能等于零?答:是,原因如下:电流密度j是指单位时间内单位面积上有多少电荷量流过;电荷的体密度ρ是指单位体积内有多少净电荷.对一段均匀金属导体,其内部有大量的自由电子,可分以下两种情况讨论:(1)无电流时宏观层面,任一体积元内其正负电荷数量是相等的,净电荷数为零,那么导体内的电荷体密度ρ等于零;(2)有电流时电流密度j≠0,根据电流的连续性原理,对任一段导体都有流进与流出的电流相等,金属导体内没有正电荷的移动,即单位时间内流入的和流出的负电子数相等,因此该段导体内的正负电荷数量仍然相等,净电荷数为零,导体内的电荷体密度ρ等于零.8-1-2 一金属板(如图8-1-1(a))上A、B两点如与直流电源连接,电流是否仅在AB直线上存在?为什么?试说明金属板上电流分布的大致情况.答:(1)否.因为当A、B两点接在直流电源的正负极上后,就存在电势差.该金属板上连接A、B两点的任一直线或弧线都可以看作是一条电阻线,用图8-1-1(b)所示的模型来描述,即在A 、B 之间的金属板可以分割为无数条电阻线,这些电阻并联且两端有相同的电势差,因此理论上在整个金属板上都存在电流线,只是电流主要集中在靠近A 、B 两点的线段上,远离A 、B 两点的地方电流很小.(2)金属板上电流分布的大致情况为:连接A 、B 两点的直线段对应于电阻R 1,那么流过该直线段的电流就最大(电阻最小);连接A 、B 两点的弧线段对应于电阻R 2、R 3、…、R n ,弧线越长,电阻越大,电流越小.因此可得如图8-1-1(c )所示的电流线分布图:图8-1-1金属板上的电流线分析图8-1-3 两截面不同的铜杆串接在一起(如图8-1-2),两端加有电压U ,问通过两杆的电流是否相同?两杆的电流密度是否相同?两杆内的电场强度是否相同?如两杆的长度相等,两杆上的电压是否相同?图8-1-2图8-1-3 粗细不均匀的导线中的电流线答:(1)电流是.原因为:如图8-1-3,在粗细不均匀的导线中,电流线在不同截面处没有突然断失或长出,是连续的,即电流在这种导线中处处相同.同时若把粗细不等的两段导线视为两个阻值不同的电阻串联在一起,加上电压U后,串联电路的电流是处处相同的,即通过两杆的电流相同.(2)电流密度否.原因为:两杆的截面不相同,流过杆的电流密度j则不相同,因此电流密度在细的一段较大,在粗的一段较小.(3)电场强度否.原因为:欧姆定理的微分形式j=γE说明,电流密度与电场强度成正比.因此细杆内的电流密度大,电场强;粗杆内的电流密度小,电场弱.(4)长度相等时,两杆的电压否.原因为:若同样的材质和长度,根据欧姆定律U=IR,当二者串联时有相同的电流,电阻大的细杆两端电压较高,电阻小的粗杆两端电压较低.8-1-4 电源中存在的电场和静电场有何不同?答:电源中同时存在两种电场:非静电性电场和恒定电场.(1)非静电性电场与静电场的不同点①作用力不同:a.非静电性电场对电荷的作用力是非静电力,如化学力、核力等,因此非静电性电场的大小是指单位正电荷所受到的非静电性力;b.静电场是由静止电荷激发产生的,静电场的大小是指单位正电荷所受到的静电力.②方向不同:a.非静电性电场的方向:在电源内部从电源的负极(低电势)指向电源的正极(高电势),在电源外部没有没有非静电性电场;b.静电场的的方向:由高电势指向低电势.③性质不同:a.非静电性电场是非保守力场;b.静电场是保守力场.(2)恒定电场与静电场的不同点静电场是由静止电荷激发产生;而恒定电场是由运动电荷产生,而其电场分布是恒定的.但是二者均为保守力场,均由不随时间变化的电荷或电荷分布所激发产生.8-1-5 一铜线外涂以银层,两端加上电压后在铜线和银层中通过的电流是否相同?电流密度是否相同?电场强度是否相同?答:(1)电流否,原因为:将铜线外涂以银层的电线结构视为两阻值不同的电阻并联而成,尽管二者长度相同,但电阻率不同,截面积也不同,因此铜线和银层的电阻不同.在电压相同的情况下,并联电阻通过的电流随阻值不同而不同,所以通过铜心和银层的电流不相同.(2)电流密度否,原因如下:设铜和银的电阻率分别为ρ1和ρ2,铜心和银层的截面积分别为S1和S2,它们的长度都是l ,那么它们的电阻分别为电流分别为电流密度分别为由此可见,电流密度与电阻率成反比,而与导线的截面积无关.