材料力学 第十一章压杆稳定(1,2)
合集下载
材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。
材料力学压杆的稳定性教学课件

脆性材料
如铸铁、玻璃等,其压杆稳定性 主要受材料强度和截面形状影响
,临界载荷较高。
塑性材料
如钢材、铜材等,其压杆稳定性受 材料屈服点和截面形状影响,临界 载荷较低。
复合材料
如玻璃纤维增强塑料等,其压杆稳 定性受材料性能和结构参数影响较 大,临界载荷取决于材料和结构的 设计。
04
压杆的稳定性实验
实验目的与要求
案例三:机械零件中的压杆稳定性分析
总结词
机械零件中的压杆稳定性分析是确保机械设备正常运转的关键因素,通过对机械零件中压杆的稳定性进行分析, 可以提高机械设备的可靠性和安全性。
详细描述
在机械设备中,压杆通常用于传递载荷或支撑部件,其稳定性对机械设备的性能和寿命具有重要影响。通过分析 机械零件中压杆的受力情况、材料特性等因素,可以评估其稳定性,并优化设计以提高机械设备的可靠性和安全 性。
定义
材料力学是研究材料在各种力和 力矩作用下的应力和应变行为的 科学。
重要性
材料力学为工程设计和结构分析 提供了理论基础,确保了工程结 构的稳定性和安全性。
材料力学的基本假设与理论
假设
材料是连续的、均匀的、各向同性的。
理论
胡克定律、弹性力学、塑性力学等。
材料力学在工程中的应用
01
02
03
建筑
建筑设计中的结构分析, 如梁、柱、板等。
本课件旨在帮助学生深入理解材料力学压杆稳定性的基本概念、原理和方法,提高 解决实际问题的能力。
课程目标
01
02
03
04
掌握压杆稳定性的基本概念、 原理和方法。
了解不同类型压杆的稳定性分 析方法。
掌握临界载荷和失稳形式的计 算方法。
如铸铁、玻璃等,其压杆稳定性 主要受材料强度和截面形状影响
,临界载荷较高。
塑性材料
如钢材、铜材等,其压杆稳定性受 材料屈服点和截面形状影响,临界 载荷较低。
复合材料
如玻璃纤维增强塑料等,其压杆稳 定性受材料性能和结构参数影响较 大,临界载荷取决于材料和结构的 设计。
04
压杆的稳定性实验
实验目的与要求
案例三:机械零件中的压杆稳定性分析
总结词
机械零件中的压杆稳定性分析是确保机械设备正常运转的关键因素,通过对机械零件中压杆的稳定性进行分析, 可以提高机械设备的可靠性和安全性。
详细描述
在机械设备中,压杆通常用于传递载荷或支撑部件,其稳定性对机械设备的性能和寿命具有重要影响。通过分析 机械零件中压杆的受力情况、材料特性等因素,可以评估其稳定性,并优化设计以提高机械设备的可靠性和安全 性。
定义
材料力学是研究材料在各种力和 力矩作用下的应力和应变行为的 科学。
重要性
材料力学为工程设计和结构分析 提供了理论基础,确保了工程结 构的稳定性和安全性。
材料力学的基本假设与理论
假设
材料是连续的、均匀的、各向同性的。
理论
胡克定律、弹性力学、塑性力学等。
材料力学在工程中的应用
01
02
03
建筑
建筑设计中的结构分析, 如梁、柱、板等。
本课件旨在帮助学生深入理解材料力学压杆稳定性的基本概念、原理和方法,提高 解决实际问题的能力。
课程目标
01
02
03
04
掌握压杆稳定性的基本概念、 原理和方法。
了解不同类型压杆的稳定性分 析方法。
掌握临界载荷和失稳形式的计 算方法。
材料力学之压杆稳定课件

变形量等,绘制 压力与变形关系曲线。
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核
材料力学-压杆稳定