由于铜的电阻率ρ1比银的电阻率ρ2大,所以铜心的电流密度比银层的电流密度小.(3)电场强度是,原因如下:根据欧姆定律的微分形式J =γE ,可求出铜心与银层中的电场强度大小分别是:可见铜心与银层中的电场强度是相同的,与铜心和银层的截面积、电阻率都无关.上式描述的是电场强度与电势梯度的关系,由于铜心和银层两端的电压和自身的长度相同,因此内部的电势梯度相同,电场强度也相同.§8-2 磁感应强度8-2-1 一正电荷在磁场中运动,已知其速度v 沿着Ox 轴方向,若它在磁场中所受力有下列几种情况,试指出各种情况下磁感应强度B 的方向.(1)电荷不受力;(2)F 的方向沿Oz 轴方向,且此时磁力的值最大;(3)F 的方向沿Oz 轴负方向,且此时磁力的值是最大值的一半.答:运动电荷在磁场中受到的洛伦兹力,F =q v ×B ,洛伦兹力的大小为F =qvBsinθ,θ为v 与B 之间的夹角,因此:(1)电荷不受力时此时洛伦兹力F =qvBsinθ=0,即磁感应强度B 的方向与电荷的运动方向一致(θ=0),或者相反(θ=π);(见图8-1-4(a ))(2)磁力的值最大时此时磁感应强度B 的方向与运动电荷的运动方向垂直其方向可由矢积F max ×v 的方向确定,因此沿y 轴方向;(见图8-1-4(b ))(3)磁力的值是最大值的一半时此时磁感应强度B 的方向与运动电荷运动方向之间的夹角由于F 的方向总是与B 与v 所在的平面垂直,而F 的方向沿O z 轴负方向,因此B 的方向在xy 平面内,且与x 轴之间的夹角(见图8-1-4(c ))图8-1-4 不同情况下磁感应强度B 的方向8-2-2 (1)一带电的质点以已知速度通过某磁场的空间,只用一次测量能否确定磁。
程守洙《普通物理学》(第6版)(上册)(课后习题详解 相对论基础)【圣才出品】

4.2 课后习题详解一、复习思考题§4-1 狭义相对论基本原理洛伦兹变换4-1-1 爱因斯坦的相对性原理与经典力学的相对性原理有何不同?答:(1)经典力学的相对性原理:运动关系的相对性表明,物质之间存在着相对运动的关系而非彼此孤立.相对运动的形式丰富多样,由相对运动产生的相互作用力也形式不一.(2)爱因斯坦的相对性原理:在所有惯性系中,物理定律的形式相同,或者说,所有惯性系对于描述物理现象都是等价的.(3)二者的分析比较:①经典力学的相对性原理说明一切惯性系对力学规律的等价性,而爱因斯坦的相对性原理将此种等价性推广到一切自然规律上去,包括力学定律和电磁学定律.②爱因斯坦的相对性原理的等价性推广意义深刻.我们可借助于电学或光学实验确定出本系统的“绝对运动”来,绝对静止的参考系是存在的,然而这与实验事实相矛盾.③爱因斯坦基于对客观规律的根本认识以及对实验事实的总结,才提出这个相对性原理的.相对论是研究相对运动和相互作用的科学.它使研究物质、能量及其相互作用的物理学发展到更高更深的层次.4-1-2 洛伦兹变换与伽利略变换的本质差别是什么?如何理解洛伦兹变换的物理意义?答:(1)洛伦兹变换与伽利略变换的本质差别:①洛伦兹变换是相对论时空观的具体表述;②伽利略变换是经典力学绝对时空观的具体表述.(2)洛伦兹变换的物理意义①洛伦兹变换集中地反映了相对论关于时间、空间和物质运动三者紧密联系的观念.②洛伦兹变换是建立相对论力学的基础.a.运用洛伦兹变换,评判一条物理规律是否符合相对论的要求,凡是通过洛伦兹变换能保持不变式的物理规律都是相对论性的规律.b.在v<<c时,洛伦兹变换将转换为伽利略变换,从这个角度出发,相对论力学就是经典牛顿力学的继承、批判和发展.4-1-3 设某种粒子在恒力作用下运动,根据牛顿力学,粒子的速率能否超过光速?答:(1)牛顿力学认为粒子的质量不会改变,粒子的加速度正比于所受外力.外力越大,粒子所得的加速度也越大.因此,粒子速度是没有极限的,粒子的速率可以超过光速.(2)相对论力学认为,粒子的质量随速度的增大而增大,粒子的加速度并非与所受外力成简单正比关系,加速度的大小有限制,使得粒子的速率不会超过光速.§4-3 狭义相对论的时空观4-3-1 长度的量度和同时性有什么关系?为什么长度的量度和参考系有关系?答:(1)长度的量度:测量一物体的长度就是在本身所处的参考系中测量物体两端点位置之间的距离.(2)同时性分析:①当待测物体相对于观测者静止时,在不同的时刻测量两端点的位置,其距离总是物体的长度;②当待测物体相对于观测者运动时,物体的长度就必须同时测定物体两端点的位置.若非同时测定,测量了一端的位置时,另一端已移动到新的位置,其坐标差值不再是物体的长度了.(3)由于同时性的相对性,所以长度的量度与同时性紧密相连,从而与测量的参考系有关.(4)下面举例说明:假设有一细棒静止在K′系的x′轴上,而K′系相对惯性系K 以速度v沿O x 轴运动.如把记录细棒左端坐标为事件1,记录细棒右端坐标为事件2,则两事件在两参考系中相应的时空坐标为由于细棒静止在K '系,所以△x'=x '2-x '1就是细棒的固有长度,根据洛伦兹变换在K 系测量两端坐标必须同时进行,即△t=0,故有所以在K 系中测得物体的长度为这就是长度收缩效应现象.4-3-2 下面两种论断是否正确?(1)在某一惯性系中同时、同地发生的事件,在所有其他惯性系中也一定是同时、同地发生的.(2)在某一惯性系中有两个事件,同时发生在不同地点,而在对该系有相对运动的其他惯性系中,这两个事件却一定不同时.答:(1)正确.在一个惯性系中同时、同地发生的事件,实质上就是一个事件.因而,可得:△x=0,△t=0根据洛伦兹变换:△x'=0,△t'=0因此,在所有其他惯性系中也一定是同时、同地发生的.(2)正确.对惯性系K 中同时发生在不同地点的两个事件,可得△t=0.△x≠0在相对运动的其他惯性系K '中,有在惯性系K '中这两个事件一定不同时.因此,同时性是相对的.4-3-3 两只相对运动的标准时钟A 和B ,从A 所在惯性系观察,哪个钟走得更快?从B 所在惯性系观察,又是如何呢?答:(1)从A 所在惯性系观察,根据“时间膨胀”或“原时最短”的结论,相对静止的时钟A 所指示的时间间隔是原时,它走得“快”些;而时钟B 给出的时间间隔是运动时,因“时间膨胀”而走得“慢”些.(2)同理,从B所在惯性系观察时,则相反,时钟B走得“快”些,而时钟A走得“慢”些.4-3-4 相对论中运动物体长度缩短与物体线度的热胀冷缩是否是一回事?答:不是一回事.(1)“热胀冷缩”①是涉及分子微观热运动的基本热学现象;②这与物体的温度有关,与其宏观运动速度无关.(2)“长度收缩”①是由狭义相对论所得到的重要结论,指在相对物体运动的惯性系中测量物体沿运动方向的长度时,测得的长度总是小于固有长度或静长这一现象;②这与物体的运动速度有关,与物体的组成和结构无关,是普遍的时空性质的反映.4-3-5 有一枚以接近于光速相对于地球飞行的宇宙火箭,在地球上的观察者将测得火箭上的物体长度缩短,过程的时间延长,有人因此得出结论说:火箭上观察者将测得地球上的物体比火箭上同类物体更长,而同一过程的时间缩短.这个结论对吗?答:此结论不正确.(1)狭义相对论认为,“长度收缩”和“时间膨胀”都是相对的.(2)若以火箭和地球为相对运动的惯性参考系,则火箭上的观察者也会观测到“长度收缩”和“时间膨胀”的现象.4-3-6 比较狭义相对论的时空观与经典力学时空观有何不同?有何联系?答:(1)两种时空观的不同:①狭义相对论时空观:a.狭义相对论中关于不同惯性系之间物理事件的时空坐标变换的基本关系式是洛伦兹变换.在洛伦兹变换关系中,长度和时间都是相对的,反映了相对论的时空观.b.狭义相对论时空观认为:第一,空间和时间不可分割,与物质运动密切相关;第二,时间是相对的,时间间隔因惯性系不同则会有差别;第三,空间是相对的,在不同的惯性系中,相同两点的空间间隔会有差别.②经典力学时空观:a.经典力学中关于不同惯性系之间物理事件的时空坐标变换的关系式是伽利略变换.在伽利略变换关系中,长度和时间都是绝对的,反映了经典力学的绝对时空观.b.经典力学时空观认为:时间、空间是彼此独立的,都是绝对的,与物质运动无关.(2)两种时空观的联系:①洛伦兹变换式通过狭义相对论的两个基本原理推导得出,并由此得出反映相对论时空观的几个重要结论,比如同时性的相对性、长度收缩、时间膨胀等;②当v<<c时,洛伦兹变换可以过渡到伽利略变换,即经典力学是相对论力学的低速近似.§4-4 狭义相对论动力学基础4-4-1 化学家经常说:“在化学反应中,反应前的质量等于反应后的质量.”以2g 氢与16g氧燃烧成水为例,注意到在这个反应过程中大约放出了25J的热量,如果考虑到相对论效应,则上面的说法有无修正的必要?。