1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:
材料力学作业(压杆稳定)答案

两端为固定端,l 2m, l0 1.8m, b 25mm, h 76mm 。试求压杆的临界力。
2EI
钢制成,均布荷载集度 q=48kN/m。梁和支柱的材料均为 Q235 钢,
=170MPa,E=210GPa,
Pcr Pcr(Pcrl)(22lE()22IlE)2I
稳定安全系数 nst=2.5。试检查梁和支柱是否安全。
q
A
B
2m
C 2m
2m 10
解:(1)xy 平面内失稳,z 为中性轴:=1
D
解:这是一次超静定和压杆稳定综合题, (1) 由一次超静定得:F=5ql/8=120KN
(2)xz 平面内失稳,y 为中性轴:=0.5
(2) 校核梁的强度,Mc=-24KN.m:
材料力学作业(压杆稳定)
Pcr
2EI (l)2
班级:
学号:
姓名:
1.图示各杆均为细长压杆,各杆的材料、截面形状和截面面积均相同,试问杆能承 受的压力(d)图中压杆最大,(b)图中压杆最小
3. 图示的结构中,圆杆 CD 由 Q235 钢制成,C、D 两处均为球铰。已知 d=20mm,E=210GPa,
满足梁的强度安全
(3) 校核支柱的稳定,为小柔度杆按强度计算
不满足支柱的强度,不安全.
p 200 MPa
可荷载。 y
d ,稳定安全因数 nst
3
。试根据
CD
压杆的稳定性确定该ຫໍສະໝຸດ 构的许PAyz
ld
P
A
z
l
BP
x
BP
x
答案:[F]=1.88KN
2.图示压杆,E=210GPa,在主视图(a)平面内,两端为铰支,在俯视图(b)平面内, 4.如图所示结构中的梁 AB 及立柱 CD 分别为 16 号工字钢和连成一体的两根 63×63×5 角
材料力学09第十一章 压杆稳定问题

n 2 2 EI Fcr 2 l
Fcr Fcr min
EI
2
l2
理想中心压杆的欧拉临界力
M(x)= Fcr(-w) =-Fcrw
EIw ' ' M ( x) Fcr w
x Fcr
A
Fcr 2 k 令 EI
w' ' k 2 w 0
与前面获得的结果相同。
w
w l 2 x
2)计算许可载荷[P]
1.5 y 0 : [ P ] P 2 0 [ P] 2.82( KN)
BC cr
§11-4 欧拉公式的应用范围 · 临界应力总图
1. 欧拉公式的应用范围
欧拉临界应力
I 2 EI 2 i Fcr 2 ( l ) A 2 2 2 E E EI Fcr cr 2 ( l ) A ( l ) 2 A ( l ) 2 A
约束越弱,μ系数越大, 临界力Fcr越低,稳定性越差。
其他支座条件下细长压杆的临界压力
由于边界条件不同,则:
2 EI Fcr ( l ) 2
I:最小惯性矩
称为长度系数。
一端固定一端自由:
2
1
两端铰支:
一端铰支一端固定:
临界应力
cr
Fcr A
0.7 0.5
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯 一的平衡状态;
稳定:
理想中心压杆能够保持稳定的(唯一的)
直线平衡状态;
失稳(屈曲):理想中心压杆丧失稳定的(唯一的)直 线平衡状态; 临界力 压杆失稳时,两端轴向压力的特殊值
Fcr Fcr min
EI
2
l2
理想中心压杆的欧拉临界力
M(x)= Fcr(-w) =-Fcrw
EIw ' ' M ( x) Fcr w
x Fcr
A
Fcr 2 k 令 EI
w' ' k 2 w 0
与前面获得的结果相同。
w
w l 2 x
2)计算许可载荷[P]
1.5 y 0 : [ P ] P 2 0 [ P] 2.82( KN)
BC cr
§11-4 欧拉公式的应用范围 · 临界应力总图
1. 欧拉公式的应用范围
欧拉临界应力
I 2 EI 2 i Fcr 2 ( l ) A 2 2 2 E E EI Fcr cr 2 ( l ) A ( l ) 2 A ( l ) 2 A
约束越弱,μ系数越大, 临界力Fcr越低,稳定性越差。
其他支座条件下细长压杆的临界压力
由于边界条件不同,则:
2 EI Fcr ( l ) 2
I:最小惯性矩
称为长度系数。
一端固定一端自由:
2
1
两端铰支:
一端铰支一端固定:
临界应力
cr
Fcr A
0.7 0.5
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯 一的平衡状态;
稳定:
理想中心压杆能够保持稳定的(唯一的)
直线平衡状态;
失稳(屈曲):理想中心压杆丧失稳定的(唯一的)直 线平衡状态; 临界力 压杆失稳时,两端轴向压力的特殊值
材料力学-压杆的稳定性

例题:两端铰支压杆的长度 l = 1.2m,材料为 Q235 钢,其弹性摸 量 E=200GPa,1=200MPa,2=235MPa。已知截面的面积 A=900mm2,若截面的形状分别为正方形和 d/D = 0.7的空心圆管, 试计算各杆的临界力。
11.5 压杆的稳定计算
一、安全系数法
Fcr F [F ] nst
I A
•临界柔度
s — 屈服极限
2E 1 欧拉公式 (大柔度杆) cr 2 1 2 (中柔度杆) cr a b 直线公式
•临界应力
2
(小柔度杆)
cr s
强度问题
临界应力总图:临界应力与柔度之间的变化关系图。
cr
S P
许可外力 [ P ] 。
a
A
30
0
b
P B
C
D
例题:
11.6 提高压杆稳定性的措施
FPcr
2 EI ( l )2
欧拉公式
FPcr 越大越稳定
1) 减小压杆长度 l 2) 减小长度系数μ(增强约束)
3) 增大截面惯性矩 I(合理选择截面形状)
4) 增大弹性模量 E(合理选择材料)
1) 减小压杆长度 l
(绕哪个轴转动)
对于矩形截面:
y
压杆的稳定性
y
h b z
x h z b
1 3 I z bh , 12
1 3 I y hb 12
hb
Iz Iy
所以该矩形截面压杆应在xz平面内 失稳弯曲;即,绕 y 轴转动。
11.3 其他支座条件下细长压杆的临界压力
对于其他支座条件下细长压杆,求临界压力有两种方法:
11.5 压杆的稳定计算
一、安全系数法
Fcr F [F ] nst
I A
•临界柔度
s — 屈服极限
2E 1 欧拉公式 (大柔度杆) cr 2 1 2 (中柔度杆) cr a b 直线公式
•临界应力
2
(小柔度杆)
cr s
强度问题
临界应力总图:临界应力与柔度之间的变化关系图。
cr
S P
许可外力 [ P ] 。
a
A
30
0
b
P B
C
D
例题:
11.6 提高压杆稳定性的措施
FPcr
2 EI ( l )2
欧拉公式
FPcr 越大越稳定
1) 减小压杆长度 l 2) 减小长度系数μ(增强约束)
3) 增大截面惯性矩 I(合理选择截面形状)
4) 增大弹性模量 E(合理选择材料)
1) 减小压杆长度 l
(绕哪个轴转动)
对于矩形截面:
y
压杆的稳定性
y
h b z
x h z b
1 3 I z bh , 12
1 3 I y hb 12
hb
Iz Iy
所以该矩形截面压杆应在xz平面内 失稳弯曲;即,绕 y 轴转动。
11.3 其他支座条件下细长压杆的临界压力
对于其他支座条件下细长压杆,求临界压力有两种方法:
第11章 压杆稳定性问题