普通物理学第六版答案

普通物理学第六版答案引言本文档为《普通物理学第六版》的习题答案,旨在帮助读者更好地理解和掌握书中的内容。
答案是根据该版本的章节和习题整理而成,涵盖了从基本概念到高级问题的解答过程。
读者可以通过对比自己的答案,找到解题思路上的差异,并做出相应的调整。
目录1.第1章:引言2.第2章:运动学3.第3章:相对论运动学4.第4章:力学5.第5章:电磁学6.第6章:热学第1章:引言本章主要介绍了普通物理学的基本概念和研究方法。
习题涉及了科学方法、物理量和单位、测量等内容。
以下是一道题目的答案示例:1.假设有一个实验,需要测量一个物体的质量。
你应该如何选择测量方法?请详细描述你的策略和步骤。
答案:首先,我们可以选择使用天平进行质量的测量。
下面是测量质量的步骤:1.确保天平是精确的,没有偏差。
可以通过进行零位校准来验证天平的准确性。
2.将待测物体放置在天平的平台上,并保持其稳定。
3.观察天平的示数,记录下物体的质量。
如果天平的示数不稳定,可以多次测量并求取平均值。
4.确认测量结果的单位是否与预期一致,如果单位不同,需要进行单位换算。
第2章:运动学本章讨论了运动学的基本概念和运动规律。
习题涵盖了位移、速度、加速度等方面的内容。
以下是一道题目的答案示例:2.一个人以匀速9 m/s的速度行走了30s,求他的位移。
答案:由于匀速运动的速度保持不变,我们可以使用以下公式计算位移:位移 = 速度 × 时间位移 = 9 m/s × 30 s = 270 m因此,这个人的位移为270米。
第3章:相对论运动学本章讨论了相对论运动学的基本原理和公式。
习题涉及了速度叠加、光速不变等内容。
以下是一道题目的答案示例:3.一个物体以0.8c的速度向东运动,一个观察者以0.6c的速度相对于该物体运动。
求观察者相对于地面的速度。
答案:根据相对论速度叠加公式:v’ = (v1 + v2) / (1 + v1 * v2 / c^2)其中,v1为物体相对于地面的速度,v2为观察者相对于物体的速度。
大学普通物理--习题答案(程守洙-江之勇主编--第六版)省公开课获奖课件市赛课比赛一等奖课件

2hw 2sec 2wt
tg
wt
结束 目录
1-14滑雪运动员离开水平滑雪道飞入空 中时旳速率v =110km/h,着陆旳斜坡与水
平面成 q = 450角,如图所示。
(1)计算滑雪运动员着陆时沿斜坡旳位 移(忽视起飞点到斜面旳距离);
(2)在实际旳跳跃中,运动员所到达旳 距离L=165m, 此成果为何
(3)式中 t 以s为单位,x、y以m为单位,
求:质点在t = 4 时旳速度旳大小和方向。
结束 目录
x =3t +5
y=
1 2
t 2+3t
4
解: (1)
r
=
(
3t
+5)
i+
(
1 2
t
2+ 3 t
4) j
(2)
y
=
1 2
(
x
5 3
)2+
3
(
x
5 3
)
4
(3) v =3 i + (t +3) j =3 i + 7 j
v/(m.s-1)
-10
o
t/s 10 20 30 40 50 60
-10
-10
结束 目录
解:由v~t 图旳总面积可得到旅程为:
S
=
1 2
(30+10)×5
+
1 2
(20×10)
=200(m)
总位移为:
Δx
=
1 2
(30+10)×5
所以平均速度也为零
1 2
(20×10)
=0
结束 目录
1-4.直线 1与圆弧 2分别表达两质点A、B
程守洙《普通物理学》(第6版)(上册)笔记和课后习题(含考研真题)详解(8-9章)【圣才出品】

单位为
,电流密度描述的是导体中电流的分布.