相等,则此压杆的临界压力又为多少?
(压杆满足欧拉公式计算条件)
h
动脑又动笔
解: 一端固定,一端自由,长度因数 μ=2 在应用欧拉公式时,截面的惯性
矩应取较小的I 值。
Iy 1 3 1 hb 90 403 mm 4 48 104 mm 4 12 12
b
F
l
1 3 1 I z bh 40 903 mm 4 243 104 mm 4 12 12
理解长细比、临界应力和临界应力总图的概念,熟 悉各类压杆的失效形式。
§11–1 压杆稳定性的基本概念
① 强度 衡量构件承载能力的指标 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 可靠地工作。 杆件在各种基本变形下的强度和刚度问题在前述各章节中 已作了较详细的阐述,但均未涉及到稳定性问题。事实上, 杆件只有在受到压力作用时,才可能存在稳定性的问题。
屈曲曲线是偏离原直线轴线不远的微弯状态。
F F EI L
M d2w 2 EI dx
§11–2 细长压杆的临界荷载—欧拉临界力
一、两端铰支压杆的临界力
多大的轴向压力才会使压杆失稳?
d2w EI 2 Fw 0 dx
y
M EI x w L
记
F
k2
F EI
F
F
x
d2w 2 k w0 2 dx
§11–3长细比的概念 三类不同压杆的判断
三、临界应力总图
cr
S
P
cr s
cr a b
2E cr 2
粗短杆 s
s s a
b
中长杆
P
细长杆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变形与载荷有关,可由借助B、A、∂三个数描述
0 k sin kl 1 0 cos kl
, B 5.位移函数 A kFcr Fcr Fy x w [sin kx kl cos kx kl(1 )] kFcr l
Fy
Fy l
6.拐点 (M=0) Fy w (k 2 sin kx k 3l coskx) 0 kFcr sin kx kl cos kx 0
Pmax 2 Pcr
2 Ed Pmax 2 64a
3
4
[例10-2]图示结构,①、②两杆截面和材料 相同,为细长压杆(设0<θ <π /2) 。
① 90
求载荷P为最大值时的θ 角。
②
解:由静力平衡条件可 解得两杆的压力分别为 : N1 P cos , N 2 P sin
w A sin kx B coskx Fcr 非齐次方程的特解 w 微分方程的解 w A sin kx B cos kx
w
M
齐次方程的通解
*
边界条件:
x 0时:w 0 x 0时:w 0 x l时:w
0 A B 0 kA 0 B 0 0 A sin kl B cos kl 0
2.失稳的定义
压杆从直轴线状态下的稳定平衡转化为微曲状态 下的不稳定平衡成为失稳。
临界压力--使压杆失稳的压力称为临界压力。
压杆的失稳
§10-2细长压杆临界 压力的欧拉公式
一.两端铰支细长压杆 的欧拉公式
1.压杆截面上的弯矩
M ( x) Fcr w
弯矩的符号由 坐标和应力的 符号共同决定: I z M y
tan kx kl 4.49
4.49 kx1 1.35 x1 1.35 x1 0.3l l 4.49 kx2 4.49 x2 4.49 x2 l l
由于EIw M (x) 知道: M(0.3L)=M(L)=0 长为0.7L的细长杆两端受轴向压力,其 临界压力为: 2 EI
l Fcr 1 0 Fcr 0
1 (kl cos kl sin kl) 0 tan kl kl kl 4.49 0.7 Fcr Fcr 2 EI Fcr 4.临界压力 k E I 0 .7 l (0.7l ) 2 0 .7 l
l 1 0 Fcr A 1 k 0 B0 Fcr F sin kl cos kl y 0
第十一章压杆稳定
安徽建筑工业学院
§13-1 压杆稳 定性的概念
一.研究压杆 稳定的意义 1907年加拿大魁 北克桥的失稳
(跨度548m,重9000T。 86人施工,死75人)
莫尔兹桥行架失稳
二.失稳的定义
1.稳定的分类
无穷多个 平衡点— 随遇平衡
一个平衡 点—稳定 平衡
没有平衡 点—不稳 定平衡
Fy
Fcr
(l x)
w A sin kx B coskx
Fy Fcr
(l x)
l0 3.边界条件: cr 1 kA 0 B Fy 0 x 0时:w 0 Fcr
x l时:w A sin kl B cos kl 0
CL13TU16
2E I 2E I Pcr 1 2 , Pcr 2 2 l1 l2 N1、N 2都达到临界压力时 最大,即 P 2 EI P cos () 1 2
l1 2 EI P sin 2 l2 (2)
两杆的临界压力分别为
①
90
②
将式(2)除以式(1),便得 l1 2 2 tg ( ) c tan l2
Fcr
M ( x) Fcr w Fcr EI w M ( x) Fcr w 即w w 0
Fcr 令k EI
2
2.杆曲线的微分方程
则w k w 0
2
EI
3.微分方程的解 特征方程 2 k 2 0
有两个共轭复根 ki
w C1e C2e
Fcr (0.7l ) 2
四.不同约束条件下细长压杆的临界压力通式 2 EI Pcr ( l) 2
称为长度系数
l称为相当长度。
几种典型约束下的细长压杆临界压力 公式如表所示。
不同约束压杆的临界压力欧拉公式(表)
[例10-1]五根直径都为 d的细长圆杆铰接构成 平面正方形杆系ABCD,如各杆材料相同,弹性 模量为E。 求图 (a)、(b)所示两种载荷作用下杆系所 能承受的最大载荷。
CL13TU15
解(a)BD杆受压其余杆受拉
BD杆的临界压力
Pcr
EI
2
2a
2
EI
2
2a
2
2
故杆系所能承受的最大载荷
Pmax Pcr
EI
2a
2
Pcr
Ed
3
4
128a
2
(b)BD杆受拉其余杆受压 四个杆的临界压力
Pcr
EI
2
a
2
故杆系所能承受的最大载荷:
2
EI w M ( x) Fcr w Fy (l x)
w
L
w
M
Fcr
w A sin kx B coskx
*
3.微分方程的解 齐次方程的通解
Fy 2 Fcr 2 令k 则w k w k (l x) EI F
cr
x
y
非齐次方程的特解 w 微分方程的解
变形与载荷有关,可由借助B、A、∂三个数描述 0 1 1 1 1 A 0 k 0 0 0 k B 0 0 0 sin kl coskl 0 sin kl cos kl 0
1 4.临界压力 k cos kl 0 k 0, kl (2n 1) 2
二.一端固定一端自由细长压杆临界压力公式 1.弯矩方程 M FCR ( w) EI w M ( x) Fcr ( w) Fcr F F
即w
2
cr
EI
w
cr
EI
w
x
y
Fcr
Fcr 令k EI
k 2 w k 2 则w
3.微分方程的解 特征方程 1,2 ki
1 x 2 x
C1e C2e
i x
ix
通解: w
A sin kx B cos kx
3.边界条件
x 0时:v 0 B 0 x l 时:v 0 A sin kl 0 sin kl 0 kl n (n 0,1,2,)
n Fcr n k EI l l 2 2 2 n EI EI nmin 1 Fcr 2 Fcr 2 l l
(n 0,1,2,)
nmin 1 k 2l 2 EI
Fcr (2l ) 2
Fcr E I 2l
三.一端固定一端铰支细长压杆临界压力公式
Fcr
Fy
1.弯矩方程 M FCR w Fy (l x)
Fcr
L-x
Fy Fcr 即w w (l x) EI EI
arctg(ctg )
2
作业9-2,9-4,9-6,9-7
作业:9-2,9-4, 9-6,9-7
谢谢大家!