2.电源的电动势
(1)电源
1 / 166ຫໍສະໝຸດ 圣才电子书 十万种考研考证电子书、题库视频学习平台
电源是指能提供性质与静电力很不相同的“非静电力”,把正电荷从电势低的 B 移向 电势高的 A 的装置.
(2)电动势 电动势等于电源把单位正电荷从负极经电源内移动到正极所作的功,即
二、磁感应强度 1.基本磁现象 在自然界中不存在独立的 N 极和 S 极. 运动电荷或电流之间通过磁场作用的关系可以表达为:
2.磁感应强度 它是描述磁场性质的基本物理量,大小为试探电荷所受到的最大磁力与电荷的电量和运 动速度间的比值,即
磁感应强度为矢量,磁感应强度的方向定义为当试探电荷 q 沿着某方向不受力时,定 义为磁感应强度 B 的方向;单位为 T(特),在高斯单位制下,有
2.安培环路定理 在磁场中,沿任何闭合曲线 B 矢量的线积分等于真空的磁导率乘以穿过以该闭合曲线 为边界所张任意曲面的各恒定电流的代数和,即
对安培环路定理的几点说明:
(1)磁场 B 的环流
只与穿过环路的电流有关,而与未穿过环路的电流无关;
(2)环路上任一点的磁感应强度 B 是所有电流(无论是否穿过环路)所激发的场在该
3.磁感应线和磁通量 (1)磁感应线 在任何磁场中,每一条磁感应线都是和闭合电流相互套链的无头无尾的闭合线,而且磁 感应线的环绕方向和电流流向形成右手螺旋的关系. (2)磁通量 通过一曲面的总磁感应线数,即
3 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台
磁通量为标量,有正负之分,定义穿入曲面的磁通量为负,穿出为正.单位为 W. (3)磁通量密度 磁场中某处磁感应强度 B 的大小为该处的磁通量密度,磁感应强度也称磁通量密度.
程守洙《普通物理学》(第6版)(上册)(课后习题详解 运动的守恒量和守恒定律)

2.2 课后习题详解一、复习思考题§2-1 质点系的内力和外力质心质心运动定理2-1-1 一物体能否有质心而无重心?试说明之.答:一物体可能有质心而无重心.(1)质心是表征物体系统质量分布的一个几何点,任何物体都有其质量分布,因此物体都有质心.(2)重心是地球对物体重力的作用点.在失重环境中,物体不受重力作用,重心就没有意义.2-1-2 人体的质心是否固定在体内?能否从体内移到体外?答:(1)质心是从平均意义上来表示物体的质量分布中心.它的位置由物体的质量分布来决定.所以,当物体质量改变时,质心的位置可以不固定.(2)质心可以由体内移到体外.人体在直立时,质心在体内,如果人体弯曲,就可把质心从体内移到体外.2-1-3 有人说:“质心是质量集中之处,因此在质心处必定要有质量”.这话对吗?答:(1)说法不对.(2)质心是描述物体系统质量分布的一个几何点,并非质量集中之处,质心所在处不一定有质量分布.如:质量均匀分布的空心球,其质心在球心,但质量却均匀分布于球面上.§2-2 动量定理动量守恒定律2-2-1 能否利用装在小船上的风扇扇动空气使小船前进?答:这是可以的.(1)假定风扇固定在小船上.当风扇不断地向船尾扇动空气时,风扇同时也受到了空气的反作用力.(2)该反作用力是向着船头的、并通过风扇作用于船身.根据动量定理,该力持续作用时会使船向前运动的动量获得增量.(3)当该作用力大于船向前运动时所受的阻力时,小船就可向前运动了.2-2-2 在地面的上空停着一气球,气球下面吊着软梯,梯上站着一个人.当这人沿软梯往上爬时,气球是否运动?答:选择人、气球和软梯组成的系统为研究对象.(1)当人相对软梯静止时,系统所受合力等于零.系统的动量在垂直方向上等于零并守恒,系统的质心将保持原有的静止状态不变.(2)当人沿软梯往上爬时,人与软梯间的相互作用力是内力,系统所受合外力仍为零,总动量恒定不变.系统的质心位置仍保持不变.根据动量守恒定律可知,当人沿软梯往上爬时,气球和软梯将向下运动.2-2-3 对于变质量系统,能否应用?为什么?答:(1)变质量系统的问题属于质点系的动力学问题,牛顿第二定律依然适用,但式中mν应理解为质点系的总动量.(2)这类问题的代表是发射中的火箭、下落中的雨滴等问题,其研究对象一般是主体的运动规律,对于运动过程中所吸附或排出的那一部分质量,在变化前后与运动主体有不同的运动速度,所以用来处理主体的运动是不正确的.(3)一般从质点系的动量定理的角度入手,由系统的动量定理可得式中m 为运动主体的质量,为附加物在吸附或排出后相对于运动主体的速度.上式变形得:该式是指主体的动量变化率等于主体所受的外力与单位时间内附加物变化的动量的矢量和.2-2-4 物体m 被放在斜面m'上,如把m 与m'看成一个系统,问在下列何种情形下,系统的水平方向分动量是守恒的?(1)m 与m'间无摩擦,而m'与地面间有摩擦;(2)m 与m'间有摩擦,而m'与地面间无摩擦;(3)两处都没有摩擦;(4)两处都有摩擦.图2-1-1答:如图2-1-1所示,物体与斜面视为一个系统,对系统进行受力分析:物体与斜面受到重力作用,地面对斜面有支持力,地面与斜面之间存在摩擦力.其中物体与斜面间的摩擦力和支持力均是系统的内力.当系统在水平方向的合外力为零时,系统的水平方向分动量守恒.讨论如下:(1)m'与地面间有摩擦时,系统在水平方向的合外力不为零,故水平方向的分动量不守恒.(2)m'与地面间无摩擦时,系统的水平方向的分动量守恒.(3)与(2)结论一致,系统的水平方向的分动量守恒.(4)与(1)结论一致,系统的水平方向的分动量不守恒.2-2-5 用锤压钉,很难把钉压入木块,如用锤击钉,钉就很容易进入木块,这是为什么?答:钉子打入木块,主要是钉子与木块之间的摩擦力小于钉子所受的作用力.(1)锤压钉子的压力一般不大,当钉子所受的摩擦力大于锤对钉子的压力时,钉子就无法进入木块,,因此难以把钉压入木块.(2)锤击钉子时,具有一定的动量,打击到钉子后,动量变成零.根据动量定理和牛顿第三定律,由于打击时间很短,钉子受到平均冲力很大,因此很容易克服木块的阻力而进入木块.2-2-6 如图2-1-2所示,用细线把球挂起来,球下系一同样的细线.拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断?为什么?图2-1-2答:任何细线只能承受一定张力,当给予细线的拉力超过它所能承受的极限张力,线就会断掉.如图示的情况:(1)当逐渐加大力量拉球下线时:在任一时刻,线中的张力与拉力达到平衡,而球上面线中的张力等于拉力和球的重力.因此,在渐渐增大拉力的过程中,球上面的线中的张力首先超过其极限张力会先断.(2)当用较大的力量突然拉球下线时:由动量定理可知,作用在线上的拉力就是冲力,由于力的作用时间较短,冲力还未传到球上面的线前,球下面的线就已经断了.2-2-7 有两只船与堤岸的距离相同,为什么从小船跳上岸比较难,而从大船跳上岸却比较容易?答:(1)选择人和船作为一个系统,并将人和船视为质点,忽略水的阻力.人以水平速度跳出时,系统在水平方向的动量分量守恒,即(2)由上式可知,大船没有小船后退厉害,人与小船的作用时间比较短了,在作用力相等时,所得的冲量就比较小了.因此人用同样大的力自小船上前跳的速度比自大船上前跳时的小,所以从小船跳上岸比从大船要困难.§2-3 功 动能 动能定理2-3-1 物体可否只具有机械能而无动量?一物体可否只有动量而无机械能?试举例说明.答:一个物体的动能和动量与相对于某参考系的速度有关;而物体的势能则与势能零点的选取有关.机械能是动能和势能的代数和.(1)一物体可能只具有机械能而无动量.如:①静止在离地面h 处的物体,它的动能和动量均为零.不将势能零点选在离地面高h 处时,物体就具有势能.因此,物体具有机械能而无动量.②弹簧振子在水平面内振动,在位移最大处,速度等于零,动能和动量也等于零.如将弹簧的原长处作为弹性势能的零点,那么此时弹簧振子具有弹性势能,其机械能不为零而动量为零.(2)一物体也可能只有动量而无机械能.如:物体离地面h 处自由下落至地面时,物体速度不为零,那么物体具有动量和动能.如将重力势能的零点选定在物体下落处,则到达地面时具有重力势能-mgh .由于开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 课后习题详解
一、复习思考题
§6-1 热力学第零定律和第一定律
6-1-1 怎样区别内能与热量?下面哪种说法是正确的?
(1)物体的温度越高,则热量越多.
(2)物体的温度越高,则内能越大.
答:(1)内能
①定义:内能是由热力学系统状态所决定的能量.微观上讲,内能是系统内粒子动能和势能的总和.
②理解内能的概念时要注意以下问题:
a.内能是状态函数,一般用宏观状态参量(如p、T、V)描述的系统状态,是单值函数;而理想气体的内能仅是温度T的单值函数;
b.内能的增量只与确定的系统始、终态有关,与变化的过程无关;
c.系统的状态若经历一系列过程又恢复原状态,则系统的内能不变;
d.对系统作功或者传热可以改变系统的内能.
(2)热量
①定义:是指存在温度差的系统之间传递的能量.微观上讲,传递热量是通过分子之间的相互作用完成的.
②理解热量的概念时要注意以下问题:
a.热量是过程量,对某确定的状态,系统有确定的内能,但无热量可言;
b.系统的热量传递,不仅与系统的始、终状态有关,也与经历的过程有关;
c.在改变系统的内能方面,传热也是改变系统内能的一个途径,与作功等效,都可作为系统内能变化的量度.
(2)①说法(1)是不正确的.温度是状态量,热量是过程量.“温度高”表示物体处在一个分子热运动的平均效果比较剧烈的宏观状态,无热量可言.
②说法(2)不完全正确.
a.对理想气体的内能仅是温度T的单值函数,故是正确的.
b.对一般热力学系统,内能是分子热运动的动能与势能之和,即内能并非只是温度的单值函数.
6-1-2 说明在下列过程中,热量、功与内能变化的正负:(1)用气筒打气;(2)水沸腾变成水蒸气.
答:(1)功的分析:①气筒打气是外力压缩气筒内的空气,气筒内空气体积减小,即△V<0,因此气筒内空气作负功;
②传热的分析:压缩过程进行得很快,气体还来不及与外界交换热量就已被压缩,因此可近似看作是绝热压缩过程,即Q=0.
③内能的分析:根据热力学第一定律△E=Q-A=-A>0,因此气筒内空气的内能增加.
(2)①若容器体积可以变化,水到达沸点时:a.大量吸收热量(Q>0);b.此过程温度不变,因而内能不变(△E=0);c.水汽的体积增加,对外作功(A>0).
②若容器体积不能变化,水沸腾时:a.吸取足够的热量(Q>0);b.水汽不能对外膨胀作功;c.水汽从外界吸取大量热量而成为过热蒸汽,温度上升,内能增加.
§6-2 热力学第一定律对于理想气体准静态过程的应用
6-2-1 为什么气体热容的数值可以有无穷多个?什么情况下,气体的摩尔热容是零?
什么情况下,气体的摩尔热容是无穷大?什么情况下是正值?什么情况下是负值?
答:(1)气体热容的数值可以无穷多个的原因:
根据热容定义,即不发生化学反应且在同等条件下温度升高1 K所需的热量.由于热量dQ是过程量,热力学系统可以经过无数个过程从一平衡态过渡到另一平衡
态,不同的过程传热不同,因此这就对应有无数个不同的热容C.
(2)C m=0
气体的摩尔热容的定义是指1 mol气体温度升高1 K所需的热量,用C m表示.根据
热容定义知,在绝热过程中dQ=0
,因此C m=0.
(3)
等温过程中dT=0,由知,
(4)C m取正值:
根据热容定义:,C m的符号取决于dQ.如,
①在恒压膨胀过程中,由于△E>0,A=p△V>0,则Q=△E+A>0,因此
C p,m>0.
②在恒容升温过程中,Q=△E>0,其摩尔热容C v,m也为正值.
(5)C m取负值:
在多方过程中,如果多方指数1<n<γ(γ为摩尔热容比),即系统温度升高1 K,反而放出热量(△Q<0),则将出现多方负热容,如6-2-2第(1)问.
6-2-2 一理想气体经图
6-1-1所示各过程,试讨论其摩尔热容的正负:
(1)过程Ⅰ-Ⅱ;(2)过程Ⅰ′-Ⅱ(沿绝热线);(3)过程Ⅱ'-Ⅱ.
图6-1-1
答:设以上三个过程代号分别1,2,3,都经过升温后,系统的初、末状态的温度都相同,因此内能的增量都相同,即△E 1=△E 2=△E 3>0;过程曲线下的面积表示所作的功,包围的面积越大,作负功的绝对值也越大.由图可知
.(1)过程2:为绝热过程,即,因此该过程的摩尔热容等于零.(2)过程1:
根据热力学第一定律
,则,得到.那么,
,该过程升温反而放出热量,其摩尔热容为负值.这是因为
外界压缩气体作功不仅提高了系统的内能,而且还向外界放出了一些热量,导致摩尔热容为负.
(3)过程3:
同理可得,,该过程中外界压缩系统作正功的同时系统还从外界吸取了热量才使系统升温,因此其摩尔热容为正值.
6-2-3 对物体加热而其温度不变,有可能吗?没有热交换而系统的温度发生变化,有可能吗?
答:这两种情况都是可能的.
(1)对物体加热而温度不变时,则Q>0,内能不变△E=0,由热力学第一定律可知Q=A,说明系统吸收外界的热量全部用于对外作功,例如理想气体的等温膨胀.(2)没有热交换,说明是绝热过程,Q=0.若系统的温度发生变化,则内能也会发生相应变化.根据热力学第一定律有Q=△E+A=0,△E=-A.
①假设是绝热膨胀过程,系统对外作功,则内能减少,说明这是通过消耗内能来做功的;
②假设是绝热压缩过程,内能增加,说明外界对系统作功提高了系统的内能.
§6-3 循环过程卡诺循环
6-3-1 为什么卡诺循环是最简单的循环过程?任意热机的循环需要多少个不同温度的热源?
答:(1)热力学第二定律表明,不可能制造一种只依靠一个热源循环动作的热机.也就是说,至少要两个以上的热源才可能制造循环动作的热机.卡诺循环是由两个可逆的等温过程和两个可逆的绝热过程组成的循环,包括一个提供热量的高温热源和一个接受热量的低温热源,因此这是构成循环热源数最少、最简单的理想循环.(2)如图6-1-2所示,任一可逆循环都可分割成许多小卡诺循环,小卡诺循环的数目越多,就与实际的循环过程越接近,所对应的不同温度热源数也就越多.
图6-1-2
6-3-2 有两个热机分别用不同热源作卡诺循环,在p-V 图上;它们的循环曲线所包围的面积相等,但形状不同,如图6-1-3所示.它们吸热和放热的差值是否相同?对外所作的净功是否相同?效率是否相同?
图6-1-3
答:(1)做功分析:
p-V 图中循环曲线所包围的面积即是循环系统对外作的净功,面积相同,而不论形状如何,这两个循环对外作的净功就相同;
(2)热量分析:
循环过程,系统的内能不变(△E=0),因此对外作的净功和系统与外界交换的热量相等,即吸热与放热之差相同.
(3)效率分析:
①根据热机效率的定义知:。